Infinite Descent

Keith Conrad
University of Connecticut

August 6, 2008

Fermat's original idea

As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method ... which I called the infinite descent.

The idea: to prove an equation has no integral solutions, show one solution forces the existence of a smaller solution, leading to

$$
a_{1}>a_{2}>a_{3}>\cdots>0
$$

which is impossible in \mathbf{Z}^{+}.
Ordinary mathematical induction could be considered infinite ascent, from n to $n+1$.

Outline

- Irrationality
- Nonsolvability of several equations in \mathbf{Z} and \mathbf{Q}
- Sums of Two Squares

Irrationality of $\sqrt{2}$

Here is the usual proof.
Suppose

$$
\sqrt{2}=\frac{m}{n}
$$

with m and n in \mathbf{Z}^{+}. Without loss of generality, $(m, n)=1$. Then

$$
m^{2}=2 n^{2}
$$

so m^{2} is even, so m is even: $m=2 m^{\prime}$. Substitute and cancel:

$$
2 m^{\prime 2}=n^{2} .
$$

Thus n^{2} is even, so n is even. This contradicts $(m, n)=1$.

Irrationality of $\sqrt{2}$

Here is a proof by descent. We don't have to insist $(m, n)=1$. Suppose

$$
\sqrt{2}=\frac{m}{n}
$$

with m and n in \mathbf{Z}^{+}. Then

$$
m^{2}=2 n^{2}
$$

so m^{2} is even, so m is even: $m=2 m^{\prime}$. Substitute and cancel:

$$
2 m^{\prime 2}=n^{2}
$$

Thus n^{2} is even, so n is even: $n=2 n^{\prime}$, so

$$
m^{\prime 2}=2 n^{\prime 2}
$$

A solution (m, n) to $x^{2}=2 y^{2}$ in \mathbf{Z}^{+}leads to another $\left(m^{\prime}, n^{\prime}\right)$ where $0<m^{\prime}<m$ (or $0<n^{\prime}<n$): a contradiction.

Irrationality of $\sqrt{2}$

Here is a wholly different proof by descent.
Suppose $\sqrt{2} \in \mathbf{Q}$. Since $1<\sqrt{2}<2$,

$$
\sqrt{2}=1+\frac{a}{b}, \quad \text { with } 0<\frac{a}{b}<1 .
$$

Square both sides and clear the denominator:

$$
2 b^{2}=b^{2}+2 a b+a^{2}
$$

Thus $a^{2}=b^{2}-2 a b=(b-2 a) b$, so

$$
\frac{a}{b}=\frac{b-2 a}{a} .
$$

Now

$$
\sqrt{2}=1+\frac{a}{b}=1+\frac{b-2 a}{a},
$$

with a smaller denominator: $0<a<b$. By descent we have a contradiction. (Or the denominator is eventually $1: \sqrt{2} \in \mathbf{Z}$.)

Irrationality of \sqrt{d}

Let $d \in \mathbf{Z}^{+}$with $d \neq \square$.
Suppose $\sqrt{d} \in \mathbf{Q}$. Let $\ell<\sqrt{d}<\ell+1, \ell \in \mathbf{Z}$. Write

$$
\sqrt{d}=\ell+\frac{a}{b}, \quad \text { with } 0<\frac{a}{b}<1
$$

Square both sides and clear the denominator:

$$
d b^{2}=\ell^{2} b^{2}+2 \ell a b+a^{2} .
$$

Thus $a^{2}=d b^{2}-\ell^{2} b^{2}-2 \ell a b=\left(d b-\ell^{2} b-2 \ell a\right) b$ so

$$
\frac{a}{b}=\frac{d b-\ell^{2} b-2 \ell a}{a}
$$

Now

$$
\sqrt{d}=\ell+\frac{a}{b}=\ell+\frac{d b-\ell^{2} b-2 \ell a}{a}
$$

with a smaller denominator: $0<a<b$. By descent we have a contradiction. (Or the denominator is eventually $1: \sqrt{d} \in \mathbf{Z}$.)

