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The Equation

y2 = x3 + k , k ∈ Z− {0}
Called Mordell’s equation because of Mordell’s (1888-1972)
lifelong interest in it. Earlier named after Bachet (1581–1638).

y2 = x3 + 1

Outline

Examples without integral solutions.
Examples with integral solutions.
Connection to the abc-conjecture.
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No Integral Solutions

We will use congruences to show y2 = x3 + k has no integral
solutions for some k . Recall for odd primes p that

−1 ≡ � mod p ⇐⇒ p ≡ 1 mod 4,

2 ≡ � mod p ⇐⇒ p ≡ 1, 7 mod 8,

−2 ≡ � mod p ⇐⇒ p ≡ 1, 3 mod 8.
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No Integral Solutions

y2 = x3 + 7

Parity Check: If x is even then y2 ≡ 7 ≡ 3 mod 4: NO. So x is
odd.
Proof # 1: Write

y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

Note x2 − 2x + 4 = (x − 1)2 + 3 > 0, and since x is odd,
(x − 1)2 + 3 ≡ 3 mod 4. So there is a prime p ≡ 3 mod 4 dividing
x2 − 2x + 4.

p|(x2 − 2x + 4) =⇒ p|(y2 + 1) =⇒ −1 ≡ � mod p,

so p ≡ 1 mod 4, a contradiction.
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No Integral Solutions

y2 = x3 + 7

Parity Check: If x is even then y2 ≡ 7 ≡ 3 mod 4: NO. So x is
odd and y is even.
Proof # 2: Write

y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4).

Since y even, x3 ≡ −7 ≡ 1 mod 4. Since x odd, x ≡ 1 mod 4.
Then x + 2 ≡ 3 mod 4. Have x + 2 > 0: otherwise x ≤ −2, so
x3 + 7 ≤ −1: NO. Some prime p ≡ 3 mod 4 divides x + 2.

p|(x + 2) =⇒ p|(y2 + 1) =⇒ −1 ≡ � mod p,

so p ≡ 1 mod 4, a contradiction.
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No Integral Solutions

y2 = x3 − 5

Parity Check: If x is even then y2 ≡ −5 ≡ 3 mod 4: NO. So x is
odd and y is even.
Proof: Write

y2 + 4 = x3 − 1 = (x − 1)(x2 + x + 1).

Have x2 + x + 1 = (x + 1/2)2 + 3/4 > 0. Since x odd and y even,
0 ≡ x − 1 mod 4, so x ≡ 1 mod 4. Then x2 + x + 1 ≡ 3 mod 4. So
a prime p ≡ 3 mod 4 divides x2 + x + 1.

p|(x2+x+1) =⇒ p|(y2+4) =⇒ −4 ≡ � mod p ⇒ −1 ≡ � mod p,

so p ≡ 1 mod 4, a contradiction.
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No Integral Solutions

y2 = x3 − 6

Parity Check: If x is even then y2 ≡ −6 ≡ 2 mod 4: NO. So x is
odd and y is odd. Then 1 ≡ x − 6 mod 8, so x ≡ 7 mod 8.
Proof # 1: Write

y2 − 2 = x3 − 8 = (x − 2)(x2 + 2x + 4).

Have x2 + 2x + 4 > 0, x2 + 2x + 4 ≡ 72 + 2 · 7 + 4 ≡ 3 mod 8. So
a prime p ≡ ±3 mod 8 divides x2 + 2x + 4.

p|(x2 + 2x + 4) =⇒ p|(y2 − 2) =⇒ 2 ≡ � mod p,

so p ≡ ±1 mod 8, a contradiction.
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No Integral Solutions

y2 = x3 − 6

Parity Check: If x is even then y2 ≡ −6 ≡ 2 mod 4: NO. So x is
odd and y is odd. Then 1 ≡ x − 6 mod 8, so x ≡ 7 mod 8.
Proof # 2: Write

y2 − 2 = x3 − 8 = (x − 2)(x2 + 2x + 4).

