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Introduction

We seek positive integers a, b, and c such that

a2 + b2 = c2.

Plimpton 322

Babylonian table of Pythagorean triples (1800 BC). Eleventh row
is (3, 4, 5).
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Reduction Step

a2 + b2 = c2

a 3 5 7 8 9 115

b 4 12 24 15 40 252

c 5 13 25 17 41 277
Examples of Pythagorean Triples

If d |a and d |b then d2|c2, so d |c . Similarly, if d |a and d |c then
d |b, and if d |b and d |c then d |a. Therefore (a, b) = (a, b, c).
Writing a = da′, b = db′, and c = dc ′,

a2 + b2 = c2 =⇒ a′2 + b′2 = c ′2.

From now on we focus on primitive triples: (a, b) = 1.
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Classification

a2 + b2 = c2, (a, b) = 1.

Certainly a and b are not both even. Also they are not both odd:
otherwise, c2 = a2 + b2 ≡ 1 + 1 ≡ 2 mod 4, which is impossible.
So one of a or b is even and the other is odd. Then c2 = a2 + b2

is odd, so c is odd. Our convention: take b even.

Theorem

The primitive Pythagorean triples (a, b, c) where b is even are
given by

a = u2 − v2, b = 2uv , c = u2 + v2,

where u > v > 0, (u, v) = 1, and u 6≡ v mod 2.

For u and v in Z+, need u > v so that a > 0. The conditions
(u, v) = 1 and u 6≡ v mod 2 are forced by primitivity.
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Classification

a = u2 − v2, b = 2uv , c = u2 + v2,

u > v > 0, (u, v) = 1, u 6≡ v mod 2

u 2 3 3 4 4 5 14

v 1 1 2 3 1 4 9

a 3 8 5 7 15 9 115

b 4 6 12 24 8 40 252

c 5 10 13 25 17 41 277

Which u and v give the triple (a, b, c) = (190281, 78320, 205769)?
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Classification

a = u2 − v2, b = 2uv , c = u2 + v2,

u > v > 0, (u, v) = 1, u 6≡ v mod 2

Can solve for u2 and v2:

u2 =
a + c

2
, v2 =

c − a

2
.

For (a, b, c) = (190281, 78320, 205769),

a + c

2
= 198025 = 4452,

c − a

2
= 7744 = 882.

So u = 445 and v = 88.
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Primitive Triples of Nonzero Integers

Theorem

Triples (a, b, c) of nonzero integers where a2 + b2 = c2, (a, b) = 1,
b is even, and c > 0, are given by

a = u2 − v2, b = 2uv , c = u2 + v2,

where u, v ∈ Z− {0}, (u, v) = 1, and u 6≡ v mod 2.

Why? Suppose a > 0, b > 0, and c > 0, so the classification says

a = u2 − v2, b = 2uv , c = u2 + v2,

u > v > 0, (u, v) = 1, u 6≡ v mod 2.

In terms of this u and v , how do the parametric formulas apply to
(a,−b, c)? To (−a, b, c)? To (−a,−b, c)? To (a, b,−c)?
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Outline

Classify primitive Pythagorean triples by unique factorization
in Z.

Classify primitive Pythagorean triples by unique factorization
in Z[i ].

Classify primitive Pythagorean triples by analytic geometry.

See additional use of each method of proof.
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First proof: unique factorization in Z, I

a2 + b2 = c2 =⇒ b2 = c2 − a2 = (c + a)(c − a).

Both c + a and c − a are positive and even. What’s their gcd? If
d |(c + a) and d |(c − a) then d |2c and d |2a, so d |2 because
(a, c) = 1. Since c + a and c − a are even, (c + a, c − a) = 2. So(

b

2

)2

=
c + a

2
· c − a

2
,

with factors relatively prime.

Theorem

If xy = � in Z+ and (x , y) = 1 then x = � and y = �.

