- 1. Prove there are infinitely many primes $p \equiv 1 \mod 3$ and infinitely many primes $p \equiv 2 \mod 3$. (Hint for $p \equiv 1 \mod 3$: if $-3 \equiv \Box \mod p$ and $p \neq 2$ or 3 then $p \equiv 1 \mod 3$.)
- A nonzero f(T) ∈ Z[T] is called *reducible* in Z[T] if f(T) = g(T)h(T) where g(T) and h(T) are not ±1. A nonzero polynomial in Z[T] that is not reducible or ±1 is called *irreducible*.
 Prove f(T) ∈ Z[T] is irreducible in Z[T] if and only if f(T) is irreducible in Q[T] and primitive.
- 3. Let $f(T) \in \mathbb{Z}[T]$ be nonconstant. The Bunyakovsky condition on f(T) is that for each prime p there is an $n \in \mathbb{Z}$ such that $p \nmid f(n)$. This is equivalent to saying $gcd(f(n) : n \in \mathbb{Z}) = 1$.

a) Determine which of the following four irreducibles in $\mathbf{Z}[T]$ satisfy the Bunyakovsky condition: $2T^3 + T^2 - 9T - 4$, $T^3 + T^2 - 2T - 3$, $2T^4 + 3T^3 + T + 5$, and $T^4 - T^2 + 6$. For the ones satisfying the condition, determine their first four prime values on \mathbf{Z}^+ .

b) For all $k \ge 0$ show $T^{2^k} + 1$ fits the Bunyakovsky condition. (These are irreducible in $\mathbb{Z}[T]$.) c) Find the first four $n \ge 1$ making $n^4 + 1$ prime and the first four $n \ge 1$ making $n^8 + 1$ prime. d) Prove f(T) satisfies the Bunyakovsky condition if and only if there are distinct m and n in \mathbb{Z} such that (f(m), f(n)) = 1. (Hint for "only if" direction: use any m for which $f(m) \ne 0$ and use the Chinese remainder theorem to select a corresponding n.)

- 4. Check the set of four polynomials $\{T, T+2, T+6, T+8\}$ fits the conditions of Hypothesis H, while the set of five polynomials $\{T, T+2, T+6, T+8, T+14\}$ does not.
- 5. A polynomial f(T) is called *integer-valued* if $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Any polynomial in $\mathbb{Z}[T]$ is integer-valued, but so are $(T^2 + T)/2$ and $(T^3 T)/3$.

a) For $k \ge 0$, the kth binomial coefficient polynomial is $\binom{T}{k} = \frac{T(T-1)\cdots(T-(k-1))}{k!}$. Check $\binom{-T}{k} = (-1)^k \binom{T+k-1}{k}$ and conclude that $\binom{T}{k}$ is integer-valued.

b) Show integer-valued polynomials are exactly the **Z**-linear combinations of binomial coefficient polynomials: there are $c_i \in \mathbf{Z}$ such that $f(T) = c_d \binom{T}{d} + \cdots + c_1 \binom{T}{1} + c_0$.

c) If f(T) is integer-valued, prove $gcd(f(n) : n \in \mathbb{Z}) = gcd(c_0, \dots, c_d)$.

d) Write each of the four polynomials in Exercise 3a as a **Z**-linear combination of binomial coefficient polynomials, and use 5c to determine which satisfy the Bunyakovsky condition.

e) Hypothesis H for a nonconstant integer-valued polynomial f(T) says that if f(T) has a positive leading coefficient and is irreducible in $\mathbf{Q}[T]$, then f(n)/g is prime for infinitely many $n \ge 1$, where $g = \gcd(f(n) : n \in \mathbf{Z})$. (Bunyakovsky's condition is the case g = 1.)

The polynomials $T^2 + T + 2$ and $T^3 + 2T - 6$ are both irreducible in $\mathbf{Q}[T]$. Check the first polynomial has g = 2 and the second has g = 3, and find four $n \ge 1$ making $(n^2 + n + 2)/2$ prime and four $n \ge 1$ making $(n^3 + 2n - 6)/3$ prime.