Sums of Two Squares

Infinite Descent

Keith Conrad University of Connecticut

August 6, 2008

Fermat's original idea

As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method . . . which I called the infinite descent. Fermat, 1659

The idea: to prove an equation has no integral solutions, show one solution forces the existence of a smaller solution, leading to

$$a_1>a_2>a_3>\cdots>0,$$

which is impossible in \mathbf{Z}^+ .

Ordinary mathematical induction could be considered infinite ascent, from n to n + 1.

Outline

- Irrationality
- $\bullet\,$ Nonsolvability of several equations in Z and Q
- Sums of Two Squares

Irrationality of $\sqrt{2}$

Here is the usual proof. Suppose

$$\sqrt{2}=rac{m}{n},$$

with *m* and *n* in Z^+ . Without loss of generality, (m, n) = 1. Then

$$m^2=2n^2,$$

so m^2 is even, so *m* is even: m = 2m'. Substitute and cancel:

$$2m^{\prime 2}=n^2.$$

Thus n^2 is even, so *n* is even. This contradicts (m, n) = 1.

Irrationality of $\sqrt{2}$

Here is a proof by descent. We don't have to insist (m, n) = 1. Suppose

$$\sqrt{2}=rac{m}{n},$$

with m and n in \mathbf{Z}^+ . Then

$$m^2=2n^2,$$

so m^2 is even, so *m* is even: m = 2m'. Substitute and cancel:

$$2m^{\prime 2}=n^2.$$

Thus n^2 is even, so *n* is even: n = 2n', so

$$m^{\prime 2}=2n^{\prime 2}.$$

A solution (m, n) to $x^2 = 2y^2$ in \mathbf{Z}^+ leads to another (m', n') where 0 < m' < m (or 0 < n' < n): a contradiction.

Irrationality of $\sqrt{2}$

Here is a wholly different proof by descent. Suppose $\sqrt{2} \in \mathbf{Q}$. Since $1 < \sqrt{2} < 2$,

$$\sqrt{2}=1+rac{a}{b}, \quad ext{with } 0<rac{a}{b}<1.$$

Square both sides and clear the denominator:

$$2b^2 = b^2 + 2ab + a^2$$

Thus
$$a^2 = b^2 - 2ab = (b - 2a)b$$
, so

$$\frac{a}{b} = \frac{b - 2a}{a}$$

Now

$$\sqrt{2} = 1 + \frac{a}{b} = 1 + \frac{b - 2a}{a},$$

with a smaller denominator: 0 < a < b. By descent we have a contradiction. (Or the denominator is eventually 1: $\sqrt{2} \in \mathbf{Z}$.)

Irrationality of \sqrt{d}

Let $d \in \mathbf{Z}^+$ with $d \neq \Box$. Suppose $\sqrt{d} \in \mathbf{Q}$. Let $\ell < \sqrt{d} < \ell + 1$, $\ell \in \mathbf{Z}$. Write

$$\sqrt{d} = \ell + rac{a}{b}, \quad ext{with } 0 < rac{a}{b} < 1.$$

Square both sides and clear the denominator:

$$db^2 = \ell^2 b^2 + 2\ell ab + a^2.$$

Thus $a^2 = db^2 - \ell^2 b^2 - 2\ell ab = (db - \ell^2 b - 2\ell a)b$ so $\frac{a}{b} = \frac{db - \ell^2 b - 2\ell a}{a}.$

Now

$$\sqrt{d} = \ell + rac{a}{b} = \ell + rac{db - \ell^2 b - 2\ell a}{a},$$

with a smaller denominator: 0 < a < b. By descent we have a contradiction. (Or the denominator is eventually 1: $\sqrt{d} \in \mathbf{Z}$.)

Impossibility of $x^2 + y^2 = 3$ in **Q**

Theorem

There is no solution to $x^2 + y^2 = 3$ in rational numbers.

