QUATERNION ALGEBRAS: SET 5

KEITH CONRAD

1. Write each of the matrices $\begin{pmatrix} 9 & 5 \\ 7 & 4 \end{pmatrix}$, $\begin{pmatrix} 9 & -13 \\ 7 & -10 \end{pmatrix}$, and $\begin{pmatrix} 21 & 8 \\ 55 & 21 \end{pmatrix}$ as products of the matrices $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

2. (Constructing units)

a) In $(5,7)_{\mathbf{Q}}$ (with usual basis 1, u, v, w), show $\mathbf{Z} + \mathbf{Z}(1+u)/2 + \mathbf{Z}(v+w)/2 + \mathbf{Z}w$ is an order and it contains $(5,7)_{\mathbf{Z}}$. Find four pairwise noncommuting units of this larger order which have norm 1 and which do not lie in $(5,7)_{\mathbf{Z}}$.

b) In $(2,3)_{\mathbf{Q}}$, show $\mathbf{Z} + \mathbf{Z}u + \mathbf{Z}(1+v+w)/2 + \mathbf{Z}u(1+v+w)/2$ is an order and it contains $(2,3)_{\mathbf{Z}}$. Find four pairwise noncommuting units of this larger order which have norm 1 and which do not lie in $(2,3)_{\mathbf{Z}}$. Show another **Z**-basis for this larger order is $\{1, (u+2v+w)/2, (1+v+w)/2, w+2v\}$.

c) Write a typical element of the larger order in part b as

 $q = x_0 + x_1 u + x_2 (1 + v + w)/2 + x_3 u (1 + v + w)/2,$

where $x_i \in \mathbb{Z}$. Show $N(q) = x_0^2 + x_0 x_2 + x_2^2 - 2(x_1^2 + x_1 x_3 + x_3^2)$, so the elements with norm one in this order can be described as the 4-tuples of integers (x_0, x_1, x_2, x_3) that satisfy the equation

$$x_0^2 + x_0x_2 + x_2^2 - 2(x_1^2 + x_1x_3 + x_3^2) = 1.$$

What are the coordinates of q^{-1} when N(q) = 1?

3. (Reduction mod p)

a) For each prime p, reduction mod p gives a group homomorphism $SL_2(\mathbf{Z}) \to SL_2(\mathbf{F}_p)$. Show this is surjective. That is, any 2×2 integer matrix whose determinant is $\equiv 1 \mod p$ is the mod preduction of a 2×2 integer matrix with determinant 1.

b) Let Γ be the norm-one elements of the larger order in part b of exercise 2. We can view Γ as the set of integer solutions to a certain polynomial equation in four variables, as in part c of exercise 2. Reducing the coordinates mod p gives a finite group $\Gamma(\mathbf{F}_p)$ and a group homomorphism $\Gamma \to \Gamma(\mathbf{F}_p)$. Is this onto for all primes p?

4. It was noted in the lectures that any two quaternion algebras over \mathbf{Q} are linked: they can be written as $(c, *)_{\mathbf{Q}}$ for a common $c \in \mathbf{Q}^{\times}$. Prove $(-1, -1)_{\mathbf{Q}(t)}$ and $(-7, t)_{\mathbf{Q}(t)}$ are unlinked: they can't be written as $(f, *)_{\mathbf{Q}(t)}$ for a common $f \in \mathbf{Q}(t)^{\times}$.

5. Let B = (K/F, b) be a quaternion division algebra over a field F of any characteristic.

a) For every $q \in B^{\times}$, show the function $R_q: B \to B$ given by $R_q(r) = qrq^{-1}$ is an *F*-algebra isomorphism of *B* with itself. (These are called *inner automorphisms* of *B*. Notice the composite of two inner automorphisms is also an inner automorphism. This will be useful in part c.)

b) Suppose $f: B \to B$ is an *F*-algebra isomorphism of *B* with itself such that *f* fixes all the elements of *K* pointwise. Prove $f = R_q$ for some $q \in K^{\times}$.

c) Suppose $f: B \to B$ is an *F*-algebra isomorphism of *B* with itself. Prove $f = R_q$ for some $q \in B^{\times}$. (Hint: Compose f with a suitable inner automorphism to reduce to the case of part b.)

d) In previous parts, B was a division algebra. What if B is split? In other words, is every F-algebra isomorphism of $M_2(F)$ with itself an inner automorphism, *i.e.*, does it have the form R_q for some $q \in M_2(F)^{\times}$?

