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Introduction

Introduction

We seek positive integers a, b, and ¢ such that

a’+ b =2

Plimpton 322

Babylonian table of Pythagorean triples (1800 BC). Eleventh row
is (3,4,5).



Introduction
Reduction Step

a® +b? = c?

a|l3 5 7 8 9 115
b|4 12 24 15 40 252
c|5 13 25 17 41 277
Examples of Pythagorean Triples

If d|a and d|b then d?|c?, so d|c. Similarly, if d|a and d|c then
d|b, and if d|b and d|c then d|a. Therefore (a, b) = (a, b, c).
Writing a = da’, b= db’, and ¢ = dc’,

a2+ b2 — C2 _— a/2 _|_b/2 _ C/2.

From now on we focus on primitive triples: (a, b) = 1.



Introduction
Classification

a4+ b*=c? (ab)=1

Certainly a and b are not both even. Also they are not both odd:
otherwise, c2 = a2 + b2 =1+ 1 = 2 mod 4, which is impossible.
So one of a or b is even and the other is odd. Then ¢ = a° + b?
is odd, so c is odd. Our convention: take b even.

The primitive Pythagorean triples (a, b, c) where b is even are
given by

a=u’—Vv2 b=2uv, c=u’+ >

where u > v >0, (u,v) =1, and u # v mod 2.

For u and v in ZT, need u > v so that a > 0. The conditions
(u,v) =1 and u # v mod 2 are forced by primitivity.



Introduction
Classification

a=u?—Vv% b=2uv, c=u’+ V>

u>v>0, (uyv)=1, u#vmod?2

3 4 4 5 14
2 3 1 4 9

5 7 15 9 115
6 12 24 8 40 252
10 13 25 17 41 277
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Which v and v give the triple (a, b, c) = (190281, 78320, 205769)7



Introduction
Classification

a=u’—v2 b=2uv, c=u’+ >

u>v>0, (uyv)=1, u#vmod?2

Can solve for u? and v2:

2 atc 2 C—a
u: = , Vo= .
2

2
For (a, b, c) = (190281, 78320, 205769),

a-+c

— 198025 — 4452, % — 7744 = 882.

So u =445 and v = 88.



Introduction

Primitive Triples of Nonzero Integers

Theorem
Triples (a, b, c) of nonzero integers where a*> 4+ b*> = ¢, (a, b) = 1,
b is even, and c > 0, are given by

a=u’—v2 b=2uv, c=u*+ v

where u,v € Z — {0}, (u,v) =1, and u # v mod 2.

Why? Suppose a >0, b >0, and ¢ > 0, so the classification says

a=u’—Vv2 b=2uv, c=u’+ V>

u>v>0, (uyv)=1, u#vmod?2.

In terms of this v and v, how do the parametric formulas apply to
(a,—b,c)? To (—a, b,c)? To (—a,—b,c)? To (a,b,—c)?



Introduction
Outline

Classify primitive Pythagorean triples by unique factorization
in Z.

Classify primitive Pythagorean triples by unique factorization
in Z[/].
Classify primitive Pythagorean triples by analytic geometry.

See additional use of each method of proof.



Proof by unique factorization in Z

First proof: unique factorization in Z, |

Pt == b =c?-a%=(ct+a)c—a).

Both ¢ 4 a and ¢ — a are positive and even. What's their gcd? If
d|(c + a) and d|(c — a) then d|2c and d|2a, so d|2 because
(a,c) =1. Since c+aand c —a are even, (c +a,c—a)=2. So

9 2_c+a c—a
2/ 2 2

with factors relatively prime.

If xy =0 inZ" and (x,y) =1 then x = and y = [J.

So (¢ + a)/2 = u? and (c - a)/2 = v2? with u,v € Z*. Solving,
c=uv?+v?and a=u?—v? b?> = (c+a)(c—a)=(2uv).



Proof by unique factorization in Z

First proof: unique factorization in Z, |l

Let's try a different subtraction:
a4+ b =c? = a’>=c*—b*>=(c+ b)(c—b).

Both ¢ 4+ b and ¢ — b are positive and odd. What's their gcd? If
d|(c + b) and d|(c — b) then d|2c and d|2b, so d|2. Since c + b
and ¢ — b are odd, (c + b,c — b) = 1.
Then ¢ + b = k? and ¢ — b = (> where k and / are in Z* and
odd. Must have (k,¢) = 1. Adding and subtracting,

k242 b k% — 2

c=—p— b=——.
Then a2 = (c + b)(c — b) = k?(?, so a = k{. We expect that
a = u?—v?, and so on. Since u? — v? = (u+v)(u—v), try to get
k=u+vand { = u—v. Define
k4t , k—1¢
T 2




Proof by unique factorization in Z

Another parametrization

Theorem
The primitive Pythagorean triples (a, b, c) where b is even are
given by
k% — 02 k2 4 ¢2
= k = =
a £, b B c B
where k > ¢ >0, (k,£) =1, and k and ¢ are both odd.

