1. Prove there are infinitely many primes $p \equiv 1 \bmod 3$ and infinitely many primes $p \equiv 2 \bmod 3$. (Hint for $p \equiv 1 \bmod 3:$ if $-3 \equiv \square \bmod p$ and $p \neq 2$ or 3 then $p \equiv 1 \bmod 3$.)
2. A nonzero $f(T) \in \mathbf{Z}[T]$ is called reducible in $\mathbf{Z}[T]$ if $f(T)=g(T) h(T)$ where $g(T)$ and $h(T)$ are not ± 1. A nonzero polynomial in $\mathbf{Z}[T]$ that is not reducible or ± 1 is called irreducible.
Prove $f(T) \in \mathbf{Z}[T]$ is irreducible in $\mathbf{Z}[T]$ if and only if $f(T)$ is irreducible in $\mathbf{Q}[T]$ and primitive.
3. Let $f(T) \in \mathbf{Z}[T]$ be nonconstant. The Bunyakovsky condition on $f(T)$ is that for each prime p there is an $n \in \mathbf{Z}$ such that $p \nmid f(n)$. This is equivalent to saying $\operatorname{gcd}(f(n): n \in \mathbf{Z})=1$.
a) Determine which of the following four irreducibles in $\mathbf{Z}[T]$ satisfy the Bunyakovsky condition: $2 T^{3}+T^{2}-9 T-4, T^{3}+T^{2}-2 T-3,2 T^{4}+3 T^{3}+T+5$, and $T^{4}-T^{2}+6$. For the ones satisfying the condition, determine their first four prime values on \mathbf{Z}^{+}.
b) For all $k \geq 0$ show $T^{2^{k}}+1$ fits the Bunyakovsky condition. (These are irreducible in $\mathbf{Z}[T]$.)
c) Find the first four $n \geq 1$ making $n^{4}+1$ prime and the first four $n \geq 1$ making $n^{8}+1$ prime.
d) Prove $f(T)$ satisfies the Bunyakovsky condition if and only if there are distinct m and n in \mathbf{Z} such that $(f(m), f(n))=1$. (Hint for "only if" direction: use any m for which $f(m) \neq 0$ and use the Chinese remainder theorem to select a corresponding n.)
4. Check the set of four polynomials $\{T, T+2, T+6, T+8\}$ fits the conditions of Hypothesis H , while the set of five polynomials $\{T, T+2, T+6, T+8, T+14\}$ does not.
5. A polynomial $f(T)$ is called integer-valued if $f(n) \in \mathbf{Z}$ for all $n \in \mathbf{Z}$. Any polynomial in $\mathbf{Z}[T]$ is integer-valued, but so are $\left(T^{2}+T\right) / 2$ and $\left(T^{3}-T\right) / 3$.
a) For $k \geq 0$, the k th binomial coefficient polynomial is $\binom{T}{k}=\frac{T(T-1) \cdots(T-(k-1))}{k!}$. Check $\binom{-T}{k}=(-1)^{k}\binom{T+k-1}{k}$ and conclude that $\binom{T}{k}$ is integer-valued.
b) Show integer-valued polynomials are exactly the \mathbf{Z}-linear combinations of binomial coefficient polynomials: there are $c_{i} \in \mathbf{Z}$ such that $f(T)=c_{d}\binom{T}{d}+\cdots+c_{1}\binom{T}{1}+c_{0}$.
c) If $f(T)$ is integer-valued, prove $\operatorname{gcd}(f(n): n \in \mathbf{Z})=\operatorname{gcd}\left(c_{0}, \ldots, c_{d}\right)$.
d) Write each of the four polynomials in Exercise 3a as a Z-linear combination of binomial coefficient polynomials, and use 5c to determine which satisfy the Bunyakovsky condition.
e) Hypothesis H for a nonconstant integer-valued polynomial $f(T)$ says that if $f(T)$ has a positive leading coefficient and is irreducible in $\mathbf{Q}[T]$, then $f(n) / g$ is prime for infinitely many $n \geq 1$, where $g=\operatorname{gcd}(f(n): n \in \mathbf{Z})$. (Bunyakovsky's condition is the case $g=1$.)
The polynomials $T^{2}+T+2$ and $T^{3}+2 T-6$ are both irreducible in $\mathbf{Q}[T]$. Check the first polynomial has $g=2$ and the second has $g=3$, and find four $n \geq 1$ making $\left(n^{2}+n+2\right) / 2$ prime and four $n \geq 1$ making $\left(n^{3}+2 n-6\right) / 3$ prime.