If there is, x and y are not 0. We can take them both positive. Write x = a/c and y = b/c with a, b, c in \mathbf{Z}^+ , so

 $a^2+b^2=3c^2.$

Then $a^2 + b^2 \equiv 0 \mod 3$, so (!) *a* and *b* are multiples of 3: a = 3a' and b = 3b'. Then

$$9a'^2 + 9b'^2 = 3c^2 \Longrightarrow 3(a'^2 + b'^2) = c^2,$$

so 3|c: c = 3c'. Then

$$3(a'^2 + b'^2) = 9c'^2 \Longrightarrow a'^2 + b'^2 = 3c'^2.$$

We have a new solution with 0 < c' < c: contradiction.

$x^4 + y^4 = z^2$

Theorem (Fermat)

There is no solution in
$$\mathbf{Z}^+$$
 to $x^4 + y^4 = z^2$.

This is the only result for which we have details of his proof!

Corollary

The equation
$$a^4 + b^4 = c^4$$
 has no solution in **Z**⁺.

To prove the theorem, let's make the Pythagorean triple (x^2, y^2, z) primitive. If a prime p divides x and y then $z^2 = x^4 + y^4$ is divisible by p^4 : $p^4|z^2$, so $p^2|z$.

$$x = px', y = py', z = p^2 z' \Rightarrow p^4 (x'^4 + y'^4) = p^4 z'^2.$$

Thus $x'^4 + y'^4 = z'^2$. So without loss of generality, (x, y) = 1.

$x^4 + y^4 = z^2$

When $x^4 + y^4 = z^2$ in **Z**⁺ with (x, y) = 1, (x^2, y^2, z) is a primitive triple: one of x or y is odd and the other even. By symmetry, take x odd and y even, so

$$x^2 = u^2 - v^2$$
, $y^2 = 2uv$, $z = u^2 + v^2$

where u > v > 0 and (u, v) = 1 (and $u \not\equiv v \mod 2$). Then (x, v, u) is a primitive triple with x odd, so v is even:

$$x = s^2 - t^2$$
, $v = 2st$, $u = s^2 + t^2$,

where s > t > 0 and (s, t) = 1. Note $z > u^2 \ge u = s^2 + t^2$, and

$$y^2 = 2uv = 2(s^2 + t^2)(2st) = 4st(s^2 + t^2).$$

 $x^4 + y^4 = z^2$

$$y^2 = 4st(s^2 + t^2), \quad (s,t) = 1, \quad z > s^2 + t^2.$$

Since y is even,

$$\left(\frac{y}{2}\right)^2 = st(s^2 + t^2).$$

The factors on the right are pairwise relatively prime (why?) and each is positive, so they are all squares:

$$s = x'^2$$
, $t = y'^2$, $s^2 + t^2 = z'^2$.

where x', y', z' are positive and pairwise relatively prime. Then

$$x'^4 + y'^4 = z'^2,$$

so we have a second primitive solution to our equation. Since

$$z > s^2 + t^2 = z'^2 \ge z',$$

we are done by descent on z: z' < z. Put differently, if $x^4 + y^4 = z^2$ has soln in **Z**⁺, so does $x^4 + y^4 = 1$, but it doesn't.

Summary of the descent

$$\begin{aligned} x^4 + y^4 &= z^2, \quad (x, y) = 1, \quad y \text{ even}, \\ x^2 &= u^2 - v^2, \quad y^2 = 2uv, \quad z = u^2 + v^2, \quad (u, v) = 1, \\ x &= s^2 - t^2, \quad v = 2st, \quad u = s^2 + t^2, \quad (s, t) = 1, \\ s &= x'^2, \quad t = y'^2, \quad s^2 + t^2 = z'^2 \Rightarrow x'^4 + y'^4 = z'^2. \end{aligned}$$

Suppose we started with $x^4 + y^4 = z^4$. Then what happens?