Have x − 2 > 0: otherwise x ≤ 2, so x ≤ −1 since x ≡ 7 mod 8,
so x3 − 6 < 0: NO. A prime p ≡ ±3 mod 8 divides x − 2.

p|(x − 2) =⇒ p|(y2 − 2) =⇒ 2 ≡ � mod p,

so p ≡ ±1 mod 8, a contradiction.
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No Integral Solutions

y2 = x3 + 46

Parity Check: If x is even then y2 ≡ 6 mod 8: NO. So x is odd
and y is odd. Then 1 ≡ x + 6 mod 8, so x ≡ 3 mod 8.
Proof: Write

y2 + 18 = x3 + 64 = (x + 4)(x2 − 4x + 16).

Have x2 − 4x + 16 > 0 and x2 − 4x + 16 ≡ 5 mod 8. A prime
p 6≡ 1, 3 mod 8 divides x2 − 4x + 16, and p 6= 2.

p|(x2 − 4x + 16) =⇒ −18 ≡ � mod p ⇒ −2 ≡ � mod p,

so p ≡ 1, 3 mod 8, a contradiction.
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Challenge Problem

In 1657, Fermat challenged the British mathematicians to find all
integral solutions to

y2 = x3 − 2

and
y2 = x3 − 4.

The solutions to the first are (3,±5) and to the second are
(2,±2), (5,±11). We will look at other “challenges.”
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Applying Unique Factorization in Z

y2 = x3 + 16

Obvious solutions: (0,±4).
Parity Check: x3 = (y + 4)(y − 4). If y odd then y ± 4 odd, so
(y + 4, y − 4) = 1. Therefore (!) y + 4 and y − 4 are cubes in Z.
But no odd cubes differ by 8. So y is even and x is even.
Proof: Since y2 ≡ 0 mod 8, 4|y : y = 4y ′. Then x3 ≡ 0 mod 16, so
4|x : x = 4x ′.

(4y ′)2 = (4x ′)3 + 16 =⇒ y ′2 = 4x ′3 + 1,

so y ′ odd: y ′ = 2m + 1. Then

4m2 + 4m + 1 = 4x ′3 + 1 =⇒ m(m + 1) = x ′3.

Thus m = −1 or 0, so x ′ = 0: x = 0 and y = ±4.
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Applying Unique Factorization in Z[i ]

y2 = x3 − 1

Obvious solution: (1, 0).
Parity Check: If x even then y2 ≡ −1 mod 4: NO. Thus x is odd
and y is even.
Proof: Write

x3 = y2 + 1 = (y + i)(y − i).

If δ|(y + i) and δ|(y − i) then N(δ)|(y2 + 1), so N(δ) is odd. Also
δ|2i , so N(δ)|4. Thus N(δ) = 1, so δ = ±1 or ±i .
Since y + i and y − i are relatively prime and all units in Z[i ] are
cubes,

y + i = (m + ni)3 =⇒ y = m3 − 3mn2, 1 = 3m2n − n3.

Thus n|1, so n = ±1. If n = 1 then 1 = 3m2 − 1: NO. If n = −1
then 1 = −3m2 + 1, so m = 0: y = 0. So x = 1.
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Applying Unique Factorization in Z[
√
−5]

y2 = x3 − 5

We know this has no integral solutions, by congruences.
Parity Check: If x is even then y2 ≡ −5 ≡ 3 mod 4: NO. So x is
odd and y is even.
Proof: Write

x3 = y2 + 5 = (y +
√
−5)(y −

√
−5).

If δ|(y +
√
−5) and δ|(y −

√
−5) then N(δ)|(y2 + 5), so N(δ) odd.

Also δ|2
√
−5, so N(δ)|20. Thus N(δ)|5. If N(δ) = 5 then

5|(y2 + 5), so 5|y . Then x3 ≡ 5 mod 25: NO. So N(δ) = 1.
Since y +

√
−5 and y −

√
−5 are relatively prime and the units in

Z[
√
−5] are ±1, both cubes,

y +
√
−5 = (m + n

√
−5)3 ⇒ y = m3 − 15mn2, 1 = 3m2n − 5n3.

