QUATERNION ALGEBRAS: SET 5

KEITH CONRAD

1. Write each of the matrices (23), (7 Z13), and (2 &) as products of the matrices S = (9 )
and T = ({1).

2. (Constructing units)

a) In (5,7)q (with usual basis 1, u, v, w), show Z+Z(1+w)/2+Z(v+ w)/2 + Zw is an order and
it contains (5,7)z. Find four pairwise noncommuting units of this larger order which have norm 1
and which do not lie in (5,7)z.

b) In (2,3)q, show Z+Zu+Z(1+v+w)/2+ Zu(l+v+w)/2 is an order and it contains (2, 3)z.
Find four pairwise noncommuting units of this larger order which have norm 1 and which do not lie
in (2,3)z. Show another Z-basis for this larger order is {1, (u +2v 4+ w)/2, (1 +v + w)/2,w + 2v}.

c¢) Write a typical element of the larger order in part b as

g=z0+z1u+z2(l+v+w)/2+ z3u(l +v+w)/2,

where x; € Z. Show N(q) = 22 + moz2 + 23 — 2(2? + x123 + 23), so the elements with norm one in
this order can be described as the 4-tuples of integers (zg, 21, z2,x3) that satisfy the equation

T2+ xoxe + 22 — 2(2? + 21203 + 22) = 1.
What are the coordinates of ¢~ when N(g) = 1?

3. (Reduction mod p)

a) For each prime p, reduction mod p gives a group homomorphism SLy(Z) — SLy(F,). Show
this is surjective. That is, any 2 x 2 integer matrix whose determinant is = 1 mod p is the mod p
reduction of a 2 X 2 integer matrix with determinant 1.

b) Let T' be the norm-one elements of the larger order in part b of exercise 2. We can view T
as the set of integer solutions to a certain polynomial equation in four variables, as in part ¢ of
exercise 2. Reducing the coordinates mod p gives a finite group I'(F,,) and a group homomorphism
I' = T'(Fp). Is this onto for all primes p?

4. Tt was noted in the lectures that any two quaternion algebras over Q are linked: they can
be written as (c, *)q for a common ¢ € Q*. Prove (—1,—1)q) and (—7,t)q) are unlinked: they
can’t be written as (f,*)q( for a common f € Q(¢)*.

5. Let B = (K/F,b) be a quaternion division algebra over a field F' of any characteristic.

a) For every q € B>, show the function R,: B — B given by R,(r) = qrq~"' is an F-algebra
isomorphism of B with itself. (These are called inner automorphisms of B. Notice the composite of
two inner automorphisms is also an inner automorphism. This will be useful in part c.)

b) Suppose f: B — B is an F-algebra isomorphism of B with itself such that f fixes all the
elements of K pointwise. Prove f = R, for some ¢ € K*.

c) Suppose f: B — B is an F-algebra isomorphism of B with itself. Prove f = R, for some
g € B*. (Hint: Compose f with a suitable inner automorphism to reduce to the case of part b.)

d) In previous parts, B was a division algebra. What if B is split? In other words, is every
F-algebra isomorphism of My (F') with itself an inner automorphism, i.e., does it have the form R,
for some ¢ € My(F)*?

6. Let A be an order in a quaternion algebra over Q. Prove, for each non-zero m € Z, that up
to left multiplication by a unit there are only finitely many ¢ € A with norm m. (Hint: Suppose
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N(q1) = N(g2) = m and ¢1 = g2 mod Am. Prove ¢; and g are both right divisors of each other, so
q1 = €qo for some € € A*. Note there are only m* congruence classes mod Am.)

Discriminants

For any basis B = {e1, ea,€3,e4} of a quaternion algebra B over a field F', define its discriminant
to be
diSCF(B) = det(Tr(eiej)) e F.
This is the determinant of a 4 x 4 matrix whose (4, j) entry is Tr(e;e;).

7. (Initial calculations and properties)

a) Show the basis {(§9),(345),(99),(89)} of M2(R) has discriminant —1 and the basis {1,1, j, k}
of H has discriminant —16.

b) If B’ = {e}, e, €5, ¢} } is another basis for B, and (a;;) is the change-of-basis matrix expressing
the els in terms of the e;’s, show we have an equation of 4 x 4 matrices

(Tr(efes’)) = (ais)(Tr(eie;))(aij) |
Conclude discp(B') = det(a;;)* discr(B), so the discriminants of B and B’ differ by a non-zero square
factor.
c¢) Use parts a and b to show any basis of a quaternion algebra over Q has a negative discriminant.
c¢) Let A be an order in a quaternion algebra over Q. Show any two Z-bases of A have the same
discriminant. This common value is called the discriminant of A.
d) For non-zero integers a and b, show the order (a,b)z in (a,b)q has discriminant —16a

8. Show the discriminant of Ms(Z) is —1 and the discriminant of the Hurwitz order Z + Zi +
Zj+Z(1+i+j+k)/2in H(Q) is —4.

9. For two orders A; and As in a quaternion algebra B over Q, with Ay C As, the following
results are known:

o disc(As)|disc(Aq)
o if disc(A1) = disc(Ag), then A1 = As.

a) Conclude from these properties and earlier exercises that every order in B is contained in a
mazimal order, which is an order contained in no larger order. (Hint: minimize the absolute value of
a discriminant containing the given order.) Show My(Z) in M2(Q) and the Hurwitz order in H(Q)
are examples of maximal orders.

b) While B has many maximal orders, a difficult theorem says all mazimal orders in B have
the same discriminant. This common value is called the discriminant of B. (For example, the
discriminant of H(Q) is —4.) A further difficult theorem says this common discriminant of any
maximal order in B is always of the form —d? where d is a product of distinct primes, and that
every quaternion algebra over Q is determined up to isomorphism by its discriminant.

Use these facts and your earlier work to show the order (a,b)z, for integers a and b, is never a
maximal order. (Thus maximal orders never admit a quaternionic Z-basis.) Also show that the
only quaternion division algebra over Q which can be written in the form (a,b)q and (c,d)q for
integers a, b, ¢, d with ab relatively prime to ¢d is H(Q). (Recall from exercises 2 and 3 on set 3 that
H(Q) = (-2,-3)q = (-5, —29)q")

10. Consider the following alternate definition of the discriminant of a basis {e1, es, 3,4} of a
quaternion algebra: det(Tr(e;€;)). How do its properties compare to the previous discriminant? Are
these two kinds of discriminants always related in a definite way?
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