Impossibility of $x^{2}+y^{2}=3$ in \mathbf{Q}

Theorem

There is no solution to $x^{2}+y^{2}=3$ in rational numbers.
If there is, x and y are not 0 . We can take them both positive. Write $x=a / c$ and $y=b / c$ with a, b, c in \mathbf{Z}^{+}, so

$$
a^{2}+b^{2}=3 c^{2} .
$$

Then $a^{2}+b^{2} \equiv 0 \bmod 3$, so (!) a and b are multiples of 3 : $a=3 a^{\prime}$ and $b=3 b^{\prime}$. Then

$$
9 a^{\prime 2}+9 b^{\prime 2}=3 c^{2} \Longrightarrow 3\left(a^{\prime 2}+b^{\prime 2}\right)=c^{2},
$$

so $3 \mid c: c=3 c^{\prime}$. Then

$$
3\left(a^{\prime 2}+b^{\prime 2}\right)=9 c^{\prime 2} \Longrightarrow a^{\prime 2}+b^{\prime 2}=3 c^{\prime 2} .
$$

We have a new solution with $0<c^{\prime}<c$: contradiction.

$$
x^{4}+y^{4}=z^{2}
$$

Theorem (Fermat)

There is no solution in \mathbf{Z}^{+}to $x^{4}+y^{4}=z^{2}$.
This is the only result for which we have details of his proof!

Corollary

The equation $a^{4}+b^{4}=c^{4}$ has no solution in \mathbf{Z}^{+}.
To prove the theorem, let's make the Pythagorean triple $\left(x^{2}, y^{2}, z\right)$ primitive. If a prime p divides x and y then $z^{2}=x^{4}+y^{4}$ is divisible by $p^{4}: p^{4} \mid z^{2}$, so $p^{2} \mid z$.

$$
x=p x^{\prime}, y=p y^{\prime}, z=p^{2} z^{\prime} \Rightarrow p^{4}\left(x^{\prime 4}+y^{\prime 4}\right)=p^{4} z^{\prime 2} .
$$

Thus $x^{\prime 4}+y^{\prime 4}=z^{\prime 2}$. So without loss of generality, $(x, y)=1$.

When $x^{4}+y^{4}=z^{2}$ in \mathbf{Z}^{+}with $(x, y)=1,\left(x^{2}, y^{2}, z\right)$ is a primitive triple: one of x or y is odd and the other even. By symmetry, take x odd and y even, so

$$
x^{2}=u^{2}-v^{2}, \quad y^{2}=2 u v, \quad z=u^{2}+v^{2}
$$

where $u>v>0$ and $(u, v)=1($ and $u \not \equiv v \bmod 2)$. Then (x, v, u) is a primitive triple with x odd, so v is even:

$$
x=s^{2}-t^{2}, \quad v=2 s t, \quad u=s^{2}+t^{2}
$$

where $s>t>0$ and $(s, t)=1$. Note $z>u^{2} \geq u=s^{2}+t^{2}$, and

$$
y^{2}=2 u v=2\left(s^{2}+t^{2}\right)(2 s t)=4 s t\left(s^{2}+t^{2}\right) .
$$

$$
y^{2}=4 s t\left(s^{2}+t^{2}\right), \quad(s, t)=1, \quad z>s^{2}+t^{2}
$$

Since y is even,

$$
\left(\frac{y}{2}\right)^{2}=s t\left(s^{2}+t^{2}\right)
$$

The factors on the right are pairwise relatively prime (why?) and each is positive, so they are all squares:

$$
s=x^{\prime 2}, \quad t=y^{\prime 2}, \quad s^{2}+t^{2}=z^{\prime 2}
$$

where $x^{\prime}, y^{\prime}, z^{\prime}$ are positive and pairwise relatively prime. Then

$$
x^{\prime 4}+y^{\prime 4}=z^{\prime 2}
$$

so we have a second primitive solution to our equation. Since

$$
z>s^{2}+t^{2}=z^{\prime 2} \geq z^{\prime}
$$

we are done by descent on $z: z^{\prime}<z$. Put differently, if $x^{4}+y^{4}=z^{2}$ has soln in \mathbf{Z}^{+}, so does $x^{4}+y^{4}=1$, but it doesn't.

