Proof with Gaussian integers

Keith Conrad University of Connecticut

August 4, 2008

Introduction

We seek positive integers a, b, and c such that

$$a^2+b^2=c^2.$$

Plimpton 322

Babylonian table of Pythagorean triples (1800 BC). Eleventh row is (3, 4, 5).

Introduction

$$a^2 + b^2 = c^2$$

а	3	5	7	8	9	115
b	4	12	24	15	40	252
С	5	13	25	17	41	277

Examples of Pythagorean Triples

If d|a and d|b then $d^2|c^2$, so d|c. Similarly, if d|a and d|c then d|b, and if d|b and d|c then d|a. Therefore (a,b)=(a,b,c). Writing a=da', b=db', and c=dc',

$$a^2 + b^2 = c^2 \Longrightarrow a'^2 + b'^2 = c'^2$$
.

From now on we focus on *primitive* triples: (a, b) = 1.

Classification

$$a^2 + b^2 = c^2$$
, $(a, b) = 1$.

Certainly a and b are not both even. Also they are not both odd: otherwise. $c^2 = a^2 + b^2 \equiv 1 + 1 \equiv 2 \mod 4$, which is impossible. So one of a or b is even and the other is odd. Then $c^2 = a^2 + b^2$ is odd, so c is odd. Our convention: take b even.

Theorem

The primitive Pythagorean triples (a, b, c) where b is even are given by

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,

where u > v > 0, (u, v) = 1, and $u \not\equiv v \mod 2$.

For u and v in \mathbf{Z}^+ , need u > v so that a > 0. The conditions (u, v) = 1 and $u \not\equiv v \mod 2$ are forced by primitivity.

Classification

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,
 $u > v > 0$, $(u, v) = 1$, $u \not\equiv v \mod 2$

	и	2	3	3	4	4	5	14
	V	1	1	2	3	1	4	9
Ì	а	3	8	5	7	15	9	115
ĺ	b	4	6	12	24	8	40	252
Ì	С	5	10	13	25	17	41	277

Which *u* and *v* give the triple (a, b, c) = (190281, 78320, 205769)?

Classification

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,
 $u > v > 0$, $(u, v) = 1$, $u \not\equiv v \mod 2$

Can solve for u^2 and v^2 :

$$u^2 = \frac{a+c}{2}, \quad v^2 = \frac{c-a}{2}.$$

For
$$(a, b, c) = (190281, 78320, 205769)$$
,

$$\frac{a+c}{2} = 198025 = 445^2, \quad \frac{c-a}{2} = 7744 = 88^2.$$

So $\mu = 445$ and $\nu = 88$.

Primitive Triples of Nonzero Integers

Theorem

Triples (a, b, c) of nonzero integers where $a^2 + b^2 = c^2$, (a, b) = 1, b is even, and c > 0, are given by

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,

where $u, v \in \mathbf{Z} - \{0\}$, (u, v) = 1, and $u \not\equiv v \mod 2$.

Why? Suppose a > 0, b > 0, and c > 0, so the classification says

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,

$$u > v > 0$$
, $(u, v) = 1$, $u \not\equiv v \mod 2$.

In terms of this u and v, how do the parametric formulas apply to (a, -b, c)? To (-a, b, c)? To (-a, -b, c)? To (a, b, -c)?

Outline

- Classify primitive Pythagorean triples by unique factorization in Z.
- Classify primitive Pythagorean triples by unique factorization in Z[i].
- Classify primitive Pythagorean triples by analytic geometry.
- See additional use of each method of proof.

First proof: unique factorization in Z, I

$$a^2 + b^2 = c^2 \Longrightarrow b^2 = c^2 - a^2 = (c + a)(c - a).$$

Both c+a and c-a are positive and even. What's their gcd? If d|(c+a) and d|(c-a) then d|2c and d|2a, so d|2 because (a,c)=1. Since c+a and c-a are even, (c+a,c-a)=2. So

$$\left(\frac{b}{2}\right)^2 = \frac{c+a}{2} \cdot \frac{c-a}{2},$$

with factors relatively prime.

