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Introduction

Fermat’s original idea

As ordinary methods, such as are found in the books, are
inadequate to proving such difficult propositions, |
discovered at last a most singular method . .. which |
called the infinite descent. Fermat, 1659

The idea: to prove an equation has no integral solutions, show one
solution forces the existence of a smaller solution, leading to

ay >ap>az>--- >0,
which is impossible in Z7.

Ordinary mathematical induction could be considered infinite
ascent, from nto n+ 1.



Introduction

Outline

@ lrrationality
@ Nonsolvability of several equations in Z and Q

@ Sums of Two Squares



Irrationality of /2

Irrationality of /2

Here is the usual proof.
Suppose

Vi
n
with m and nin Z*. Without loss of generality, (m, n) = 1. Then

m? = 2n?,

so m? is even, so m is even: m = 2m’. Substitute and cancel:
12 2

2m< = n°.

Thus n? is even, so n is even. This contradicts (m, n) = 1.



Irrationality of /2

Irrationality of /2

Here is a proof by descent. We don't have to insist (m, n) = 1.
Suppose

va="T
n

with m and nin Z*. Then

m? = 2n27
so m? is even, so m is even: m = 2m’. Substitute and cancel:
2m’? = n?

Thus n? is even, so nis even: n = 2n’, so
m'? = 2n?.

A solution (m, n) to x*> = 2y? in Z* leads to another (m’, n')
where 0 < m’ < m (or 0 < n’ < n): a contradiction.



Irrationality of V2

Irrationality of /2

Here is a wholly different proof by descent.
Suppose V2 € Q. Since 1 < V2 < 2,

xf2=1+%, with0<%<1.

Square both sides and clear the denominator:
2b% = b? + 2ab + 2°.
Thus a® = b?> — 2ab = (b — 2a)b, so

E_b—2a
b a

Now
b—2a

I

V2=1+42 -1+
b a

with a smaller denominator: 0 < a < b. By descent we have a
contradiction. (Or the denominator is eventually 1: /2 € Z.)



Irrationality of V2

Irrationality of v/d

Let d € Z* with d # O,
Suppose Vd € Q. Let £ < v/d <{+1, £ €Z. Write

\/3:€+%, with0<%<1.

Square both sides and clear the denominator:
db® = (?b? + 2(ab + a°.
Thus a? = db? — (?b? — 20ab = (db — (?b — 2{a)b so

a_ db — (?b — 20a
b a '
Now 2 y
db—¢"b—2
Vd =1+ 2= 0+ —a,
b a
with a smaller denominator: 0 < a < b. By descent we have a

contradiction. (Or the denominator is eventually 1: v/d € Z.)



Impossibility of x>+ y?> =3 in Q

There is no solution to x> 4+ y? = 3 in rational numbers.

If there is, x and y are not 0. We can take them both positive.
Write x = a/c and y = b/c with a,b,c in ZT, so

a% + b% = 3c°.

Then a? + b> =0 mod 3, so (!) a and b are multiples of 3:
a=23a and b=3b". Then

94”7 +9b? =3¢ = 3(3% + b?) = 2,
so 3|c: ¢ =3c’. Then
3(3/2 4 bl2) — 9C/2 _— a/2 + bl2 _ 3C/2.

We have a new solution with 0 < ¢’ < ¢: contradiction.



Theorem (Fermat)

There is no solution in Z* to x* + y* = 2°.

This is the only result for which we have details of his proof!

The equation a* + b* = ¢* has no solution in Z+.

To prove the theorem, let's make the Pythagorean triple (x2, y?, z)
primitive. If a prime p divides x and y then z2 = x* + y* is
divisible by p*: p*|z2, so p?|z.

x = PXI,_)/ — py’,z — p2z/ N p4(X/4 +y/4) — p4zl2.

Thus x"* + y"* = z/?. So without loss of generality, (x,y) = 1.



When x* + y* = 7% in Z+ with (x,y) = 1, (x2,y?, z) is a primitive
triple: one of x or y is odd and the other even. By symmetry, take
x odd and y even, so

2= =2 y*=2uv, z=u"+

where u > v > 0and (u,v) =1 (and u #Z v mod 2). Then
(x, v, u) is a primitive triple with x odd, so v is even:
x=s%>—1t% v=2st, u=s>+t>,

where s >t >0 and (s,t) = 1. Note = > v” > u — s° + t°, and

y? =2uv = 2(s? + t?)(2st) = 4st(s* + t2).



y2=4st(s> +t2), (s,t)=1, z>s>+1t2

Since y is even,
2
(%) = st(s2 + t2).