So (c + a)/2 = u2 and (c − a)/2 = v2 with u, v ∈ Z+. Solving,
c = u2 + v2 and a = u2 − v2; b2 = (c + a)(c − a) = (2uv)2.
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First proof: unique factorization in Z, II

Let’s try a different subtraction:

a2 + b2 = c2 =⇒ a2 = c2 − b2 = (c + b)(c − b).

Both c + b and c − b are positive and odd. What’s their gcd? If
d |(c + b) and d |(c − b) then d |2c and d |2b, so d |2. Since c + b
and c − b are odd, (c + b, c − b) = 1.
Then c + b = k2 and c − b = `2 where k and ` are in Z+ and
odd. Must have (k , `) = 1. Adding and subtracting,

c =
k2 + `2

2
, b =

k2 − `2

2
.

Then a2 = (c + b)(c − b) = k2`2, so a = k`. We expect that
a = u2 − v2, and so on. Since u2 − v2 = (u + v)(u − v), try to get
k = u + v and ` = u − v . Define

u =
k + `

2
, v =

k − `
2

.
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Another parametrization

Theorem

The primitive Pythagorean triples (a, b, c) where b is even are
given by

a = k`, b =
k2 − `2

2
, c =

k2 + `2

2
,

where k > ` > 0, (k, `) = 1, and k and ` are both odd.

k 3 5 7 5 9 23

` 1 1 1 3 1 5

a 3 5 7 15 9 115

b 4 12 24 8 40 252

c 5 13 25 17 41 277
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Second proof: unique factorization in Z[i ]

Write
c2 = a2 + b2 = (a + bi)(a− bi).

Suppose δ|(a + bi) and δ|(a− bi) in Z[i ]. Taking the norm, N(δ)
divides a2 + b2 = c2, which is odd, so N(δ) is odd. Also δ divides
2a and 2bi in Z[i ], so N(δ)|4a2 and N(δ)|4b2 in Z. Since
(a, b) = 1, N(δ)|4, so N(δ) = 1. Thus δ = ±1 or ±i .

Theorem

If αβ = � in Z[i ] and (α, β) = 1 then α and β are squares up to
unit multiple.

Either a + bi = (u + vi)2 or a + bi = i(u + vi)2.
First case: a + bi = u2 − v2 + 2uvi ⇒ a = u2 − v2 and b = 2uv .
Second case: a + bi = −2uv + (u2− v2)i ⇒ a = −2uv , but a odd!
Choose sign on u so u > 0. Then v > 0 and

c2 = a2 + b2 = N((u + vi)2) = N(u + vi)2 = (u2 + v2)2.
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Pythagorean triples from Gaussian integers

Pythagorean triples arise from squaring Gaussian integers:

(u + vi)2 = a + bi
Norm
=⇒ (u2 + v2)2 = a2 + b2.

α α2 Triple

1 + 2i −3 + 4i (3, 4, 5)

2 + 3i −5 + 12i (5, 12, 13)

7 + 4i 33 + 56i (33, 56, 65)

7 + 5i 24 + 70i (24, 70, 74)

10 + 3i 91 + 60i (91, 60, 109)

From 7 + 5i get nonprimitive (24, 70, 74) = 2(12, 35, 37). In Z[i ],

7 + 5i

1 + i
=

(7 + 5i)(1− i)

(1 + i)(1− i)
=

12− 2i

2
= 6− i

and
(6− i)2 = 35− 12i ,

which gives the primitive triple (35, 12, 37).
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Third proof: analytic geometry

a2 + b2 = c2 =⇒ r2 + s2 = 1, r =
a

c
, s =

b

c
.

The line through (−1, 0) and (r , s) is y = m(x + 1), where

m =
s

r + 1
. If r , s ∈ Q then m ∈ Q.
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Third proof: analytic geometry

Conversely, for m ∈ Q where does y = m(x + 1) meet the circle?

