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Fermat’s original idea

As ordinary methods, such as are found in the books, are
inadequate to proving such difficult propositions, I
discovered at last a most singular method . . .which I
called the infinite descent. Fermat, 1659

The idea: to prove an equation has no integral solutions, show one
solution forces the existence of a smaller solution, leading to

a1 > a2 > a3 > · · · > 0,

which is impossible in Z+.
Ordinary mathematical induction could be considered infinite
ascent, from n to n + 1.
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Irrationality of
√

2

Here is the usual proof.
Suppose √

2 =
m

n
,

with m and n in Z+. Without loss of generality, (m, n) = 1. Then

m2 = 2n2,

so m2 is even, so m is even: m = 2m′. Substitute and cancel:

2m′2 = n2.

Thus n2 is even, so n is even. This contradicts (m, n) = 1.
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Irrationality of
√

2

Here is a proof by descent. We don’t have to insist (m, n) = 1.
Suppose √

2 =
m

n
,

with m and n in Z+. Then

m2 = 2n2,

so m2 is even, so m is even: m = 2m′. Substitute and cancel:

2m′2 = n2.

Thus n2 is even, so n is even: n = 2n′, so

m′2 = 2n′2.

A solution (m, n) to x2 = 2y2 in Z+ leads to another (m′, n′)
where 0 < m′ < m (or 0 < n′ < n): a contradiction.
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Irrationality of
√

2

Here is a wholly different proof by descent.
Suppose

√
2 ∈ Q. Since 1 <

√
2 < 2,

√
2 = 1 +

a

b
, with 0 <

a

b
< 1.

Square both sides and clear the denominator:

2b2 = b2 + 2ab + a2.

Thus a2 = b2 − 2ab = (b − 2a)b, so

a

b
=

b − 2a

a
.

Now √
2 = 1 +

a

b
= 1 +

b − 2a

a
,

with a smaller denominator: 0 < a < b. By descent we have a
contradiction. (Or the denominator is eventually 1:

√
2 ∈ Z.)
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Irrationality of
√

d

Let d ∈ Z+ with d 6= �.
Suppose

√
d ∈ Q. Let ` <

√
d < `+ 1, ` ∈ Z. Write

√
d = `+

a

b
, with 0 <

a

b
< 1.

Square both sides and clear the denominator:

db2 = `2b2 + 2`ab + a2.

Thus a2 = db2 − `2b2 − 2`ab = (db − `2b − 2`a)b so

a

b
=

db − `2b − 2`a

a
.

Now
√

d = `+
a

b
= `+

db − `2b − 2`a

a
,

with a smaller denominator: 0 < a < b. By descent we have a
contradiction. (Or the denominator is eventually 1:

√
d ∈ Z.)
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Impossibility of x2 + y2 = 3 in Q

Theorem

There is no solution to x2 + y2 = 3 in rational numbers.

If there is, x and y are not 0. We can take them both positive.
Write x = a/c and y = b/c with a, b, c in Z+, so

a2 + b2 = 3c2.

Then a2 + b2 ≡ 0 mod 3, so (!) a and b are multiples of 3:
a = 3a′ and b = 3b′. Then

9a′2 + 9b′2 = 3c2 =⇒ 3(a′2 + b′2) = c2,

so 3|c : c = 3c ′. Then

3(a′2 + b′2) = 9c ′2 =⇒ a′2 + b′2 = 3c ′2.

We have a new solution with 0 < c ′ < c : contradiction.
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x4 + y4 = z2

Theorem (Fermat)

There is no solution in Z+ to x4 + y4 = z2.

This is the only result for which we have details of his proof!

Corollary

The equation a4 + b4 = c4 has no solution in Z+.

To prove the theorem, let’s make the Pythagorean triple (x2, y2, z)
primitive. If a prime p divides x and y then z2 = x4 + y4 is
divisible by p4: p4|z2, so p2|z .

x = px ′, y = py ′, z = p2z ′ ⇒ p4(x ′4 + y ′4) = p4z ′2.