The factors on the right are pairwise relatively prime (why?) and
each is positive, so they are all squares:

s=x2? t=y? $+t’=z
where x', y’, 7' are positive and pairwise relatively prime. Then
14 14 2
X' +y =z°,

so we have a second primitive solution to our equation. Since

2 /

z>s?+t2=7 >z,

we are done by descent on z: z/ < z. Put differently, if
x* 4+ y* = z% has soln in ZT, so does x* + y* = 1, but it doesn't.



=272 (x,y)=1, y even,

2 =u? =V, y?=2uv, z—= 0"+’ (u,v)=1,

x=8>—1t2 v=2st, u=s>+1t3 (s,t)=1,

2 2

S=X°, t=y", 52—|—t2:z’2:>X’4+y’4:z’2.

Suppose we started with x* 4+ y* = z*. Then what happens?

*Hyt=2% (x,y)=1, y even,

2= =2, y?=2uv, 2=+ V% (uv)=1,

x=s—1t? v=2st, u=s>+1t>, (s,t)=1,

2 2

s=x? t=y? SL+2==x" 4yt =7



x4yt =22

Alternate Descent Parameter

2

The first solution (x, y, z) to x* + y* = z? can be written in terms

of the second (smaller) solution (x',y’, 2'):
x = X/4 _ y/4, y = 2X/y/Z/, 7 = 4X/4y/4 + 2/4_

So in fact z > z’*, not just z > z'? as before. These explicit
formulas tell us

0<y <yand0<max(x,y') <y < max(x,y),

so we could do descent on max(x,y) (on y?) rather than on z.



x* 4+ y‘1 =z

Consequences of nonsolvability of x* + y* = z? in Z*

Any integral solution to x* + y* = z? has x or y equal to 0.

Otherwise change signs to make x and y (and z) all positive.

The only rational solutions to y? = x* + 1 are (0, £1).

Set x = a/c and y = b/c to get (bc)? = a* + c*. Thus a=0, so
x = 0.

The only rational solutions to 2y? = x* — 1 are (£1,0).

Square and fiddle to get (y/x)* +1 = ((x* +1)/2x?)?, so y = 0.



Consequences of nonsolvability of x* + y* = z? in Z*

The only rational solutions to y? = x> — 4x are (0,0), (2, 0).

There is a one-to-one correspondence

V=ut+1—y?=x3—4x, x#£0.

given by
2 4u
X = e
w2 —v y w2 —v
y y2—8x
u= = V="—
2x 4x2

so from the corollary that v2 = u* + 1 only has rational solutions
with u = 0, rational solutions to y2 = x3 —4x have x =0 or y = 0.



x* + y‘1 =z

Consequences of nonsolvability of x* + y* = z? in Z*

The only rational solution to y?> = x3 4 x is (0, 0).

Assume x # 0. Since y? = x(x? + 1), y # 0. May take x,y > 0.
Then (1) x = a/c? and y = b/c? in reduced form, so

b\? 3
<c3> - (%) + c% — b? =a> +ac* = a(a® + ).
Since (a,¢) =1,

a:uz, 32+c4:v2:>u4+c4:v2.



Theorem (Fermat)

There is no solution in ZT to x* — y* =

To prove the theorem, since 722+ y4 = x* instead of x* + y4 = 72

reverse the roles of x and z; do descent on x instead of on z. Some
extra details arise. On the right side below are explicit formulas for
a solution (x,y, z) in terms of a “smaller” solution (x’,y’, 2').

x4 4yt = 22 4 Ao 2
x=x"*— " x=x*+y"
y_2Xl/ _2X///

7 = 4X’4 14 —I—Z 7 = |4X/4 14 z/4|

<7<z X < x"* < x



Old corollaries
X4yt =22inZ=>xy=0
V2=x*+1inQ=x=0
2y =x*-1inQ=x==+1
y2=x3—4xinQ=y=0
V2=x34+xinQ=y=0

xt —yt=2°

Consequences of nonsolvability of x* — y* = z? in Z*

New corollaries
=y =22inZ=yz=0
y2=x*-1inQ=y=0
2y =x*4+1inQ=x=+1
V2=x344xinQ=y=0
y2=x3-xinQ=y=0



xt —yt=2°

Consequences of nonsolvability of x* + y* = z? in Z*

No Pythagorean triple has two terms that are squares.