Thus n|1, so n = ±1. If n = 1 then 1 = 3m2 − 5: NO. If n = −1
then 1 = −3m2 + 5: NO.
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Applying Unique Factorization in Z[
√
−5]

That proof has a mistake: there is not unique factorization in
Z[
√
−5]:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

So our proof reached the correct conclusion by an incorrect
method.
It is true in Z[

√
−5] that if αβ is a cube and α and β are relatively

prime then α and β are both cubes, but not using unique
factorization (need a class number computation).
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Applying Unique Factorization in Z[
√
−26]

y2 = x3 − 26

Obvious solutions: (3,±1).
Parity Check: If x even then y2 ≡ 2 mod 4: NO. Thus x is odd
and y is odd.
Proof: Write

x3 = y2 + 26 = (y +
√
−26)(y −

√
−26).

If δ|(y +
√
−26) and δ|(y −

√
−26) then N(δ)|(y2 + 26), so N(δ)

is odd. Also δ|2
√
−26, so N(δ)|4 · 26. Thus N(δ)|13. No solution

to a2 + 26b2 = 13, so N(δ) = 1: δ = ±1.
Since y +

√
−26 and y −

√
−26 are relatively prime and units in

Z[
√
−26] are ±1, both cubes,

y +
√
−26 = (m+n

√
−26)3 ⇒ y = m3−78mn2, 1 = 3m2n−26n3.

Thus n|1, so n = ±1. If n = 1 then 1 = 3m2 − 26: m = ±3, so
y = ±207 and x = 35. If n = −1 then 1 = −3m2 + 26: NO.
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Applying Unique Factorization in Z[
√
−26]

We found unexpected solutions (35,±207) to y2 = x3 − 26. But
we missed the obvious solutions (3,±1)!
There is not unique factorization in Z[

√
−26]:

27 = 3 · 3 · 3 = (1 +
√
−26)(1−

√
−26).

It is not true in Z[
√
−26] that if αβ is a cube and α and β are

relatively prime then α and β are cubes: see above equation for a
counterexample.
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Integral vs. Rational Solutions

k Integral Solutions Rational Solutions

−1 (1, 0) (1, 0)
−5 None None
−6 None None
7 None None

16 (0,±4) (0,±4)
−26 (3,±1), (35,±207) Infinitely Many
46 None Infinitely Many

y2 = x3 − 26 : (705/4, 18719/8), (881/256, 15735/4096), . . .

y2 = x3 + 46 : (−7/4, 51/8), (18585/4624, 3311677/314432), . . .
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Rational Solutions

If k = d6k ′ and y2 = x3 + k, then (y/d3)2 = (x/d2)3 + k ′.

Theorem (Fueter (1930), Mordell (1966))

If k is not divisible by a sixth power, y2 = x3 + k has infinitely
many rational solutions if it has a rational solution where x 6= 0
and y 6= 0, except when k = 1 or −432.

All rational solutions of y2 = x3 + 1 are (−1, 0), (0,±1), (2,±3).
If y2 = x3 − 432 with rational x and y then(

36 + y

6x

)3

+

(
36− y

6x

)3

=
216(y2 + 432)

216x3
= 1,

so y = ±36 (and x = 12) by Fermat’s last theorem for exponent 3.
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An Ineffective Finiteness Theorem

Theorem (Mordell, 1922)

For each k ∈ Z− {0}, the equation y2 = x3 + k has finitely many
integral solutions.

This was later subsumed under a more general finiteness theorem
of Siegel (1929).
In terms of k, when can you stop looking?

Example

The integral solutions to y2 = x3 + 24 are

(−2,±4), (1,±5), (10,±32), and (8158,±736844).
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Effective Finiteness Theorems

Theorem (Baker, 1967)

For each k ∈ Z− {0}, if y2 = x3 + k in Z then

max(|x |, |y |) ≤ e1010|k|10000
=
(

e1010
)|k|10000

.

Theorem (Stark, 1973)

Pick ε > 0. There is a constant Cε > 0 such that for each
k ∈ Z− {0}, if y2 = x3 + k in Z then

max(|x |, |y |) ≤ C |k|
1+ε

ε .