5 7 5 9 23
1 1 3 1 5

5 7 15 9 115
12 24 8 40 252
13 25 17 41 277
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Proof with Gaussian integers

Second proof: unique factorization in Z[/]

Write

c® = a3 + b* = (a+ bi)(a — bi).
Suppose d0|(a + bi) and d|(a — bi) in Z[i]. Taking the norm, N(d)
divides a2 + b2 = ¢2, which is odd, so N(d) is odd. Also ¢ divides
2a and 2bi in Z[i], so N(6)|4a and N(8)|4b? in Z. Since
(a,b) =1, N(0)|4, so N(6) = 1. Thus § = £1 or +i.

If ap =0 in Z[i] and (e, 3) =1 then o and (3 are squares up to
unit multiple.

Either a + bi = (u + vi)? or a+ bi = i(u + vi)>?.

First case: a+ bi = u?> — v? 4+ 2uvi = a = u® — v? and b = 2uv.
Second case: a+ bi = —2uv + (u? — v?)i = a = —2uv, but a odd!
Choose sign on uso u> 0. Then v > 0 and

c? = a% 4+ b> = N((u + vi)®) = N(u + vi)? = (v + v?)%



Proof with Gaussian integers

Pythagorean triples from Gaussian integers

Pythagorean triples arise from squaring Gaussian integers:

Norm

(u+vi)> =a+bi == (v® +v?)? =a° + b°.

« a? Triple

1+2i | =3+4i | (3,4,5)
2+3i | —5+12i | (5,12,13)
7+4i | 33+56i | (33,56,65)
7+5i | 24+ 70i | (24,70,74)
10+ 37 | 91+ 60/ | (91,60, 109)

From 7 + 5/ get nonprimitive (24,70,74) = 2(12,35,37). In Z[i],
7451 (T+5)(1—i) 12-2i
1+i (Q+0N1-i) 2

—6—

and
(6 — i)> =35 — 12i,

which gives the primitive triple (35, 12,37).



Proof by geometry

Third proof: analytic geometry

The line through (—1,0) and (r,s) is y = m(x + 1), where

m:ﬁ. If r,s € Qthen me Q.



Proof by geometry

Third proof: analytic geometry

y=m(z+1)

Conversely, for m € Q where does y = m(x + 1) meet the circle?
1=x>4y? =x>+ (m(x + 1)) = (M + 1)x* + 2m’x + m?,
so

2m? m?—1

m?—1
0=x° = 1 .
o= pr Ly el Gy )<X+m2+1)




Proof by geometry

Third proof: analytic geometry

m? —1
0= 1 —
(x+1) <X+ m2+1>
The second point of intersection is at (r,s), where

m? —1 1— m?

T Tl 1+ m?
and 5
m
s=m(r+1)= T

We have a correspondence

{rational points (r,s) # (=1,0) on x> + y*> =1} — m e Q
given by

s 1—m? 2m
L e s S e

Slope m gives point in first quadrant when 0 < m < 1.

(r,s) — m=



Proof by geometry
From triples to slopes

b b
(a,b,c)w <7) ~rm = /C = )
c'c a/c+1 a+c

3 5 7 15 0 115
4 12 24 8 40 252
5 13 25 17 41 277
1/2 2/3 3/4 1/4 4/5 9/14

S|o|oc|v

It looks like m = v/u in our earlier notation:

(u,v) | (2,1) (3,2) (43) (41) (54) (149
a 3 5 7 15 9 115
b 4 12 24 8 40 252
c 5 13 25 17 41 277




Proof by geometry
From triples to slopes

a=u’—v2 b=2uv, c=u’+ V>
Earlier, we said we can solve for u? and v2:

> a+c » C—a
ut = ve =
27 2

For (a, b, c) = (190281, 78320, 205769), earlier we found

a-+c a

— 198025 — 4452, % — 7744 — 882,

so u = 445 and v = 88. Now geometry makes us notice that

b 2uv v

atc 2u u

)
b 78320 88 v

a+c 396050 445 o




Proof by geometry
From slopes to triples

m 1/2 1/3 2/3 1/4 3/4
1-m?)/(1+m?) |[3/5 4/5 5/13 15/17 7/25
2m/(1+ m?) 4/5 3/5 12/13 8/17 24/25

m /5 2/5  12/17 19/101
(1-m?)/(1+m?) | 12/13 21/29 145/433 4920/5281
2m/(1+ m?) 5/13 20/29 408/433 1919/5281

If m < (x,y) then 1+:

= (y,x).



Applications

Application 1: Polynomial Pythagorean triples

Consider polynomials f(x), g(x), h(x) satisfying
F(x)* +g(x)* = h(x)?
and all nonzero. Call the triple primitive if (f(x), g(x)) = 1.