Summary of the descent

$$
\begin{gathered}
x^{4}+y^{4}=z^{2}, \quad(x, y)=1, \quad y \text { even } \\
x^{2}=u^{2}-v^{2}, \quad y^{2}=2 u v, \quad z=u^{2}+v^{2}, \quad(u, v)=1 \\
x=s^{2}-t^{2}, \quad v=2 s t, \quad u=s^{2}+t^{2}, \quad(s, t)=1 \\
s=x^{\prime 2}, \quad t=y^{\prime 2}, \quad s^{2}+t^{2}=z^{\prime 2} \Rightarrow x^{\prime 4}+y^{\prime 4}=z^{\prime 2}
\end{gathered}
$$

Suppose we started with $x^{4}+y^{4}=z^{4}$. Then what happens?

$$
\begin{gathered}
x^{4}+y^{4}=z^{4}, \quad(x, y)=1, \quad y \text { even } \\
x^{2}=u^{2}-v^{2}, \quad y^{2}=2 u v, \quad z^{2}=u^{2}+v^{2}, \quad(u, v)=1 \\
x=s^{2}-t^{2}, \quad v=2 s t, \quad u=s^{2}+t^{2}, \quad(s, t)=1 \\
s=x^{\prime 2}, \quad t=y^{\prime 2}, \quad s^{2}+t^{2}=z^{\prime 2} \Rightarrow x^{\prime 4}+y^{\prime 4}=z^{\prime 2}
\end{gathered}
$$

Alternate Descent Parameter

The first solution (x, y, z) to $x^{4}+y^{4}=z^{2}$ can be written in terms of the second (smaller) solution $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$:

$$
x=x^{\prime 4}-y^{\prime 4}, \quad y=2 x^{\prime} y^{\prime} z^{\prime}, \quad z=4 x^{\prime 4} y^{\prime 4}+z^{\prime 4}
$$

So in fact $z>z^{\prime 4}$, not just $z>z^{\prime 2}$ as before. These explicit formulas tell us

$$
0<y^{\prime}<y \text { and } 0<\max \left(x^{\prime}, y^{\prime}\right)<y \leq \max (x, y)
$$

so we could do descent on $\max (x, y)$ (on y ?) rather than on z.

Consequences of nonsolvability of $x^{4}+y^{4}=z^{2}$ in Z^{+}

Corollary

Any integral solution to $x^{4}+y^{4}=z^{2}$ has x or y equal to 0 .
Otherwise change signs to make x and y (and z) all positive.

Corollary

The only rational solutions to $y^{2}=x^{4}+1$ are $(0, \pm 1)$.
Set $x=a / c$ and $y=b / c$ to get $(b c)^{2}=a^{4}+c^{4}$. Thus $a=0$, so $x=0$.

Corollary

The only rational solutions to $2 y^{2}=x^{4}-1$ are $(\pm 1,0)$.
Square and fiddle to get $(y / x)^{4}+1=\left(\left(x^{4}+1\right) / 2 x^{2}\right)^{2}$, so $y=0$.

Consequences of nonsolvability of $x^{4}+y^{4}=z^{2}$ in Z^{+}

Corollary

The only rational solutions to $y^{2}=x^{3}-4 x$ are $(0,0),(\pm 2,0)$.
There is a one-to-one correspondence

$$
v^{2}=u^{4}+1 \longleftrightarrow y^{2}=x^{3}-4 x, x \neq 0
$$

given by

$$
\begin{aligned}
x=\frac{2}{u^{2}-v} & y=\frac{4 u}{u^{2}-v} \\
u=\frac{y}{2 x} & v=\frac{y^{2}-8 x}{4 x^{2}},
\end{aligned}
$$

so from the corollary that $v^{2}=u^{4}+1$ only has rational solutions with $u=0$, rational solutions to $y^{2}=x^{3}-4 x$ have $x=0$ or $y=0$.