$$\begin{aligned} x^4 + y^4 &= z^4, \quad (x, y) = 1, \quad y \text{ even}, \\ x^2 &= u^2 - v^2, \quad y^2 = 2uv, \quad z^2 = u^2 + v^2, \quad (u, v) = 1, \\ x &= s^2 - t^2, \quad v = 2st, \quad u = s^2 + t^2, \quad (s, t) = 1, \\ s &= x'^2, \quad t = y'^2, \quad s^2 + t^2 = z'^2 \Rightarrow x'^4 + y'^4 = z'^2. \end{aligned}$$

Alternate Descent Parameter

The first solution (x, y, z) to $x^4 + y^4 = z^2$ can be written in terms of the second (smaller) solution (x', y', z'):

$$x = x'^4 - y'^4$$
, $y = 2x'y'z'$, $z = 4x'^4y'^4 + z'^4$.

So in fact $z > z'^4$, not just $z > z'^2$ as before. These explicit formulas tell us

0 < y' < y and $0 < \max(x', y') < y \le \max(x, y)$,

so we could do descent on max(x, y) (on y?) rather than on z.

Consequences of nonsolvability of $x^4 + y^4 = z^2$ in Z^+

Corollary

Any integral solution to $x^4 + y^4 = z^2$ has x or y equal to 0.

Otherwise change signs to make x and y (and z) all positive.

Corollary

The only rational solutions to $y^2 = x^4 + 1$ are $(0, \pm 1)$.

Set x = a/c and y = b/c to get $(bc)^2 = a^4 + c^4$. Thus a = 0, so x = 0.

Corollary

The only rational solutions to
$$2y^2 = x^4 - 1$$
 are $(\pm 1, 0)$.

Square and fiddle to get $(y/x)^4 + 1 = ((x^4 + 1)/2x^2)^2$, so y = 0.

Consequences of nonsolvability of $x^4 + y^4 = z^2$ in Z^+

Corollary

The only rational solutions to
$$y^2 = x^3 - 4x$$
 are $(0,0), (\pm 2,0)$.

There is a one-to-one correspondence

$$v^2 = u^4 + 1 \longleftrightarrow y^2 = x^3 - 4x, \ x \neq 0.$$

given by

$$x = \frac{2}{u^2 - v} \qquad y = \frac{4u}{u^2 - v}$$
$$u = \frac{y}{2x} \qquad v = \frac{y^2 - 8x}{4x^2},$$

so from the corollary that $v^2 = u^4 + 1$ only has rational solutions with u = 0, rational solutions to $y^2 = x^3 - 4x$ have x = 0 or y = 0.

Consequences of nonsolvability of $x^4 + y^4 = z^2$ in Z^+

Corollary

The only rational solution to $y^2 = x^3 + x$ is (0, 0).

Assume $x \neq 0$. Since $y^2 = x(x^2 + 1)$, $y \neq 0$. May take x, y > 0. Then (!) $x = a/c^2$ and $y = b/c^3$ in reduced form, so

$$\left(rac{b}{c^3}
ight)^2 = \left(rac{a}{c^2}
ight)^3 + rac{a}{c^2} \Longrightarrow b^2 = a^3 + ac^4 = a(a^2 + c^4).$$

Since (a, c) = 1,

$$a = u^2, \quad a^2 + c^4 = v^2 \Longrightarrow u^4 + c^4 = v^2.$$

$x^4 - y^4 = z^2$

Theorem (Fermat)

There is no solution in
$$\mathbf{Z}^+$$
 to $x^4 - y^4 = z^2$.

To prove the theorem, since $z^2 + y^4 = x^4$ instead of $x^4 + y^4 = z^2$, reverse the roles of x and z; do descent on x instead of on z. Some extra details arise. On the right side below are explicit formulas for a solution (x, y, z) in terms of a "smaller" solution (x', y', z').