Otherwise we could solve x* + y* = z2 or x* + y> = z* in Z*.
Many Pythagorean triples have one term that is a square:

a|3 7 9 16 17 225
b|4 24 40 63 144 272
c|b5 25 41 65 145 353

The only triangular number that is a fourth power is 1.

If m(m+1)/2 = n* with m > 1 then {m, m+ 1} = {x* 2y*} with
x>Tlandy>1,s0x*—2y* =41 = y8 £ x* = ((x* £1)/2)2
This is impossible in positive integers.




Consequences of nonsolvability of x* + y* = z? in Z*

Why did Fermat look at x* & y* = z? rather than x* & y* = %7

Theorem (Fermat)

No Pythagorean triangle has area equal to a square or twice a

square.

This first part was stated by Fibonacci (1225), without proof.

P+ =c | xt—yr=22 |2+ =2 | Xyt =22
Tab = d? 1ab = 24>
X=c a=2’ x=>b a=x?
y=2d b = 2x?y? y=2d b=y?
z=1]a? - P | c=x*+y* z=bc c=z
d = xyz d=xy/2

These are not inverse correspondences, but that's okay.



ax> + by3 =cz°

Theorem (Euler, 1768)

There is no solution in ZT to x3 + y3 = z3.

Euler used descent and needed a lemma.

If 3% 4+ 3b? = cube and (a, b) = 1 then a = u®> — 9uv? and
b = 3u?v — 3v3 for some u,v € Z.

This is analogous to a description of a®> + b?> = cube with
(a,b) = 1: a=u® —3uv? and b = 3u?v — v3. Euler proved the
lemma with unique factorization in Z[v/—3], but that is false:

4=2.2=(1+/=3)(1-v=-3).

Nevertheless, the lemma is true!



ax> + by3 =cz°

Selmer’s example

Theorem (Selmer, 1951)
The only integral solution to 3x3 + 4y® =523 is (0,0,0).

It can be shown 3x3 + 4y3 = 523 mod n has a solution

# (0,0,0) mod n for all n > 2, so nonsolvability in Z can’t be seen
by congruence considerations.

We sketch a proof of the theorem using descent. From an integral
solution (x, y, z) # (0,0,0), none of the terms is 0 and we get

3x3 +4y3 =522 = (2y)® + 6x> = 1023,

a3 +6b3 = 10c3

for a=2y,b = x,c = z. May take a, b, ¢ pairwise relatively prime.



ax> + by3 =cz°

Selmer’s example

a®+6b> =10, (a,b,c)=1
Using Z[\%] ={k+ 064+ mv/36: k0, me Z}, basically get
a+bv6=(2-V6)(1—-V6)a?

for some o € Z[v/6]. Write o = k + £+v/6 + m+v/36 and equate
coefficients of v/36 on both sides above:

0 = Kk3+60%436m>+36kim+ 2(3kl? + 3k>m + 18(m?)
—3(3k( 4 18km? + 18/ m).

Reduce mod 3: 0 = k3, so 3|k. Reduce mod 9: 0 = 603, so 3|¢.
Reduce mod 27: 0 = 36m3, so 3|m. Divide by 3% and repeat again.
Thusa=0,soa=b=0,sox=b=0,y=2a/2=0,z=0.



Sums of Two Squares
Fermat speaks

If there is a right triangle with integral sides and with an
area equal to the square of an integer, then there is a
second triangle, smaller than the first, which has the
same property |[...] and so on ad infinitum. [...] From
which one concludes that it is impossible that there
should be [such] a right triangle.

It was a long time before | was able to apply my method
to affirmative questions, because the way and manner of
getting at them is much more difficult than that which |
employ with negative theorems. So much so that, when |
had to prove that every prime number of the form 4k + 1
is made up of two squares, | found myself in much
torment. But at last a certain meditation many times
repeated gave me the necessary light, and affirmative
questions yielded to my method |. . .| Fermat, 1659



Sums of Two Squares
Affirmative Questions

Some positive theorems Fermat (1659) suggested he could prove
by descent:

@ Two Square Theorem: Any prime p =1 mod 4 is a sum of
two squares (Euler, 1747)

@ Four Square Theorem: Every positive integer is a sum of four
squares (Lagrange, 1770).

e For d # [, x> — dy? = 1 has infinitely many integral solutions
(Lagrange, 1768). The difficult step is existence of even one
nontrivial solution (y # 0).



Sums of Two Squares
Sums of Two Squares

For prime p, if —1 = [ mod p then p = x> + y? in Z.