Consequences of nonsolvability of $x^{4}+y^{4}=z^{2}$ in Z^{+}

Corollary

The only rational solution to $y^{2}=x^{3}+x$ is $(0,0)$.
Assume $x \neq 0$. Since $y^{2}=x\left(x^{2}+1\right), y \neq 0$. May take $x, y>0$. Then (!) $x=a / c^{2}$ and $y=b / c^{3}$ in reduced form, so

$$
\left(\frac{b}{c^{3}}\right)^{2}=\left(\frac{a}{c^{2}}\right)^{3}+\frac{a}{c^{2}} \Longrightarrow b^{2}=a^{3}+a c^{4}=a\left(a^{2}+c^{4}\right)
$$

Since $(a, c)=1$,

$$
a=u^{2}, \quad a^{2}+c^{4}=v^{2} \Longrightarrow u^{4}+c^{4}=v^{2}
$$

$$
x^{4}-y^{4}=z^{2}
$$

Theorem (Fermat)

There is no solution in \mathbf{Z}^{+}to $x^{4}-y^{4}=z^{2}$.
To prove the theorem, since $z^{2}+y^{4}=x^{4}$ instead of $x^{4}+y^{4}=z^{2}$, reverse the roles of x and z; do descent on x instead of on z. Some extra details arise. On the right side below are explicit formulas for a solution (x, y, z) in terms of a "smaller" solution $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.

$$
\begin{array}{c|c}
x^{4}+y^{4}=z^{2} & x^{4}-y^{4}=z^{2} \\
\hline x=x^{\prime 4}-y^{\prime 4} & x=x^{\prime 4}+y^{\prime 4} \\
y=2 x^{\prime} y^{\prime} z & y=2 x^{\prime} y^{\prime} z^{\prime} \\
z=4 x^{\prime 4} y^{\prime 4}+z^{\prime 4} & z=\left|4 x^{\prime 4} y^{\prime 4}-z^{\prime 4}\right| \\
z^{\prime} \leq z^{\prime 4}<z & x^{\prime} \leq x^{\prime 4}<x
\end{array}
$$

Consequences of nonsolvability of $x^{4}-y^{4}=z^{2}$ in Z^{+}

$$
\begin{array}{c|c}
\text { Old corollaries } & \text { New corollaries } \\
x^{4}+y^{4}=z^{2} \text { in } \mathbf{Z} \Rightarrow x y=0 & x^{4}-y^{4}=z^{2} \text { in } \mathbf{Z} \Rightarrow y z=0 \\
y^{2}=x^{4}+1 \text { in } \mathbf{Q} \Rightarrow x=0 & y^{2}=x^{4}-1 \text { in } \mathbf{Q} \Rightarrow y=0 \\
2 y^{2}=x^{4}-1 \text { in } \mathbf{Q} \Rightarrow x= \pm 1 & 2 y^{2}=x^{4}+1 \text { in } \mathbf{Q} \Rightarrow x= \pm 1 \\
y^{2}=x^{3}-4 x \text { in } \mathbf{Q} \Rightarrow y=0 & y^{2}=x^{3}+4 x \text { in } \mathbf{Q} \Rightarrow y=0 \\
y^{2}=x^{3}+x \text { in } \mathbf{Q} \Rightarrow y=0 & y^{2}=x^{3}-x \text { in } \mathbf{Q} \Rightarrow y=0
\end{array}
$$

Consequences of nonsolvability of $x^{4} \pm y^{4}=z^{2}$ in Z^{+}

Theorem

No Pythagorean triple has two terms that are squares.
Otherwise we could solve $x^{4}+y^{4}=z^{2}$ or $x^{4}+y^{2}=z^{4}$ in \mathbf{Z}^{+}. Many Pythagorean triples have one term that is a square:

a	3	7	9	16	17	225
b	4	24	40	63	144	272
c	5	25	41	65	145	353

Theorem

The only triangular number that is a fourth power is 1 .
If $m(m+1) / 2=n^{4}$ with $m>1$ then $\{m, m+1\}=\left\{x^{4}, 2 y^{4}\right\}$ with $x>1$ and $y>1$, so $x^{4}-2 y^{4}= \pm 1 \Longrightarrow y^{8} \pm x^{4}=\left(\left(x^{4} \pm 1\right) / 2\right)^{2}$. This is impossible in positive integers.

Consequences of nonsolvability of $x^{4} \pm y^{4}=z^{2}$ in \mathbf{Z}^{+}

Why did Fermat look at $x^{4} \pm y^{4}=z^{2}$ rather than $x^{4} \pm y^{4}=z^{4}$?