Thus x ′4 + y ′4 = z ′2. So without loss of generality, (x , y) = 1.
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x4 + y4 = z2

When x4 + y4 = z2 in Z+ with (x , y) = 1, (x2, y2, z) is a primitive
triple: one of x or y is odd and the other even. By symmetry, take
x odd and y even, so

x2 = u2 − v2, y2 = 2uv , z = u2 + v2

where u > v > 0 and (u, v) = 1 (and u 6≡ v mod 2). Then
(x , v , u) is a primitive triple with x odd, so v is even:

x = s2 − t2, v = 2st, u = s2 + t2,

where s > t > 0 and (s, t) = 1. Note z > u2 ≥ u = s2 + t2, and

y2 = 2uv = 2(s2 + t2)(2st) = 4st(s2 + t2).
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x4 + y4 = z2

y2 = 4st(s2 + t2), (s, t) = 1, z > s2 + t2.

Since y is even, (y

2

)2
= st(s2 + t2).

The factors on the right are pairwise relatively prime (why?) and
each is positive, so they are all squares:

s = x ′2, t = y ′2, s2 + t2 = z ′2.

where x ′, y ′, z ′ are positive and pairwise relatively prime. Then

x ′4 + y ′4 = z ′2,

so we have a second primitive solution to our equation. Since

z > s2 + t2 = z ′2 ≥ z ′,

we are done by descent on z : z ′ < z . Put differently, if
x4 + y4 = z2 has soln in Z+, so does x4 + y4 = 1, but it doesn’t.
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Summary of the descent

x4 + y4 = z2, (x , y) = 1, y even,

x2 = u2 − v2, y2 = 2uv , z = u2 + v2, (u, v) = 1,

x = s2 − t2, v = 2st, u = s2 + t2, (s, t) = 1,

s = x ′2, t = y ′2, s2 + t2 = z ′2 ⇒ x ′4 + y ′4 = z ′2.

Suppose we started with x4 + y4 = z4. Then what happens?

x4 + y4 = z4, (x , y) = 1, y even,

x2 = u2 − v2, y2 = 2uv , z2 = u2 + v2, (u, v) = 1,

x = s2 − t2, v = 2st, u = s2 + t2, (s, t) = 1,

s = x ′2, t = y ′2, s2 + t2 = z ′2 ⇒ x ′4 + y ′4 = z ′2.
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Alternate Descent Parameter

The first solution (x , y , z) to x4 + y4 = z2 can be written in terms
of the second (smaller) solution (x ′, y ′, z ′):

x = x ′4 − y ′4, y = 2x ′y ′z ′, z = 4x ′4y ′4 + z ′4.

So in fact z > z ′4, not just z > z ′2 as before. These explicit
formulas tell us

0 < y ′ < y and 0 < max(x ′, y ′) < y ≤ max(x , y),

so we could do descent on max(x , y) (on y?) rather than on z .
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Consequences of nonsolvability of x4 + y4 = z2 in Z+

Corollary

Any integral solution to x4 + y4 = z2 has x or y equal to 0.

Otherwise change signs to make x and y (and z) all positive.

Corollary

The only rational solutions to y2 = x4 + 1 are (0,±1).

Set x = a/c and y = b/c to get (bc)2 = a4 + c4. Thus a = 0, so
x = 0.

Corollary

The only rational solutions to 2y2 = x4 − 1 are (±1, 0).

Square and fiddle to get (y/x)4 + 1 = ((x4 + 1)/2x2)2, so y = 0.
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Consequences of nonsolvability of x4 + y4 = z2 in Z+

Corollary

The only rational solutions to y2 = x3 − 4x are (0, 0), (±2, 0).

There is a one-to-one correspondence

v2 = u4 + 1←→ y2 = x3 − 4x , x 6= 0.

given by

x =
2

u2 − v
y =

4u

u2 − v

u =
y

2x
v =

y2 − 8x

4x2
,

so from the corollary that v2 = u4 + 1 only has rational solutions
with u = 0, rational solutions to y2 = x3− 4x have x = 0 or y = 0.