By hypothesis, —1 = a®> mod p. May take |a| < p/2. Write

2 +1=pd,
SO ) )
p\? p p
p as+1< 5 + 4+ <2

and thus d < p/2. From any equation with side condition

pk = x% 4 y2, 0<k<g
where k > 1, we will find such an equation with 0 < k€’ < k. So

eventually k = 1 and p is sum of two squares! How do we get k'?



Sums of Two Squares
Sums of Two Squares

We have

pk = x> + y?, 1<k<g.

Set x = r mod k, y = s mod k, with |r|,|s| < k/2. At least one of
r and s is not 0: otherwise, k|x and k|y, so k?|pk, and thus k|p.
But 1 < k < p. Since

r?+s>=x*+y*=0mod k,

we can set r2 + s2 = kk’ with k€’ > 0. Then

K\N> (k> K
0< r+s_<2>+<2> >
which makes 0 < k" < k/2 < k. We will show pk’ is a sum of two
squares.



Sums of Two Squares
Sums of Two Squares

pk=x*>+y% kk'=r’>+s? x=rmodk, y=smod k.
Multiplying,
(Pk)(kK') = (x* + y2)(r® + 5%) = (x5 — yr)? + (xr + ys)?,

and modulo k, xs —yr=xy —yx =0, xr + ys = x> + y> = 0.
Write xs — yr = kx’ and xr + ys = ky’. Then

pk2k/ — (kX/)z + (ky/)2 _ k2(X/2 +y/2)-

Divide by k?: pk/ = x"?+y”?, and 0 < k' < k (so 0 < k' < p/2).
Repeat until k = 1.

Remark. Fermat's own proof by descent that p is a sum of two
squares used counterexamples: from one, get a smaller one.
Eventually reach 5, which is not a counterexample!



Sums of Two Squares

Sums of Two Squares

If n € ZT is a sum of two squares in Q then it is a sum of two
squares in Z.

No solution to 21 = x? 4 y? in Q since none in Z.

Suppose n = r? 4 s with rational r and s. Write r = a/c and

s = b/c with common denominator ¢ > 1. If ¢ > 1, find a second
representation n = r'2 + 52 in Q with common denominator
0<c <c. Soeventually c=1and n=a®+ b%in Z.

The idea for this descent is geometric: get new pairs (r,s), (r',s’),
(r",s"),... using repeated intersections of lines with the circle
x?>+y?=ninR2



Sums of Two Squares
An Example

Start with 193 = (933/101) + (1048/101)2. Let
(933 1048
1= \101° 101

Its nearest integral point is Q1 = (9, 10), and the line P; Q1 meets
the circle x?> + y2 =193 in P; and

by (L2754,
5 5

-

) ~ (9.2,10.3).




Sums of Two Squares
An Example, contd.

The nearest integral point to

27 64
P, = <— —> = (—5.4,-12.8)

5 5
is @ = (—5,—13), and the line P,Q> meets the circle in P, and
the point

P3 = (—7,-12).

193 = (=7)? + (—12)> = 7% + 122




Sums of Two Squares
The Real Picture




Sums of Two Squares

Using Reflections

The second intersection point of a line with a circle could be
replaced with reflection across a parallel line through the origin.

~




Sums of Two Squares
Sums of Two Squares

Intersections of lines with a sphere in R3 works for three squares:

If n € ZT is a sum of three squares in Q then it is a sum of three
squares in Z.

Start with 13 = (18/11)2 + (15/11)% + (32/11)2.

(18 15 32
1:

ﬁa ]_].’].1> ~ Ql = (27173)7

P1Q; meets x?> + y?> + 22 =13 in Py and P, = (2/3,7/3,8/3).

2 7 8
P2_ <37373> ~ Q2_(17273)7

P>Q> meets the sphere in P, and P3 = (0,3,2): 13 = 02432 +22.



Sums of Two Squares
Cautionary examples

The equation

x? +82y° =2
has no integral solution, but it has the rational solution (4/7,1/7).
What happens if we try the method of proof? The nearest integral
point is (1,0) and the line through them meets the ellipse in
(16/13,—1/13): the denominator has gone up, not down.




Sums of Two Squares
Cautionary examples

The equation
X3+ y3 =13

has no integral solution, but it has the rational solution (7/3,2/3).
Its nearest integral point is (2,1), and the line through them meets
the curve in (2/3,7/3), whose nearest integral point is (1,2),....
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