Effective does not mean practical!
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Conjectures on Integral Solutions

Conjecture (M. Hall, 1969)

There is a constant C > 0 such that if y2 = x3 + k in Z with
k 6= 0 then |x | ≤ C |k |2 and |y | ≤ C |k |3.

7368442 = 81583 + 24 =⇒ C ≥ 53.3,
3786612 = 52343 + 17 =⇒ C ≥ 77.0,
1496516106212 = 281873513 + 1090 =⇒ C ≥ 115.5,
4478849284284020423079182 = 58538865167812233 − 1641843

=⇒ C ≥ 101197.9.

Hall knew first three examples, not the last (Elkies, 1998).

Conjecture (Weak Hall Conjecture)

Pick ε > 0. There is Cε > 0 such that for each k ∈ Z− {0}, if
y2 = x3 + k in Z then |x | ≤ Cε|k |2(1+ε), |y | ≤ Cε|k |3(1+ε).
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The abc-conjecture

Definition

The radical of n is product of its prime factors: Rad(n) =
∏
p|n

p.

Rad(10) = 10, Rad(72) = 6, Rad(150) = 30, Rad(−1024) = 2.

Conjecture (Masser, Oesterlé, 1985)

For each ε > 0 there is a constant λε > 0 such that whenever a, b,
and c are nonzero integers with a + b = c and (a, b) = 1,

max(|a|, |b|, |c|) ≤ λε Rad(abc)1+ε.

Why can’t we take ε = 0? Analogy: for x ≥ 1, log x ≤ Bεxε for all
ε > 0, but log x 6≤ B.
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Fermat’s Last Theorem

Maybe λ1 = 1:

a + b = c, (a, b) = 1
?⇒ max(|a|, |b|, |c|) ≤ Rad(abc)2.

No counterexamples to this are yet known.
Suppose xn + yn = zn with n ≥ 3 and x , y , z ∈ Z+. We may take
(x , y) = 1. Suppose λ1 = 1. Then

zn ≤ Rad(xnynzn)2

= Rad(xyz)2

≤ (xyz)2

≤ z6,

so n ≤ 6. Thus we have Fermat’s Last Theorem for n ≥ 7. For the
rest see Euler (n = 3), Fermat (n = 4), and Legendre (n = 5).
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Fermat’s Last Theorem

a + b = c , (a, b) = 1⇒ max(|a|, |b|, |c |) ≤ λε Rad(abc)1+ε.

Suppose xn + yn = zn with n ≥ 3 and x , y , z ∈ Z+. We may take
(x , y) = 1. Suppose the abc-conjecture is proved for some ε. Then

zn ≤ λε Rad(xnynzn)1+ε

= λε Rad(xyz)1+ε

≤ λε(xyz)1+ε

≤ λεz3(1+ε).

For n > 3(1 + ε),

z ≤ λ1/(n−3(1+ε))
ε < 2 for large n,

so n is bounded above. If abc-conjecture holds for some ε < 1/3,

then for any n ≥ 4 > 3(1 + ε) we have z ≤ λ1/(n−3(1+ε))
ε , so FLT is

a finite calculation for remaining exponents.



Introduction No Integral Solutions Integral Solutions Conjectures

The Idea Behind the abc-Conjecture

It is hard to make a sum or difference of two integers with high
prime power factors another such number.

25 + 72 = 34

35 + 114 = 1222

338 + 15490342 = 156133

109 · 310 + 2 = 235

311 · 54 + 7 · 116 · 43 = 217 · 173

Notice there is a prime to at most the second power in all of these
examples.
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The abc-conjecture with ε = 0

a + b = c , (a, b) = 1⇒ max(|a|, |b|, |c |) ≤ λε Rad(abc)1+ε.

If a + b = c with (a, b) = 1, could max(|a|, |b|, |c |) ≤ λRad(abc)?
Let p be prime and take a = 2p(p−1)− 1, b = 1, c = 2p(p−1). Then

2p−1 ≡ 1 mod p =⇒ 2p(p−1) ≡ 1 mod p2,

so p2|a. Thus

Rad(abc) = Rad(a · 2) ≤ 2a

p
.

so the abc-conjecture with ε = 0 would say

a ≤ λ · 2a

p
=⇒ p ≤ 2λ.