1 = x2 + y2 = x2 + (m(x + 1))2 = (m2 + 1)x2 + 2m2x + m2,

so

0 = x2 +
2m2

m2 + 1
x +

m2 − 1

m2 + 1
= (x + 1)

(
x +

m2 − 1

m2 + 1

)
.
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Third proof: analytic geometry

0 = (x + 1)

(
x +

m2 − 1

m2 + 1

)
The second point of intersection is at (r , s), where

r = −m2 − 1

m2 + 1
=

1−m2

1 + m2

and

s = m(r + 1) =
2m

1 + m2
.

We have a correspondence

{rational points (r , s) 6= (−1, 0) on x2 + y2 = 1} ←→ m ∈ Q

given by

(r , s) 7→ m =
s

r + 1
; m 7→ r =

1−m2

1 + m2
, s =

2m

1 + m2
.

Slope m gives point in first quadrant when 0 < m < 1.
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From triples to slopes

(a, b, c) 

(
a

c
,
b

c

)
 m =

b/c

a/c + 1
=

b

a + c
,

m 

(
1−m2

1 + m2
,

2m

1 + m2

)
.

a 3 5 7 15 9 115

b 4 12 24 8 40 252

c 5 13 25 17 41 277

m 1/2 2/3 3/4 1/4 4/5 9/14

It looks like m = v/u in our earlier notation:

(u, v) (2,1) (3,2) (4,3) (4,1) (5,4) (14,9)

a 3 5 7 15 9 115

b 4 12 24 8 40 252

c 5 13 25 17 41 277
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From triples to slopes

a = u2 − v2, b = 2uv , c = u2 + v2,

Earlier, we said we can solve for u2 and v2:

u2 =
a + c

2
, v2 =

c − a

2
.

For (a, b, c) = (190281, 78320, 205769), earlier we found

a + c

2
= 198025 = 4452,

c − a

2
= 7744 = 882,

so u = 445 and v = 88. Now geometry makes us notice that

b

a + c
=

2uv

2u2
=

v

u
,

so
b

a + c
=

78320

396050
=

88

445
=

v

u
.
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From slopes to triples

m 1/2 1/3 2/3 1/4 3/4

(1−m2)/(1 + m2) 3/5 4/5 5/13 15/17 7/25

2m/(1 + m2) 4/5 3/5 12/13 8/17 24/25

m 1/5 2/5 12/17 19/101

(1−m2)/(1 + m2) 12/13 21/29 145/433 4920/5281

2m/(1 + m2) 5/13 20/29 408/433 1919/5281

If m↔ (x , y) then
1−m

1 + m
↔ (y , x).
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Application 1: Polynomial Pythagorean triples

Consider polynomials f (x), g(x), h(x) satisfying

f (x)2 + g(x)2 = h(x)2

and all nonzero. Call the triple primitive if (f (x), g(x)) = 1.

Theorem

The primitive Pythagorean triples in R[x ] are given by

f (x) = c(u(x)2 − v(x)2), g(x) = 2cu(x)v(x),

h(x) = c(u(x)2 + v(x)2),

where c ∈ R− {0} and (u(x), v(x)) = 1.

There is a proof by unique factorization in R[x ], as in Z. Even/odd
considerations drop out since 2 is a unit as a polynomial.
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Application 2: a2 + 2b2 = c2

Suppose a2 + 2b2 = c2 in Z+ and (a, b) = 1. Then a is odd: if a is
even then b is odd so 2 ≡ c2 mod 4: NO. From a odd, also c odd,
so 2b2 = c2 − a2 ≡ 1− 1 ≡ 0 mod 8, so b is even.

Theorem

The solutions (a, b, c) to a2 + 2b2 = c2 in Z+ with (a, b) = 1 are
given by

a = |u2 − 2v2|, b = 2uv , c = u2 + 2v2,

where u, v > 0, (u, v) = 1, and u is odd.

u 1 1 1 3 1 3 1 5

v 1 2 3 1 4 2 5 1

a 1 7 17 7 31 1 49 23

b 2 4 6 6 8 12 10 10

c 3 9 19 11 33 17 51 27



Introduction Proof by unique factorization in Z Proof with Gaussian integers Proof by geometry Applications

Application 3: a2 + b2 = c3

In Z[i ],

(u + vi)3 = u3 + 3u2(vi) + 3u(vi)2 + (vi)3

= (u3 − 3uv2) + (3u2v − v3)i .