Introduction Irrationality of
√

2 x2 + y2 = 3 x4 + y4 = z2 x4 − y4 = z2 ax3 + by3 = cz3 Sums of Two Squares

Consequences of nonsolvability of x4 + y4 = z2 in Z+

Corollary

The only rational solution to y2 = x3 + x is (0, 0).

Assume x 6= 0. Since y2 = x(x2 + 1), y 6= 0. May take x , y > 0.
Then (!) x = a/c2 and y = b/c3 in reduced form, so(

b

c3

)2

=
( a

c2

)3
+

a

c2
=⇒ b2 = a3 + ac4 = a(a2 + c4).

Since (a, c) = 1,

a = u2, a2 + c4 = v2 =⇒ u4 + c4 = v2.
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x4 − y4 = z2

Theorem (Fermat)

There is no solution in Z+ to x4 − y4 = z2.

To prove the theorem, since z2 + y4 = x4 instead of x4 + y4 = z2,
reverse the roles of x and z ; do descent on x instead of on z . Some
extra details arise. On the right side below are explicit formulas for
a solution (x , y , z) in terms of a “smaller” solution (x ′, y ′, z ′).

x4 + y4 = z2 x4 − y4 = z2

x = x ′4 − y ′4 x = x ′4 + y ′4

y = 2x ′y ′z y = 2x ′y ′z ′

z = 4x ′4y ′4 + z ′4 z = |4x ′4y ′4 − z ′4|
z ′ ≤ z ′4 < z x ′ ≤ x ′4 < x
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Consequences of nonsolvability of x4 − y4 = z2 in Z+

Old corollaries New corollaries
x4 + y4 = z2 in Z⇒ xy = 0 x4 − y4 = z2 in Z⇒ yz = 0
y2 = x4 + 1 in Q⇒ x = 0 y2 = x4 − 1 in Q⇒ y = 0

2y2 = x4 − 1 in Q⇒ x = ±1 2y2 = x4 + 1 in Q⇒ x = ±1
y2 = x3 − 4x in Q⇒ y = 0 y2 = x3 + 4x in Q⇒ y = 0
y2 = x3 + x in Q⇒ y = 0 y2 = x3 − x in Q⇒ y = 0
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Consequences of nonsolvability of x4 ± y4 = z2 in Z+

Theorem

No Pythagorean triple has two terms that are squares.

Otherwise we could solve x4 + y4 = z2 or x4 + y2 = z4 in Z+.
Many Pythagorean triples have one term that is a square:

a 3 7 9 16 17 225

b 4 24 40 63 144 272

c 5 25 41 65 145 353

Theorem

The only triangular number that is a fourth power is 1.

If m(m + 1)/2 = n4 with m > 1 then {m,m + 1} = {x4, 2y4} with
x > 1 and y > 1, so x4 − 2y4 = ±1 =⇒ y8 ± x4 = ((x4 ± 1)/2)2.
This is impossible in positive integers.
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Consequences of nonsolvability of x4 ± y4 = z2 in Z+

Why did Fermat look at x4 ± y4 = z2 rather than x4 ± y4 = z4?

Theorem (Fermat)

No Pythagorean triangle has area equal to a square or twice a
square.

This first part was stated by Fibonacci (1225), without proof.

a2 + b2 = c2, x4 − y4 = z2 a2 + b2 = c2, x4 + y4 = z2

1
2ab = d2 1

2ab = 2d2

x = c a = z2 x = b a = x2

y = 2d b = 2x2y2 y = 2d b = y2

z = |a2 − b2| c = x4 + y4 z = bc c = z
d = xyz d = xy/2

These are not inverse correspondences, but that’s okay.
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x3 + y3 = z3

Theorem (Euler, 1768)

There is no solution in Z+ to x3 + y3 = z3.

Euler used descent and needed a lemma.

Lemma

If a2 + 3b2 = cube and (a, b) = 1 then a = u3 − 9uv2 and
b = 3u2v − 3v3 for some u, v ∈ Z.

This is analogous to a description of a2 + b2 = cube with
(a, b) = 1: a = u3 − 3uv2 and b = 3u2v − v3. Euler proved the
lemma with unique factorization in Z[

√
−3], but that is false:

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3).