6. Let Λ be an order in a quaternion algebra over \mathbf{Q} . Prove, for each non-zero $m \in \mathbf{Z}$, that up to left multiplication by a unit there are only finitely many $q \in \Lambda$ with norm m. (Hint: Suppose

KEITH CONRAD

 $N(q_1) = N(q_2) = m$ and $q_1 \equiv q_2 \mod \Lambda m$. Prove q_1 and q_2 are both right divisors of each other, so $q_1 = \varepsilon q_2$ for some $\varepsilon \in \Lambda^{\times}$. Note there are only m^4 congruence classes mod Λm .)

Discriminants

For any basis $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ of a quaternion algebra B over a field F, define its discriminant to be

$$\operatorname{disc}_F(\mathcal{B}) = \operatorname{det}(\operatorname{Tr}(e_i e_j)) \in F.$$

This is the determinant of a 4×4 matrix whose (i, j) entry is $\text{Tr}(e_i e_j)$.

7. (Initial calculations and properties)

a) Show the basis $\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$ of $M_2(\mathbf{R})$ has discriminant -1 and the basis $\{1, i, j, k\}$ of **H** has discriminant -16.

b) If $\mathcal{B}' = \{e'_1, e'_2, e'_3, e'_4\}$ is another basis for B, and (a_{ij}) is the change-of-basis matrix expressing the e'_i s in terms of the e_i 's, show we have an equation of 4×4 matrices

$$(\operatorname{Tr}(e'_i e_j')) = (a_{ij})(\operatorname{Tr}(e_i e_j))(a_{ij})^{\top}.$$

Conclude $\operatorname{disc}_F(\mathcal{B}') = \operatorname{det}(a_{ij})^2 \operatorname{disc}_F(\mathcal{B})$, so the discriminants of \mathcal{B} and \mathcal{B}' differ by a non-zero square factor.

c) Use parts a and b to show any basis of a quaternion algebra over **Q** has a negative discriminant.

c) Let Λ be an order in a quaternion algebra over **Q**. Show any two **Z**-bases of Λ have the same discriminant. This common value is called the discriminant of Λ .

d) For non-zero integers a and b, show the order $(a, b)_{\mathbf{Z}}$ in $(a, b)_{\mathbf{Q}}$ has discriminant $-16a^2b^2$.

8. Show the discriminant of $M_2(\mathbf{Z})$ is -1 and the discriminant of the Hurwitz order $\mathbf{Z} + \mathbf{Z}i + \mathbf{Z}j + \mathbf{Z}(1 + i + j + k)/2$ in $\mathbf{H}(\mathbf{Q})$ is -4.

9. For two orders Λ_1 and Λ_2 in a quaternion algebra B over \mathbf{Q} , with $\Lambda_1 \subset \Lambda_2$, the following results are known:

• disc (Λ_2) disc (Λ_1)

• if $\operatorname{disc}(\Lambda_1) = \operatorname{disc}(\Lambda_2)$, then $\Lambda_1 = \Lambda_2$.

a) Conclude from these properties and earlier exercises that every order in B is contained in a *maximal order*, which is an order contained in no larger order. (Hint: minimize the absolute value of a discriminant containing the given order.) Show $M_2(\mathbf{Z})$ in $M_2(\mathbf{Q})$ and the Hurwitz order in $\mathbf{H}(\mathbf{Q})$ are examples of maximal orders.

b) While *B* has many maximal orders, a difficult theorem says all *maximal* orders in *B* have the same discriminant. This common value is called the discriminant of *B*. (For example, the discriminant of $\mathbf{H}(\mathbf{Q})$ is -4.) A further difficult theorem says this common discriminant of any maximal order in *B* is always of the form $-d^2$ where *d* is a product of distinct primes, and that every quaternion algebra over \mathbf{Q} is determined up to isomorphism by its discriminant.

Use these facts and your earlier work to show the order $(a, b)_{\mathbf{Z}}$, for integers a and b, is never a maximal order. (Thus maximal orders never admit a quaternionic **Z**-basis.) Also show that the only quaternion *division* algebra over **Q** which can be written in the form $(a, b)_{\mathbf{Q}}$ and $(c, d)_{\mathbf{Q}}$ for integers a, b, c, d with ab relatively prime to cd is $\mathbf{H}(\mathbf{Q})$. (Recall from exercises 2 and 3 on set 3 that $\mathbf{H}(\mathbf{Q}) \cong (-2, -3)_{\mathbf{Q}} \cong (-5, -29)_{\mathbf{Q}}$.)

10. Consider the following alternate definition of the discriminant of a basis $\{e_1, e_2, e_3, e_4\}$ of a quaternion algebra: det $(\text{Tr}(e_i \bar{e}_j))$. How do its properties compare to the previous discriminant? Are these two kinds of discriminants always related in a definite way?