Theorem (Fermat)

No Pythagorean triangle has area equal to a square or twice a square.

This first part was stated by Fibonacci (1225), without proof.

$a^{2}+b^{2}=c^{2}$,	$x^{4}-y^{4}=z^{2}$	$a^{2}+b^{2}=c^{2}$,	$x^{4}+y^{4}=z^{2}$
$\frac{1}{2} a b=d^{2}$		$\frac{1}{2} a b=2 d^{2}$	
$x=c$	$a=z^{2}$	$x=b$	$a=x^{2}$
$y=2 d$	$b=2 x^{2} y^{2}$	$y=2 d$	$b=y^{2}$
$z=\left\|a^{2}-b^{2}\right\|$	$c=x^{4}+y^{4}$	$z=b c$	$c=z$
	$d=x y z$		$d=x y / 2$

These are not inverse correspondences, but that's okay.

```
x 3}+\mp@subsup{y}{}{3}=\mp@subsup{z}{}{3
```


Theorem (Euler, 1768)

There is no solution in \mathbf{Z}^{+}to $x^{3}+y^{3}=z^{3}$.
Euler used descent and needed a lemma.

Lemma

If $a^{2}+3 b^{2}=$ cube and $(a, b)=1$ then $a=u^{3}-9 u v^{2}$ and $b=3 u^{2} v-3 v^{3}$ for some $u, v \in \mathbf{Z}$.

This is analogous to a description of $a^{2}+b^{2}=$ cube with $(a, b)=1: a=u^{3}-3 u v^{2}$ and $b=3 u^{2} v-v^{3}$. Euler proved the lemma with unique factorization in $\mathbf{Z}[\sqrt{-3}]$, but that is false:

$$
4=2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})
$$

Nevertheless, the lemma is true!

Selmer's example

Theorem (Selmer, 1951)

The only integral solution to $3 x^{3}+4 y^{3}=5 z^{3}$ is $(0,0,0)$.
It can be shown $3 x^{3}+4 y^{3} \equiv 5 z^{3} \bmod n$ has a solution $\not \equiv(0,0,0) \bmod n$ for all $n \geq 2$, so nonsolvability in \mathbf{Z} can't be seen by congruence considerations.
We sketch a proof of the theorem using descent. From an integral solution $(x, y, z) \neq(0,0,0)$, none of the terms is 0 and we get

$$
3 x^{3}+4 y^{3}=5 z^{3} \Longrightarrow(2 y)^{3}+6 x^{3}=10 z^{3}
$$

so

$$
a^{3}+6 b^{3}=10 c^{3}
$$

for $a=2 y, b=x, c=z$. May take a, b, c pairwise relatively prime.

Selmer's example

$$
a^{3}+6 b^{3}=10 c^{3}, \quad(a, b, c)=1
$$

Using $\mathbf{Z}[\sqrt[3]{6}]=\{k+\ell \sqrt[3]{6}+m \sqrt[3]{36}: k, \ell, m \in \mathbf{Z}\}$, basically get

$$
a+b \sqrt[3]{6}=(2-\sqrt[3]{6})(1-\sqrt[3]{6}) \alpha^{3}
$$

for some $\alpha \in \mathbf{Z}[\sqrt[3]{6}]$. Write $\alpha=k+\ell \sqrt[3]{6}+m \sqrt[3]{36}$ and equate coefficients of $\sqrt[3]{36}$ on both sides above:

$$
\begin{aligned}
0= & k^{3}+6 \ell^{3}+36 m^{3}+36 k \ell m+2\left(3 k \ell^{2}+3 k^{2} m+18 \ell m^{2}\right) \\
& -3\left(3 k^{2} \ell+18 k m^{2}+18 \ell^{2} m\right)
\end{aligned}
$$

Reduce $\bmod 3: 0 \equiv k^{3}$, so $3 \mid k$. Reduce $\bmod 9: 0 \equiv 6 \ell^{3}$, so $3 \mid \ell$.
Reduce $\bmod 27: 0 \equiv 36 \mathrm{~m}^{3}$, so $3 \mid \mathrm{m}$. Divide by 3^{3} and repeat again.
Thus $\alpha=0$, so $a=b=0$, so $x=b=0, y=a / 2=0, z=0$.