Theorem

If
$$xy = \square$$
 in \mathbf{Z}^+ and $(x, y) = 1$ then $x = \square$ and $y = \square$.

So
$$(c+a)/2 = u^2$$
 and $(c-a)/2 = v^2$ with $u, v \in \mathbf{Z}^+$. Solving, $c = u^2 + v^2$ and $a = u^2 - v^2$; $b^2 = (c+a)(c-a) = (2uv)^2$.

Introduction

First proof: unique factorization in Z, II

Let's try a different subtraction:

$$a^2 + b^2 = c^2 \Longrightarrow a^2 = c^2 - b^2 = (c + b)(c - b).$$

Both c+b and c-b are positive and odd. What's their gcd? If d|(c+b) and d|(c-b) then d|2c and d|2b, so d|2. Since c+b and c-b are odd, (c+b,c-b)=1.

Then $c+b=k^2$ and $c-b=\ell^2$ where k and ℓ are in \mathbf{Z}^+ and odd. Must have $(k,\ell)=1$. Adding and subtracting,

$$c = \frac{k^2 + \ell^2}{2}, \quad b = \frac{k^2 - \ell^2}{2}.$$

Then $a^2 = (c+b)(c-b) = k^2\ell^2$, so $a = k\ell$. We expect that $a = u^2 - v^2$, and so on. Since $u^2 - v^2 = (u+v)(u-v)$, try to get k = u + v and $\ell = u - v$. Define

$$u = \frac{k+\ell}{2}, \quad v = \frac{k-\ell}{2}.$$

Another parametrization

Theorem

The primitive Pythagorean triples (a, b, c) where b is even are given by

$$a = k\ell, \ b = \frac{k^2 - \ell^2}{2}, \ c = \frac{k^2 + \ell^2}{2},$$

where $k > \ell > 0$, $(k, \ell) = 1$, and k and ℓ are both odd.

k	3	5	7	5	9	23
ℓ	1	1	1	3	1	5
а	3	5	7	15	9	115
Ь	4	12	24	8	40	252
С	5	13	25	17	41	277

Write

$$c^2 = a^2 + b^2 = (a + bi)(a - bi).$$

Suppose $\delta | (a + bi)$ and $\delta | (a - bi)$ in **Z**[i]. Taking the norm, $N(\delta)$ divides $a^2 + b^2 = c^2$, which is odd, so N(δ) is odd. Also δ divides 2a and 2bi in $\mathbf{Z}[i]$, so $N(\delta)|4a^2$ and $N(\delta)|4b^2$ in \mathbf{Z} . Since (a,b)=1, $N(\delta)|4$, so $N(\delta)=1$. Thus $\delta=\pm 1$ or $\pm i$.

Theorem

If $\alpha\beta = \square$ in **Z**[i] and $(\alpha, \beta) = 1$ then α and β are squares up to unit multiple.

Either $a + bi = (u + vi)^2$ or $a + bi = i(u + vi)^2$.

First case: $a + bi = u^2 - v^2 + 2uvi \Rightarrow a = u^2 - v^2$ and b = 2uv.

Second case: $a + bi = -2uv + (u^2 - v^2)i \Rightarrow a = -2uv$, but a odd!