Theorem

The primitive Pythagorean triples in R[x] are given by
f(x) = c(u(x)® = v(x)?), g(x) = 2cu(x)v(x),

h(x) = c(u(x)? + v(x)?),
where ¢ € R — {0} and (u(x), v(x)) = 1.

There is a proof by unique factorization in R[x], as in Z. Even/odd
considerations drop out since 2 is a unit as a polynomial.



Applications

Application 2: a° + 2b% = ¢

Suppose a2 +2b% = c?in Z* and (a, b) = 1. Then ais odd: if ais
even then b is odd so 2 = ¢ mod 4: NO. From a odd, also ¢ odd,
s02b2=c?—a2=1—1=0mod 8, so b is even.

The solutions (a, b, ) to a> + 2b® = c? in Z+ with (a, b) = 1 are
given by

a=|u®—2v?|, b=2uv, c=u’+2V?

where u,v >0, (u,v) =1, and u is odd.

vfil 1 1 3 1 3 1 5
vi1l 2 1 4 2 5 1
a|l 7 17 7 31 1 49 23
b2 4 6 6 8 12 10 10
c|3 9 19 11 33 17 51 27




Applications

Application 3: a° + b*> =3

In Z[i],

(u4vi)® = o +36°(vi) + 3u(vi)® + (vi)?
= (¢ —3uw?) + (3vv — V).

Take norms of both sides:

(v? +v?)® = (¢ = 3uv?)? + (3uPv — v3)2

u 1 2 4 7 9
v 1 1 3 2 5
a=ul—3uw?| -2 2 —44 259 54

b=3uv—Vv3] 2 11 117 286 1090
c=u?+2 2 5 25 53 106

Exercise: All integral solutions to a® + b?> = ¢ with (a,b) =1
arise in this way with (u,v) =1 and u # v mod 2.



Applications

Application 4: Rational parametrizations of other conics




Rational parametrizations of other conics

The rational solutions to x> + y? = 2 have the form

_1—2m—m2

m?—2m—1

T Ty m o 1+ m?
form e Q, and (1,-1).
m| 1 3/2 —5/7  8/5 12

x | -1 —7/13 23/37

—41/80  119/145

y | =1 —17/13 47/37

—119/89 —167/145

7?4+17% 23% + 477
2 2

41% + 1192

= 372
’ 2

= 892




Applications

Rational parametrizations of other conics

x> —dy?=1



Applications

Rational parametrizations of other conics

Theorem

The rational solutions to x> — dy® = 1 have the form

o 1+dm®>  2m
“1-dm? VT 1—dm?
with m € Q, and (—1,0).
m|1/2 1/3 2/3  8/9 —20

x| 3 11/7 17 —209/47 —801/799
y | 2 6/7 12 —144/47  40/799
Solutions to x? —2y? =1

There's no simple formula for integral solutions to x*> — dy? = 1!



Applications

Application 5: Factoring quadratics

In Z[x],
X +4x+3=(x+1)(x+3), x*+4x— 3 irreducible.
but
x> 4+5x4+6=(x+2)(x+3), x*+5x—6=(x—1)(x+6).
Question: When do x2 + mx + n and x? + mx — n factor in Z[x]?
Here m and n are nonzero. If x2 + mx + n = (x — r;)(x — r2) then

x2 —mx+n=(x+n)(x+rn). Sowe may assume m > 0. May
take n > 0 too.



Applications
Factoring quadratics

—mE+vVm?+4n

2
exactly when m? + 4n = [, since

Roots of x2 + mx + n are

, Which are integers

m? £ 4n = m mod 2.
So we can factor x?> + mx + n and x> + mx — n if and only if
m?>—4n=d? m’+4n=¢e* dandecZ.
Then d? + €2 =2m?, so d = e mod 2. Solving,
, d?+é? e+d\? e—d\?
m- = = + .
2 2 2
Thus we have a Pythagorean triple (without specified even term)

e—d e+d e—d e+d
y T~ M, <
2 2 2 2

<m

Exercise: This triple is primitive if and only if (m, n) = 1.



Applications
Factoring quadratics

Theorem (J. L. Poet, D. L. Vestal, 2005)

There is a one-to-one correspondence between Pythag. triples
(a, b, c) with a < b < c and reducible pairs x> + mx + n with

m,n > 0, given by

b —d d
(a,b,c)»—>x2—|—cxia—7 X2 mx =+ ns € 7i7m :
2 2 2
with m?> — 4n = d? and m? + 4n = €. |
b | c m| n X2+ mx+n x4+ mx—n

415156 | (x+2)(x+3) | (x=1)(x+6)
1213 || 13 | 30 || (x + 3)(x + 10) | (x — 2)(x + 15)
15 | 17 || 17 | 60 || (x +5)(x +12) | (x — 3)(x + 20)

O WL

Exercise. Factor x? + (u? + v2)x + uv(u? — v2) in Z[x].
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