Consequences of nonsolvability of $x^4 - y^4 = z^2$ in Z^+

Old corollariesNew corollaries
$$x^4 + y^4 = z^2$$
 in $\mathbb{Z} \Rightarrow xy = 0$ $x^4 - y^4 = z^2$ in $\mathbb{Z} \Rightarrow yz = 0$ $y^2 = x^4 + 1$ in $\mathbb{Q} \Rightarrow x = 0$ $y^2 = x^4 - 1$ in $\mathbb{Q} \Rightarrow y = 0$ $2y^2 = x^4 - 1$ in $\mathbb{Q} \Rightarrow x = \pm 1$ $2y^2 = x^4 - 1$ in $\mathbb{Q} \Rightarrow x = \pm 1$ $y^2 = x^3 - 4x$ in $\mathbb{Q} \Rightarrow y = 0$ $y^2 = x^3 + 4x$ in $\mathbb{Q} \Rightarrow y = 0$ $y^2 = x^3 + x$ in $\mathbb{Q} \Rightarrow y = 0$ $y^2 = x^3 - x$ in $\mathbb{Q} \Rightarrow y = 0$

Consequences of nonsolvability of $x^4 \pm y^4 = z^2$ in Z^+

Theorem

No Pythagorean triple has two terms that are squares.

Otherwise we could solve $x^4 + y^4 = z^2$ or $x^4 + y^2 = z^4$ in **Z**⁺. Many Pythagorean triples have one term that is a square:

а	3	7	9	16	17	225
b	4	24	40	63	144	272
С	5	25	41	65	145	353

Theorem

The only triangular number that is a fourth power is 1.

If $m(m+1)/2 = n^4$ with m > 1 then $\{m, m+1\} = \{x^4, 2y^4\}$ with x > 1 and y > 1, so $x^4 - 2y^4 = \pm 1 \Longrightarrow y^8 \pm x^4 = ((x^4 \pm 1)/2)^2$. This is impossible in positive integers.

Consequences of nonsolvability of $x^4 \pm y^4 = z^2$ in **Z**⁺

Why did Fermat look at $x^4 \pm y^4 = z^2$ rather than $x^4 \pm y^4 = z^4$?

Theorem (Fermat)

No Pythagorean triangle has area equal to a square or twice a square.

This first part was stated by Fibonacci (1225), without proof.

These are not inverse correspondences, but that's okay.

$x^3 + y^3 = z^3$

Theorem (Euler, 1768)

There is no solution in
$$\mathbf{Z}^+$$
 to $x^3 + y^3 = z^3$.

Euler used descent and needed a lemma.

Lemma

If
$$a^2 + 3b^2 = cube$$
 and $(a, b) = 1$ then $a = u^3 - 9uv^2$ and $b = 3u^2v - 3v^3$ for some $u, v \in \mathbb{Z}$.

This is analogous to a description of $a^2 + b^2 =$ cube with (a, b) = 1: $a = u^3 - 3uv^2$ and $b = 3u^2v - v^3$. Euler proved the lemma with unique factorization in $\mathbb{Z}[\sqrt{-3}]$, but that is *false*:

$$4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

Nevertheless, the lemma is true!

Selmer's example

Theorem (Selmer, 1951)

The only integral solution to $3x^3 + 4y^3 = 5z^3$ is (0, 0, 0).

It can be shown $3x^3 + 4y^3 \equiv 5z^3 \mod n$ has a solution $\not\equiv (0, 0, 0) \mod n$ for all $n \ge 2$, so nonsolvability in **Z** can't be seen by congruence considerations.

We sketch a proof of the theorem using descent. From an integral solution $(x, y, z) \neq (0, 0, 0)$, none of the terms is 0 and we get

$$3x^3 + 4y^3 = 5z^3 \Longrightarrow (2y)^3 + 6x^3 = 10z^3,$$

so

$$a^3 + 6b^3 = 10c^3$$

for a = 2y, b = x, c = z. May take a, b, c pairwise relatively prime.