Choose sign on u so u > 0. Then v > 0 and

$$c^2 = a^2 + b^2 = N((u + vi)^2) = N(u + vi)^2 = (u^2 + v^2)^2.$$

Proof by geometry

Introduction

Pythagorean triples from Gaussian integers

Pythagorean triples arise from squaring Gaussian integers:

$$(u+vi)^2 = a + bi \stackrel{\mathsf{Norm}}{\Longrightarrow} (u^2 + v^2)^2 = a^2 + b^2.$$

α	α^2	l riple
1 + 2i	-3 + 4i	(3, 4, 5)
2 + 3i	-5 + 12i	(5, 12, 13)
7 + 4i	33 + 56 <i>i</i>	(33, 56, 65)
7 + 5i	24 + 70i	(24, 70, 74)
10 + 3i	91 + 60i	(91, 60, 109)

From 7 + 5i get nonprimitive (24, 70, 74) = 2(12, 35, 37). In **Z**[i],

$$\frac{7+5i}{1+i} = \frac{(7+5i)(1-i)}{(1+i)(1-i)} = \frac{12-2i}{2} = 6-i$$

and

$$(6-i)^2 = 35-12i$$
.

which gives the primitive triple (35, 12, 37).

Third proof: analytic geometry

Introduction

$$a^{2} + b^{2} = c^{2} \Longrightarrow r^{2} + s^{2} = 1, \quad r = \frac{a}{c}, s = \frac{b}{c}.$$

The line through (-1,0) and (r,s) is y=m(x+1), where $m=\frac{s}{r+1}$. If $r,s\in \mathbf{Q}$ then $m\in \mathbf{Q}$.

Third proof: analytic geometry

Conversely, for $m \in \mathbf{Q}$ where does y = m(x+1) meet the circle?

$$1 = x^2 + y^2 = x^2 + (m(x+1))^2 = (m^2 + 1)x^2 + 2m^2x + m^2,$$

so

$$0 = x^2 + \frac{2m^2}{m^2 + 1}x + \frac{m^2 - 1}{m^2 + 1} = (x + 1)\left(x + \frac{m^2 - 1}{m^2 + 1}\right).$$

Third proof: analytic geometry

$$0 = (x+1)\left(x + \frac{m^2 - 1}{m^2 + 1}\right)$$

The second point of intersection is at (r, s), where

$$r = -\frac{m^2 - 1}{m^2 + 1} = \frac{1 - m^2}{1 + m^2}$$

and

Introduction

$$s = m(r+1) = \frac{2m}{1+m^2}.$$

We have a correspondence

{rational points
$$(r, s) \neq (-1, 0)$$
 on $x^2 + y^2 = 1$ } $\longleftrightarrow m \in \mathbf{Q}$

given by

$$(r,s) \mapsto m = \frac{s}{r+1}; \quad m \mapsto r = \frac{1-m^2}{1+m^2}, \quad s = \frac{2m}{1+m^2}.$$

Slope m gives point in first quadrant when 0 < m < 1.

From triples to slopes

$$(a,b,c) \rightsquigarrow \left(\frac{a}{c},\frac{b}{c}\right) \rightsquigarrow m = \frac{b/c}{a/c+1} = \frac{b}{a+c},$$

$$m \rightsquigarrow \left(\frac{1-m^2}{1+m^2},\frac{2m}{1+m^2}\right).$$

$$\boxed{a \mid 3 \quad 5 \quad 7 \quad 15 \quad 9 \quad 115}$$

b 4 12 24 8 40 252 c 5 13 25 17 41 277 m 1/2 2/3 3/4 1/4 4/5 9/14	а	3	5	7	15	9	115
0 0 10 20 11 11 211	Ь	4	12	24	8	40	252
$m \mid 1/2 \mid 2/3 \mid 3/4 \mid 1/4 \mid 4/5 \mid 9/14$	С	5	13	25	17	41	277
	m	1/2	2/3	3/4	1/4	4/5	9/14

It looks like m = v/u in our earlier notation:

(u, v)	(2,1)	(3,2)	(4,3)	(4,1)	(5,4)	(14,9)
а	3	5	7	15	9	115
b	4	12	24	8	40	252
С	5	13	25	17	41	277