This is false for large primes p!
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Catalan’s Conjecture (Mihailescu’s Theorem)

Conjecture (Catalan, 1844)

The only consecutive perfect powers in Z+ are 8 = 23 and 9 = 32.

Reduced to finite but impractical number of cases by Tijdeman
(1974), proved by Mihailescu (2002). What does abc-conj. say?
Suppose xm − yn = 1 in Z+ where m, n ≥ 2. Of course m 6= n, so
1/m + 1/n ≤ 1/2 + 1/3 = 5/6. Since (x , y) = 1, by abc-conj.

yn < xm ≤ λε Rad(xmyn)1+ε = λε Rad(xy)1+ε ≤ λε(xy)1+ε.

Since yn < xm, y < xm/n, so

xm < λε(x1+m/n)1+ε = λεxm(1/m+1/n)(1+ε)≤ λεxm(5/6)(1+ε).

Then

xm(1−5ε)/6 < λε =⇒ x < λ6/m(1−5ε)
ε for 0 < ε < 1/5,

so
y < xm/n < λ6/n(1−5ε)

ε .
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Catalan’s Conjecture (Mihailescu’s Theorem)

We have for 0 < ε < 1/5 that

x < λ6/m(1−5ε)
ε , y < λ6/n(1−5ε)

ε .

Fix ε. Large m and n force x < 2 and y < 2, so x = 1 and y = 1.
So m and n are bounded above, and for each m and n we have
upper bounds on x and y : an effectively finite number of cases to
check if the abc-conjecture is proved for a specific ε < 1/5.
This application doesn’t follow from abc-conjecture for ε = 1.
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Consequences of the abc-conjecture

Fermat’s Last Theorem for all large exponents (Wiles for all
exponents, 1995)

Catalan’s Conjecture for any large parameters (Mihailescu for
all, 2002)

Roth’s theorem (Roth, 1955) in a stronger form

The Mordell Conjecture (Faltings, 1983) in a stronger form

It would be of tremendous interest [. . . ] to bound degrees
of integral diophantine equations in contexts of algebraic
geometry. S. Lang, 1978

[The abc-conjecture] always seems to lie on the boundary
of what is known and what is unknown. D. Goldfeld
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abc-Conjecture implies Weak Hall Conjecture

Theorem

If the abc-conjecture is true then for all ε > 0 there is Cε > 0 such
that whenever y2 = x3 + k in Z with k 6= 0,

|x | ≤ Cε|k|2(1+ε), |y | ≤ Cε|k|3(1+ε).

May suppose x , y 6= 0. Let d = (x3, y2).

y2

d
=

x3

d
+

k

d
.

Set a = x3/d , b = k/d , c = y2/d , R = Rad(abc). By abc-conj.,

|x |3

d
≤ λεR1+ε,

|y |2

d
≤ λεR1+ε.

Upper Bound : R ≤
∏
p|ac

p ·
∏
p|b

p ≤ |x ||y |Rad(b) ≤ |x ||y | |k |
d
.
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abc-Conjecture implies Weak Hall Conjecture

From R = Rad(abc) ≤ |x ||y ||k|/d ,

|x |3, |y |2 ≤ dλεR1+ε ≤ dλε

(
|x ||y ||k |

d

)1+ε

< λε(|x ||y |)1+ε|k |1+ε.

Now we take cases: |y |2 ≤ |x |3 or |x |3 ≤ |y |2.
If |y |2 ≤ |x |3 then |y | ≤ |x |3/2, so

|x |3 < λε|x |(5/2)(1+ε)|k |1+ε =⇒ |x |(1−5ε)/2 < λε|k|1+ε,

so for 0 < ε < 1/5,

|x | < λ2/(1−5ε)
ε |k |2(1+ε)/(1−5ε),

and
|y | ≤ |x |3/2< λ3/(1−5ε)

ε |k|3(1+ε)/(1−5ε).
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abc-Conjecture implies Weak Hall Conjecture

If instead |x |3 ≤ |y |2 then |x | ≤ |y |2/3, so

|y |2 < λε|y |(5/3)(1+ε)|k|1+ε =⇒ |y |(1−5ε)/3 < λε|k |1+ε,

so for 0 < ε < 1/5,

|y | < λ3/(1−5ε)
ε |k |3(1+ε)/(1−5ε),

and
|x | ≤ |y |2/3< λ2/(1−5ε)

ε |k|2(1+ε)/(1−5ε).