Selmer's example

$$a^3 + 6b^3 = 10c^3$$
, $(a, b, c) = 1$
Jsing $Z[\sqrt[3]{6}] = \{k + \ell\sqrt[3]{6} + m\sqrt[3]{36} : k, \ell, m \in Z\}$, basically get

$$a + b\sqrt[3]{6} = (2 - \sqrt[3]{6})(1 - \sqrt[3]{6})\alpha^3$$

for some $\alpha \in \mathbb{Z}[\sqrt[3]{6}]$. Write $\alpha = k + \ell\sqrt[3]{6} + m\sqrt[3]{36}$ and equate coefficients of $\sqrt[3]{36}$ on both sides above:

$$0 = k^3 + 6\ell^3 + 36m^3 + 36k\ell m + 2(3k\ell^2 + 3k^2m + 18\ell m^2) -3(3k^2\ell + 18km^2 + 18\ell^2m).$$

Reduce mod 3: $0 \equiv k^3$, so 3|k. Reduce mod 9: $0 \equiv 6\ell^3$, so $3|\ell$. Reduce mod 27: $0 \equiv 36m^3$, so 3|m. Divide by 3^3 and repeat again. Thus $\alpha = 0$, so a = b = 0, so x = b = 0, y = a/2 = 0, z = 0.

Fermat speaks

If there is a right triangle with integral sides and with an area equal to the square of an integer, then there is a second triangle, smaller than the first, which has the same property [...] and so on ad infinitum. [...] From which one concludes that it is impossible that there should be [such] a right triangle.

It was a long time before I was able to apply my method to affirmative questions, because the way and manner of getting at them is much more difficult than that which I employ with negative theorems. So much so that, when I had to prove that every prime number of the form 4k + 1is made up of two squares, I found myself in much torment. But at last a certain meditation many times repeated gave me the necessary light, and affirmative questions yielded to my method [...] Fermat, 1659

Affirmative Questions

Some positive theorems Fermat (1659) suggested he could prove by descent:

- Two Square Theorem: Any prime $p \equiv 1 \mod 4$ is a sum of two squares (Euler, 1747)
- Four Square Theorem: Every positive integer is a sum of four squares (Lagrange, 1770).
- For $d \neq \Box$, $x^2 dy^2 = 1$ has infinitely many integral solutions (Lagrange, 1768). The difficult step is existence of even one nontrivial solution ($y \neq 0$).

Sums of Two Squares

Theorem

For prime p, if
$$-1 \equiv \Box \mod p$$
 then $p = x^2 + y^2$ in **Z**.

By hypothesis, $-1 \equiv a^2 \mod p$. May take |a| < p/2. Write

$$a^2+1=pd,$$

SO

$$pd = a^{2} + 1 \le \left(\frac{p}{2}\right)^{2} + 1 = \frac{p^{2}}{4} + 1 < \frac{p^{2}}{2}$$

and thus d < p/2. From any equation with side condition

$$pk = x^2 + y^2$$
, $0 < k < \frac{p}{2}$

where k > 1, we will find such an equation with 0 < k' < k. So eventually k = 1 and p is sum of two squares! How do we get k'?

Sums of Two Squares

We have

$$pk = x^2 + y^2$$
, $1 < k < \frac{p}{2}$.

Set $x \equiv r \mod k$, $y \equiv s \mod k$, with $|r|, |s| \le k/2$. At least one of r and s is not 0: otherwise, k|x and k|y, so $k^2|pk$, and thus k|p. But 1 < k < p. Since

$$r^2 + s^2 \equiv x^2 + y^2 \equiv 0 \bmod k,$$

we can set $r^2 + s^2 = kk'$ with k' > 0. Then

$$0 < kk' = r^2 + s^2 \le \left(\frac{k}{2}\right)^2 + \left(\frac{k}{2}\right)^2 = \frac{k^2}{2},$$

which makes $0 < k' \le k/2 < k$. We will show pk' is a sum of two squares.

Sums of Two Squares

$$pk = x^2 + y^2$$
, $kk' = r^2 + s^2$, $x \equiv r \mod k$, $y \equiv s \mod k$.