From triples to slopes

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$,

Earlier, we said we can solve for u^2 and v^2 :

$$u^2 = \frac{a+c}{2}, \quad v^2 = \frac{c-a}{2}.$$

For (a, b, c) = (190281, 78320, 205769), earlier we found

$$\frac{a+c}{2} = 198025 = 445^2, \quad \frac{c-a}{2} = 7744 = 88^2,$$

so u = 445 and v = 88. Now geometry makes us notice that

$$\frac{b}{a+c} = \frac{2uv}{2u^2} = \frac{v}{u},$$

SO

$$\frac{b}{a+c} = \frac{78320}{396050} = \frac{88}{445} = \frac{v}{u}.$$

From slopes to triples

m	1/2	1/3	2/3	1/4	3/4
$(1-m^2)/(1+m^2)$	3/5	4/5	5/13	15/17	7/25
$2m/(1+m^2)$	4/5	3/5	12/13	8/17	24/25

m	1/5	2/5	12/17	19/101
$(1-m^2)/(1+m^2)$	12/13	21/29	145/433	4920/5281
$2m/(1+m^2)$	5/13	20/29	408/433	1919/5281

If
$$m \leftrightarrow (x, y)$$
 then $\frac{1-m}{1+m} \leftrightarrow (y, x)$.

Application 1: Polynomial Pythagorean triples

Consider polynomials f(x), g(x), h(x) satisfying

$$f(x)^2 + g(x)^2 = h(x)^2$$

and all nonzero. Call the triple primitive if (f(x), g(x)) = 1.

Theorem

Introduction

The primitive Pythagorean triples in $\mathbf{R}[x]$ are given by

$$f(x) = c(u(x)^2 - v(x)^2), g(x) = 2cu(x)v(x),$$

$$h(x) = c(u(x)^2 + v(x)^2),$$

where $c \in \mathbf{R} - \{0\}$ and (u(x), v(x)) = 1.

There is a proof by unique factorization in $\mathbf{R}[x]$, as in **Z**. Even/odd considerations drop out since 2 is a unit as a polynomial.

Application 2: $a^2 + 2b^2 = c^2$

Suppose $a^2 + 2b^2 = c^2$ in \mathbf{Z}^+ and (a, b) = 1. Then a is odd: if a is even then b is odd so $2 \equiv c^2 \mod 4$: NO. From a odd, also c odd, so $2b^2 = c^2 - a^2 \equiv 1 - 1 \equiv 0 \mod 8$, so **b** is even.

Theorem

Introduction

The solutions (a, b, c) to $a^2 + 2b^2 = c^2$ in \mathbb{Z}^+ with (a, b) = 1 are given by

$$a = |u^2 - 2v^2|, \quad b = 2uv, \quad c = u^2 + 2v^2,$$

where u, v > 0, (u, v) = 1, and u is odd.

и	1	1	1	3	1	3	1	5
V	1	2	3	1	4	2	5	1
a	1	7	17	7	31	1	49	23
b	2	4	6	6	8	12	10	10
С	3	9	19	11	33	17	51	27

Application 3: $a^{2} + b^{2} = c^{3}$

In $\mathbf{Z}[i]$,

Introduction

$$(u+vi)^3 = u^3 + 3u^2(vi) + 3u(vi)^2 + (vi)^3$$

= $(u^3 - 3uv^2) + (3u^2v - v^3)i$.

Take norms of both sides:

$$(u^2 + v^2)^3 = (u^3 - 3uv^2)^2 + (3u^2v - v^3)^2.$$

и	1	2	4	7	9
V	1	1	3	2	5
$a = u^3 - 3uv^2$	-2	2	-44	259	54
$b = 3u^2v - v^3$	2	11	117	286	1090
$c = u^2 + v^2$	2	5	25	53	106

Exercise: All integral solutions to $a^2 + b^2 = c^3$ with (a, b) = 1arise in this way with (u, v) = 1 and $u \not\equiv v \mod 2$.