We have the same x-bound and y -bound in both cases:

|x | < λ2/(1−5ε)
ε |k |2(1+ε)/(1−5ε), |y | < λ3/(1−5ε)

ε |k|3(1+ε)/(1−5ε).

Set (1 + ε)/(1− 5ε) = 1 + ε′, so 0 < ε′ <∞ for 0 < ε < 1/5 and

ε′ small iff ε small. Let Cε′ = max(λ
2/(1−5ε)
ε , λ

3/(1−5ε)
ε ).
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Does the Weak Hall Conjecture Imply the abc-Conjecture?

Theorem

Assume abc-conj. If y2 = x3 + k in Z− {0} and (x , y) = 1, then

|x | ≤ Cε Rad(k)2(1+ε), |y | ≤ Cε Rad(k)3(1+ε). (1)

If 3y2 = x3 + k in Z− {0} and (x , 3y) = 1, then

|x | ≤ Bε Rad(k)2(1+ε), |y | ≤ Bε Rad(k)3(1+ε). (2)

These bounds use Rad(k), not |k |, so they’re stronger than weak
Hall conjecture (but only apply when (x , y) = 1 or (x , 3y) = 1).

Theorem

Equations (1) and (2) imply the abc-conjecture, and thus are
together equivalent to the abc-conjecture.

This shows Mordell’s equation is a far more central equation than
it at first may appear to be!
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Does the Weak Hall Conjecture Imply the abc-Conjecture?

Suppose a + b = c in nonzero integers with (a, b) = 1. Set

x = a2 + ab + b2 ∈ Z+, y =
(a− b)(a + 2b)(2a + b)

2
∈ Z−{0}.

Then

y2 = x3 − 27

(
abc

2

)2

, max(|a|, |b|, |c |) ≤ 2
√

x , (x , y) = 1 or 3.

We look here just at the case (x , y) = 1. From equation (1),

|x | ≤ Cε Rad

(
−27

(
abc

2

)2
)2(1+ε)

≤ Cε(3 Rad(abc))2(1+ε),

so
max(|a|, |b|, |c |) ≤ 2

√
x ≤ 2C 1/2

ε 31+ε Rad(abc)1+ε.



Introduction No Integral Solutions Integral Solutions Conjectures

Mordell’s Review of Lang’s Diophantine Geometry, 1962

The author’s style and exposition leave a great deal to be desired.
[. . . ] Whenever possible all the resources of algebraic geometry are
brought into the proofs of the theorems. He seems to use a
method of infinite ascent in expounding his proofs, that is, simple
ideas are often developed using more complicated ones. [. . . ] The
would-be reader will require the patience of Job, the courage of
Achilles, and the strength of Hercules to understand the proofs of
some of the essential theorems.
How much greater thanks would [Lang] have received if the book
had been written in such a way that more of it could have been
more easily comprehended by a larger class of readers! It is to be
hoped that some one will undertake the task of writing such a
book.
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Lang’s Review of Mordell’s Diophantine Equations, 1969

Even though I find the succession of equations treated somewhat
arbitrary, there seems to be one thread which runs through them.
[They are] ordered according to degree. Of course, one’s first
attempt in dealing with diophantine equations is to experiment
with equations of low degree and small coefficients. But it soon
becomes apparent that the degree is not a good invariant [. . . ] and
the classification by degree is to a large extent misleading.
It is also possible to connect both results and methods of
diophantine analysis with algebraic geometry. [. . . ] The intense
dislike which Mordell has for this kind of exposition is clearly
evidenced by his famous review of [my] book. (If this review is not
famous, it should be.)
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