Nevertheless, the lemma is true!
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Selmer’s example

Theorem (Selmer, 1951)

The only integral solution to 3x3 + 4y3 = 5z3 is (0, 0, 0).

It can be shown 3x3 + 4y3 ≡ 5z3 mod n has a solution
6≡ (0, 0, 0) mod n for all n ≥ 2, so nonsolvability in Z can’t be seen
by congruence considerations.
We sketch a proof of the theorem using descent. From an integral
solution (x , y , z) 6= (0, 0, 0), none of the terms is 0 and we get

3x3 + 4y3 = 5z3 =⇒ (2y)3 + 6x3 = 10z3,

so
a3 + 6b3 = 10c3

for a = 2y , b = x , c = z . May take a, b, c pairwise relatively prime.
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Selmer’s example

a3 + 6b3 = 10c3, (a, b, c) = 1

Using Z[ 3
√

6] = {k + ` 3
√

6 + m 3
√

36 : k , `,m ∈ Z}, basically get

a + b
3
√

6 = (2− 3
√

6)(1− 3
√

6)α3

for some α ∈ Z[ 3
√

6]. Write α = k + ` 3
√

6 + m 3
√

36 and equate
coefficients of 3

√
36 on both sides above:

0 = k3 + 6`3 + 36m3 + 36k`m + 2(3k`2 + 3k2m + 18`m2)

−3(3k2`+ 18km2 + 18`2m).

Reduce mod 3: 0 ≡ k3, so 3|k . Reduce mod 9: 0 ≡ 6`3, so 3|`.
Reduce mod 27: 0 ≡ 36m3, so 3|m. Divide by 33 and repeat again.
Thus α = 0, so a = b = 0, so x = b = 0, y = a/2 = 0, z = 0.
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Fermat speaks

If there is a right triangle with integral sides and with an
area equal to the square of an integer, then there is a
second triangle, smaller than the first, which has the
same property [. . . ] and so on ad infinitum. [. . . ] From
which one concludes that it is impossible that there
should be [such] a right triangle.
It was a long time before I was able to apply my method
to affirmative questions, because the way and manner of
getting at them is much more difficult than that which I
employ with negative theorems. So much so that, when I
had to prove that every prime number of the form 4k + 1
is made up of two squares, I found myself in much
torment. But at last a certain meditation many times
repeated gave me the necessary light, and affirmative
questions yielded to my method [. . . ] Fermat, 1659
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Affirmative Questions

Some positive theorems Fermat (1659) suggested he could prove
by descent:

Two Square Theorem: Any prime p ≡ 1 mod 4 is a sum of
two squares (Euler, 1747)

Four Square Theorem: Every positive integer is a sum of four
squares (Lagrange, 1770).

For d 6= �, x2 − dy2 = 1 has infinitely many integral solutions
(Lagrange, 1768). The difficult step is existence of even one
nontrivial solution (y 6= 0).
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Sums of Two Squares

Theorem

For prime p, if −1 ≡ � mod p then p = x2 + y2 in Z.

By hypothesis, −1 ≡ a2 mod p. May take |a| ≤ p/2. Write

a2 + 1 = pd ,

so

pd = a2 + 1 ≤
(p

2

)2
+ 1 =

p2

4
+ 1 <

p2

2

and thus d < p/2. From any equation with side condition

pk = x2 + y2, 0 < k <
p

2

where k > 1, we will find such an equation with 0 < k ′ < k . So
eventually k = 1 and p is sum of two squares! How do we get k ′?
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Sums of Two Squares

We have
pk = x2 + y2, 1 < k <

p

2
.

Set x ≡ r mod k, y ≡ s mod k, with |r |, |s| ≤ k/2. At least one of
r and s is not 0: otherwise, k|x and k |y , so k2|pk, and thus k|p.
But 1 < k < p. Since

r2 + s2 ≡ x2 + y2 ≡ 0 mod k ,

we can set r2 + s2 = kk ′ with k ′ > 0. Then

0 < kk ′ = r2 + s2 ≤
(

k

2

)2

+

(
k

2

)2

=
k2

2
,

which makes 0 < k ′ ≤ k/2 < k . We will show pk ′ is a sum of two
squares.
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Sums of Two Squares

pk = x2 + y2, kk ′ = r2 + s2, x ≡ r mod k, y ≡ s mod k .