Multiplying,

$$(pk)(kk') = (x^2 + y^2)(r^2 + s^2) = (xs - yr)^2 + (xr + ys)^2,$$

and modulo k, $xs - yr \equiv xy - yx \equiv 0$, $xr + ys \equiv x^2 + y^2 \equiv 0$. Write xs - yr = kx' and xr + ys = ky'. Then

$$pk^{2}k' = (kx')^{2} + (ky')^{2} = k^{2}(x'^{2} + y'^{2}).$$

Divide by k^2 : $pk' = x'^2 + y'^2$, and 0 < k' < k (so 0 < k' < p/2). Repeat until k = 1.

Remark. Fermat's own proof by descent that p is a sum of two squares used counterexamples: from one, get a smaller one. Eventually reach 5, which is not a counterexample!

Sums of Two Squares

Theorem

If $n \in \mathbf{Z}^+$ is a sum of two squares in \mathbf{Q} then it is a sum of two squares in Z.

Example

No solution to $21 = x^2 + y^2$ in **Q** since none in **Z**.

Suppose $n = r^2 + s^2$ with rational r and s. Write r = a/c and s = b/c with common denominator $c \ge 1$. If c > 1, find a second representation $n = r'^2 + s'^2$ in **Q** with common denominator 0 < c' < c. So eventually c = 1 and $n = a^2 + b^2$ in **Z**. The idea for this descent is geometric: get new pairs (r, s), (r', s'), $(r'', s''), \ldots$ using repeated intersections of lines with the circle $x^2 + y^2 = n$ in **R**².

An Example

Start with
$$193 = (933/101)^2 + (1048/101)^2$$
. Let
 $P_1 = \left(\frac{933}{101}, \frac{1048}{101}\right) \approx (9.2, 10.3).$

Its nearest integral point is $Q_1 = (9, 10)$, and the line $\overline{P_1Q_1}$ meets the circle $x^2 + y^2 = 193$ in P_1 and

An Example, contd.

The nearest integral point to

$$P_2 = \left(-\frac{27}{5}, -\frac{64}{5}\right) = (-5.4, -12.8)$$

is $Q_2 = (-5, -13)$, and the line $\overline{P_2 Q_2}$ meets the circle in P_2 and the point

$$P_{3} = (-7, -12).$$

$$193 = (-7)^{2} + (-12)^{2} = 7^{2} + 12^{2}$$

The Real Picture

Using Reflections

The second intersection point of a line with a circle could be replaced with reflection across a parallel line through the origin.

Sums of Two Squares

Intersections of lines with a sphere in \mathbf{R}^3 works for three squares:

Theorem

If $n \in Z^+$ is a sum of three squares in Q then it is a sum of three squares in Z.

Start with $13 = (18/11)^2 + (15/11)^2 + (32/11)^2$.

$$P_1 = \left(\frac{18}{11}, \frac{15}{11}, \frac{32}{11}\right) \rightsquigarrow Q_1 = (2, 1, 3),$$

 $\overline{P_1Q_1}$ meets $x^2 + y^2 + z^2 = 13$ in P_1 and $P_2 = (2/3, 7/3, 8/3)$.

$$P_2 = \left(\frac{2}{3}, \frac{7}{3}, \frac{8}{3}\right) \rightsquigarrow Q_2 = (1, 2, 3),$$

 $\overline{P_2Q_2}$ meets the sphere in P_2 and $P_3 = (0,3,2)$: $13 = 0^2 + 3^2 + 2^2$.

Cautionary examples

The equation

$$x^2 + 82y^2 = 2$$

has no integral solution, but it has the rational solution (4/7, 1/7). What happens if we try the method of proof? The nearest integral point is (1,0) and the line through them meets the ellipse in (16/13, -1/13): the denominator has gone up, not down.

Cautionary examples

The equation

$$x^3 + y^3 = 13$$

has no integral solution, but it has the rational solution (7/3, 2/3). Its nearest integral point is (2, 1), and the line through them meets the curve in (2/3, 7/3), whose nearest integral point is $(1, 2), \ldots$