Take norms of both sides:

(u2 + v2)3 = (u3 − 3uv2)2 + (3u2v − v3)2.

u 1 2 4 7 9

v 1 1 3 2 5

a = u3 − 3uv2 −2 2 −44 259 54

b = 3u2v − v3 2 11 117 286 1090

c = u2 + v2 2 5 25 53 106

Exercise: All integral solutions to a2 + b2 = c3 with (a, b) = 1
arise in this way with (u, v) = 1 and u 6≡ v mod 2.
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Application 4: Rational parametrizations of other conics

x2 + y2 = 2
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Rational parametrizations of other conics

Theorem

The rational solutions to x2 + y2 = 2 have the form

x =
m2 − 2m − 1

1 + m2
, y =

1− 2m −m2

1 + m2

for m ∈ Q, and (1,−1).

m 1 3/2 −5/7 8/5 12

x −1 −7/13 23/37 −41/89 119/145

y −1 −17/13 47/37 −119/89 −167/145

72 + 172

2
= 132,

232 + 472

2
= 372,

412 + 1192

2
= 892.
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Rational parametrizations of other conics

x2 − dy2 = 1
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Rational parametrizations of other conics

Theorem

The rational solutions to x2 − dy2 = 1 have the form

x =
1 + dm2

1− dm2
, y =

2m

1− dm2

with m ∈ Q, and (−1, 0).

m 1/2 1/3 2/3 8/9 −20

x 3 11/7 17 −209/47 −801/799

y 2 6/7 12 −144/47 40/799

Solutions to x2 − 2y2 = 1

There’s no simple formula for integral solutions to x2 − dy2 = 1!
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Application 5: Factoring quadratics

In Z[x ],

x2 + 4x + 3 = (x + 1)(x + 3), x2 + 4x − 3 irreducible.

but

x2 + 5x + 6 = (x + 2)(x + 3), x2 + 5x − 6 = (x − 1)(x + 6).

Question: When do x2 + mx + n and x2 + mx − n factor in Z[x ]?

Here m and n are nonzero. If x2 + mx + n = (x − r1)(x − r2) then
x2 −mx + n = (x + r1)(x + r2). So we may assume m > 0. May
take n > 0 too.
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Factoring quadratics

Roots of x2 + mx ± n are
−m ±

√
m2 ± 4n

2
, which are integers

exactly when m2 ± 4n = �, since

m2 ± 4n ≡ m mod 2.

So we can factor x2 + mx + n and x2 + mx − n if and only if

m2 − 4n = d2, m2 + 4n = e2, d and e ∈ Z.

Then d2 + e2 = 2m2, so d ≡ e mod 2. Solving,

m2 =
d2 + e2

2
=

(
e + d

2

)2

+

(
e − d

2

)2

.

Thus we have a Pythagorean triple (without specified even term)(
e − d

2
,
e + d

2
,m

)
,

e − d

2
<

e + d

2
< m.

Exercise: This triple is primitive if and only if (m, n) = 1.
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Factoring quadratics

Theorem (J. L. Poet, D. L. Vestal, 2005)

There is a one-to-one correspondence between Pythag. triples
(a, b, c) with a < b < c and reducible pairs x2 + mx ± n with
m, n > 0, given by

(a, b, c) 7→ x2 + cx ± ab

2
, x2 + mx ± n 7→

(
e − d

2
,
e + d

2
,m

)
,

with m2 − 4n = d2 and m2 + 4n = e2.

a b c m n x2 + mx + n x2 + mx − n

3 4 5 5 6 (x + 2)(x + 3) (x − 1)(x + 6)

5 12 13 13 30 (x + 3)(x + 10) (x − 2)(x + 15)

8 15 17 17 60 (x + 5)(x + 12) (x − 3)(x + 20)

Exercise. Factor x2 + (u2 + v2)x ± uv(u2 − v2) in Z[x ].
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