Rational parametrizations of other conics

Theorem

Introduction

The rational solutions to $x^2 + y^2 = 2$ have the form

$$x = \frac{m^2 - 2m - 1}{1 + m^2}, \quad y = \frac{1 - 2m - m^2}{1 + m^2}$$

for $m \in \mathbf{Q}$, and (1, -1).

m	1	3/2	-5/7	8/5	12
X	-1	-7/13	23/37	-41/89	119/145
У	-1	-17/13	47/37	-119/89	-167/145

$$\frac{7^2+17^2}{2}=13^2, \quad \frac{23^2+47^2}{2}=37^2, \quad \frac{41^2+119^2}{2}=89^2.$$

Rational parametrizations of other conics

Rational parametrizations of other conics

Theorem

The rational solutions to $x^2 - dy^2 = 1$ have the form

$$x = \frac{1 + dm^2}{1 - dm^2}, \quad y = \frac{2m}{1 - dm^2}$$

with $m \in \mathbf{Q}$, and (-1,0).

m	1/2	1/3	2/3	8/9	-20
X	3	11/7	17	-209/47	-801/799
у	2	6/7	12	-144/47	40/799
				2 - 2	

Solutions to $x^2 - 2y^2 = 1$

There's no simple formula for integral solutions to $x^2 - dy^2 = 1!$

Application 5: Factoring quadratics

In $\mathbf{Z}[x]$,

Introduction

$$x^{2} + 4x + 3 = (x + 1)(x + 3), \quad x^{2} + 4x - 3$$
 irreducible.

but

$$x^{2} + 5x + 6 = (x + 2)(x + 3), \quad x^{2} + 5x - 6 = (x - 1)(x + 6).$$

Question: When do $x^2 + mx + n$ and $x^2 + mx - n$ factor in $\mathbb{Z}[x]$?

Here m and n are nonzero. If $x^2 + mx + n = (x - r_1)(x - r_2)$ then $x^{2} - mx + n = (x + r_{1})(x + r_{2})$. So we may assume m > 0. May take n > 0 too.

Factoring quadratics

Introduction

Roots of $x^2 + mx \pm n$ are $\frac{-m \pm \sqrt{m^2 \pm 4n}}{2}$, which are integers exactly when $m^2 \pm 4n = \square$, since

$$m^2 \pm 4n \equiv m \mod 2$$
.

So we can factor $x^2 + mx + n$ and $x^2 + mx - n$ if and only if

$$m^2 - 4n = d^2$$
, $m^2 + 4n = e^2$, d and $e \in \mathbf{Z}$.

Then $d^2 + e^2 = 2m^2$, so $d \equiv e \mod 2$. Solving,

$$m^2 = \frac{d^2 + e^2}{2} = \left(\frac{e+d}{2}\right)^2 + \left(\frac{e-d}{2}\right)^2.$$

Thus we have a Pythagorean triple (without specified even term)

$$\left(\frac{e-d}{2},\frac{e+d}{2},m\right),\quad \frac{e-d}{2}<\frac{e+d}{2}< m.$$

Exercise: This triple is primitive if and only if (m, n) = 1.

Factoring quadratics

Theorem (J. L. Poet, D. L. Vestal, 2005)

Proof by unique factorization in Z

There is a one-to-one correspondence between Pythag. triples (a, b, c) with a < b < c and reducible pairs $x^2 + mx \pm n$ with m, n > 0, given by

$$(a,b,c)\mapsto x^2+cx\pm\frac{ab}{2},\quad x^2+mx\pm n\mapsto\left(\frac{e-d}{2},\frac{e+d}{2},m\right),$$

with $m^2 - 4n = d^2$ and $m^2 + 4n = e^2$.

а	Ь	С	m	n	$x^2 + mx + n$	$x^2 + mx - n$
3	4	5	5	6	(x+2)(x+3)	(x-1)(x+6)
5	12	13	13	30	(x+3)(x+10)	(x-2)(x+15)
8	15	17	17	60	(x+5)(x+12)	(x-3)(x+20)

Exercise. Factor $x^2 + (u^2 + v^2)x \pm uv(u^2 - v^2)$ in **Z**[x].