Fermat speaks

If there is a right triangle with integral sides and with an area equal to the square of an integer, then there is a second triangle, smaller than the first, which has the same property [...] and so on ad infinitum. [...] From which one concludes that it is impossible that there should be [such] a right triangle.
It was a long time before I was able to apply my method to affirmative questions, because the way and manner of getting at them is much more difficult than that which I employ with negative theorems. So much so that, when I had to prove that every prime number of the form $4 k+1$ is made up of two squares, I found myself in much torment. But at last a certain meditation many times repeated gave me the necessary light, and affirmative questions yielded to my method [...]

Fermat, 1659

Affirmative Questions

Some positive theorems Fermat (1659) suggested he could prove by descent:

- Two Square Theorem: Any prime $p \equiv 1 \bmod 4$ is a sum of two squares (Euler, 1747)
- Four Square Theorem: Every positive integer is a sum of four squares (Lagrange, 1770).
- For $d \neq \square, x^{2}-d y^{2}=1$ has infinitely many integral solutions (Lagrange, 1768). The difficult step is existence of even one nontrivial solution $(y \neq 0)$.

Sums of Two Squares

Theorem

For prime p, if $-1 \equiv \square \bmod p$ then $p=x^{2}+y^{2}$ in \mathbf{Z}.
By hypothesis, $-1 \equiv a^{2} \bmod p$. May take $|a| \leq p / 2$. Write

$$
a^{2}+1=p d
$$

SO

$$
p d=a^{2}+1 \leq\left(\frac{p}{2}\right)^{2}+1=\frac{p^{2}}{4}+1<\frac{p^{2}}{2}
$$

and thus $d<p / 2$. From any equation with side condition

$$
p k=x^{2}+y^{2}, \quad 0<k<\frac{p}{2}
$$

where $k>1$, we will find such an equation with $0<k^{\prime}<k$. So eventually $k=1$ and p is sum of two squares! How do we get k^{\prime} ?

Sums of Two Squares

We have

$$
p k=x^{2}+y^{2}, \quad 1<k<\frac{p}{2} .
$$

Set $x \equiv r \bmod k, y \equiv s \bmod k$, with $|r|,|s| \leq k / 2$. At least one of r and s is not 0 : otherwise, $k \mid x$ and $k \mid y$, so $k^{2} \mid p k$, and thus $k \mid p$. But $1<k<p$. Since

$$
r^{2}+s^{2} \equiv x^{2}+y^{2} \equiv 0 \bmod k
$$

we can set $r^{2}+s^{2}=k k^{\prime}$ with $k^{\prime}>0$. Then

$$
0<k k^{\prime}=r^{2}+s^{2} \leq\left(\frac{k}{2}\right)^{2}+\left(\frac{k}{2}\right)^{2}=\frac{k^{2}}{2}
$$

which makes $0<k^{\prime} \leq k / 2<k$. We will show $p k^{\prime}$ is a sum of two squares.

Sums of Two Squares

$$
p k=x^{2}+y^{2}, \quad k k^{\prime}=r^{2}+s^{2}, \quad x \equiv r \bmod k, \quad y \equiv s \bmod k
$$

Multiplying,

$$
(p k)\left(k k^{\prime}\right)=\left(x^{2}+y^{2}\right)\left(r^{2}+s^{2}\right)=(x s-y r)^{2}+(x r+y s)^{2},
$$

and modulo $k, x s-y r \equiv x y-y x \equiv 0, x r+y s \equiv x^{2}+y^{2} \equiv 0$.
Write $x s-y r=k x^{\prime}$ and $x r+y s=k y^{\prime}$. Then

$$
p k^{2} k^{\prime}=\left(k x^{\prime}\right)^{2}+\left(k y^{\prime}\right)^{2}=k^{2}\left(x^{\prime 2}+y^{\prime 2}\right)
$$

Divide by $k^{2}: p k^{\prime}=x^{\prime 2}+y^{\prime 2}$, and $0<k^{\prime}<k$ (so $0<k^{\prime}<p / 2$). Repeat until $k=1$.
Remark. Fermat's own proof by descent that p is a sum of two squares used counterexamples: from one, get a smaller one.
Eventually reach 5 , which is not a counterexample!