Multiplying,

(pk)(kk ′) = (x2 + y2)(r2 + s2) = (xs − yr)2 + (xr + ys)2,

and modulo k , xs − yr ≡ xy − yx ≡ 0, xr + ys ≡ x2 + y2 ≡ 0.
Write xs − yr = kx ′ and xr + ys = ky ′. Then

pk2k ′ = (kx ′)2 + (ky ′)2 = k2(x ′2 + y ′2).

Divide by k2: pk ′ = x ′2 + y ′2, and 0 < k ′ < k (so 0 < k ′ < p/2).
Repeat until k = 1.
Remark. Fermat’s own proof by descent that p is a sum of two
squares used counterexamples: from one, get a smaller one.
Eventually reach 5, which is not a counterexample!
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Sums of Two Squares

Theorem

If n ∈ Z+ is a sum of two squares in Q then it is a sum of two
squares in Z.

Example

No solution to 21 = x2 + y2 in Q since none in Z.

Suppose n = r2 + s2 with rational r and s. Write r = a/c and
s = b/c with common denominator c ≥ 1. If c > 1, find a second
representation n = r ′2 + s ′2 in Q with common denominator
0 < c ′ < c . So eventually c = 1 and n = a2 + b2 in Z.
The idea for this descent is geometric: get new pairs (r , s), (r ′, s ′),
(r ′′, s ′′), . . . using repeated intersections of lines with the circle
x2 + y2 = n in R2.
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An Example

Start with 193 = (933/101)2 + (1048/101)2. Let

P1 =

(
933

101
,

1048

101

)
≈ (9.2, 10.3).

Its nearest integral point is Q1 = (9, 10), and the line P1Q1 meets
the circle x2 + y2 = 193 in P1 and

P2 =

(
−27

5
,−64

5

)
.
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An Example, contd.

The nearest integral point to

P2 =

(
−27

5
,−64

5

)
= (−5.4,−12.8)

is Q2 = (−5,−13), and the line P2Q2 meets the circle in P2 and
the point

P3 = (−7,−12).

193 = (−7)2 + (−12)2 = 72 + 122
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The Real Picture
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Using Reflections

The second intersection point of a line with a circle could be
replaced with reflection across a parallel line through the origin.

P̃2 =

(
27

5
,

64

5

)
, P̃3 = (7, 12)
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Sums of Two Squares

Intersections of lines with a sphere in R3 works for three squares:

Theorem

If n ∈ Z+ is a sum of three squares in Q then it is a sum of three
squares in Z.

Start with 13 = (18/11)2 + (15/11)2 + (32/11)2.

P1 =

(
18

11
,

15

11
,

32

11

)
 Q1 = (2, 1, 3),

P1Q1 meets x2 + y2 + z2 = 13 in P1 and P2 = (2/3, 7/3, 8/3).

P2 =

(
2

3
,

7

3
,

8

3

)
 Q2 = (1, 2, 3),

P2Q2 meets the sphere in P2 and P3 = (0, 3, 2): 13 = 02 + 32 + 22.
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√

2 x2 + y2 = 3 x4 + y4 = z2 x4 − y4 = z2 ax3 + by3 = cz3 Sums of Two Squares

Cautionary examples

The equation
x2 + 82y2 = 2

has no integral solution, but it has the rational solution (4/7, 1/7).
What happens if we try the method of proof? The nearest integral
point is (1, 0) and the line through them meets the ellipse in
(16/13,−1/13): the denominator has gone up, not down.



Introduction Irrationality of
√

2 x2 + y2 = 3 x4 + y4 = z2 x4 − y4 = z2 ax3 + by3 = cz3 Sums of Two Squares

Cautionary examples

The equation
x3 + y3 = 13

has no integral solution, but it has the rational solution (7/3, 2/3).
Its nearest integral point is (2, 1), and the line through them meets
the curve in (2/3, 7/3), whose nearest integral point is (1, 2), . . . .
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