Sums of Two Squares

Theorem

If $n \in \mathbf{Z}^{+}$is a sum of two squares in \mathbf{Q} then it is a sum of two squares in \mathbf{Z}.

Example

No solution to $21=x^{2}+y^{2}$ in \mathbf{Q} since none in \mathbf{Z}.
Suppose $n=r^{2}+s^{2}$ with rational r and s. Write $r=a / c$ and $s=b / c$ with common denominator $c \geq 1$. If $c>1$, find a second representation $n=r^{\prime 2}+s^{\prime 2}$ in \mathbf{Q} with common denominator $0<c^{\prime}<c$. So eventually $c=1$ and $n=a^{2}+b^{2}$ in \mathbf{Z}.
The idea for this descent is geometric: get new pairs $(r, s),\left(r^{\prime}, s^{\prime}\right)$, $\left(r^{\prime \prime}, s^{\prime \prime}\right), \ldots$ using repeated intersections of lines with the circle $x^{2}+y^{2}=n$ in \mathbf{R}^{2}.

An Example

Start with $193=(933 / 101)^{2}+(1048 / 101)^{2}$. Let

$$
P_{1}=\left(\frac{933}{101}, \frac{1048}{101}\right) \approx(9.2,10.3) .
$$

Its nearest integral point is $Q_{1}=(9,10)$, and the line $\overline{P_{1} Q_{1}}$ meets the circle $x^{2}+y^{2}=193$ in P_{1} and

$$
P_{2}=\left(-\frac{27}{5},-\frac{64}{5}\right) .
$$

An Example, contd.

The nearest integral point to

$$
P_{2}=\left(-\frac{27}{5},-\frac{64}{5}\right)=(-5.4,-12.8)
$$

is $Q_{2}=(-5,-13)$, and the line $\overline{P_{2} Q_{2}}$ meets the circle in P_{2} and the point

$$
\begin{gathered}
P_{3}=(-7,-12) \\
193=(-7)^{2}+(-12)^{2}=7^{2}+12^{2}
\end{gathered}
$$

The Real Picture

Using Reflections

The second intersection point of a line with a circle could be replaced with reflection across a parallel line through the origin.

$$
\widetilde{P}_{2}=\left(\frac{27}{5}, \frac{64}{5}\right), \quad \widetilde{P}_{3}=(7,12)
$$

Sums of Two Squares

Intersections of lines with a sphere in \mathbf{R}^{3} works for three squares:

Theorem

If $n \in \mathbf{Z}^{+}$is a sum of three squares in \mathbf{Q} then it is a sum of three squares in \mathbf{Z}.

Start with $13=(18 / 11)^{2}+(15 / 11)^{2}+(32 / 11)^{2}$.

$$
P_{1}=\left(\frac{18}{11}, \frac{15}{11}, \frac{32}{11}\right) \rightsquigarrow Q_{1}=(2,1,3),
$$

$\overline{P_{1} Q_{1}}$ meets $x^{2}+y^{2}+z^{2}=13$ in P_{1} and $P_{2}=(2 / 3,7 / 3,8 / 3)$.

$$
P_{2}=\left(\frac{2}{3}, \frac{7}{3}, \frac{8}{3}\right) \rightsquigarrow Q_{2}=(1,2,3),
$$

$\overline{P_{2} Q_{2}}$ meets the sphere in P_{2} and $P_{3}=(0,3,2): 13=0^{2}+3^{2}+2^{2}$.

Cautionary examples

The equation

$$
x^{2}+82 y^{2}=2
$$

has no integral solution, but it has the rational solution $(4 / 7,1 / 7)$. What happens if we try the method of proof? The nearest integral point is $(1,0)$ and the line through them meets the ellipse in $(16 / 13,-1 / 13)$: the denominator has gone up, not down.

Cautionary examples

The equation

$$
x^{3}+y^{3}=13
$$

has no integral solution, but it has the rational solution $(7 / 3,2 / 3)$. Its nearest integral point is $(2,1)$, and the line through them meets the curve in $(2 / 3,7 / 3)$, whose nearest integral point is $(1,2), \ldots$.

