QUATERNION ALGEBRAS: SET 4

KEITH CONRAD

- 1. Call a ring $R \neq 0$ simple if any ring homomorphism $R \to S$ $(S \neq 0)$ is injective.
- a) Prove the commutative simple rings are the fields.
- b) By exercise 8 on set 1, $M_2(F)$ is a simple ring for any field F. Is $M_2(D)$ a simple ring if D is any division ring?
 - c) When char $F \neq 2$, show $(a,0)_F$ is not a simple ring, as follows: map $(a,0)_F$ to $F[t]_{t^2-a}$ by

$$c_0 + c_1 u + c_2 v + c_3 w \mapsto c_0 + c_1 t$$
.

Show this is a ring homomorphism; it is not, however, injective. What does this homomorphism correspond to when you view $(a,0)_F$ inside $M_2(F[t]_{t^2-a})$ by the embedding from exercise 2 on set 2?

All about characteristic 2

Unless indicated otherwise, from now on char F=2. For $a\in F$ and $b\in F^{\times}$, we define the quaternion algebra $[a,b)_F$ as

$$[a,b)_F = F + Fu + Fv + Fw,$$

where

- $\begin{array}{l} \bullet \ u^2 + u = a, \\ \bullet \ v^2 = b, \end{array}$
- $\bullet v^2 = 0,$ $\bullet w = uv = v(u+1).$
- 2. Check the multiplication table for u, v, w in $[a, b)_F$ from lecture.
- 3. Show the map $[a,b)_F \to M_2(F[t]_{t^2+t+a})$ determined by

$$1 \mapsto \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad u \mapsto \left(\begin{array}{cc} t & 0 \\ 0 & t+1 \end{array}\right), \quad v \mapsto \left(\begin{array}{cc} 0 & 1 \\ b & 0 \end{array}\right), \quad w \mapsto \left(\begin{array}{cc} 0 & t \\ b(t+1) & 0 \end{array}\right)$$

is an injective ring homomorphism. Check this even holds when b=0, but show $[a,0)_F$ is not a simple ring. (For all of the remaining exercises, the notation $[a,b]_F$ is understood to mean $b \neq 0$.)

- 4. Show the center of $[a,b)_F$ is F.
- 5. (Conjugation in characteristic 2) For $q = x_0 + x_1 u + x_2 v + x_3 w$ in $[a, b]_F$, set

$$\overline{q} = x_0 + x_1(u+1) + x_2v + x_3w.$$

That is, $\overline{u} = u + 1$ and $\overline{v} = v$, $\overline{w} = w$. Check $\overline{\overline{q}} = q$, $\overline{q_1 + q_2} = \overline{q}_1 + \overline{q}_2$, $\overline{q_1q_2} = \overline{q}_2\overline{q}_1$, and $\overline{cq} = c\overline{q}$ for $c \in F$. However, it is no longer true that $\overline{q} = q \Leftrightarrow q \in F!$

- 6. Define the trace and norm on $[a,b)_F$ by $\text{Tr}(q)=q+\overline{q}$ and $N(q)=q\overline{q}$.
- a) For $q = x_0 + x_1u + x_2v + x_3w$, confirm that

$$\operatorname{Tr}(q) = x_1, \ \ \operatorname{N}(q) = x_0^2 + x_0 x_1 + a x_1^2 + b (x_2^2 + x_2 x_3 + a x_3^2).$$

- b) Show trace is additive, Tr(qq') = Tr(q'q) for any q and q' (what is an explicit formula for Tr(qq') in terms of the coordinates of q and q'?), and the norm is multiplicative. Since q is a root of $T^2 - (\operatorname{Tr} q)T + \operatorname{N}(q) \in F[T]$, once again we see that F[q] = F + Fq for $q \notin F$.
 - c) For $a \in F$ and $b \in F^{\times}$, show $[a,b]_F$ is either isomorphic to $M_2(F)$ or is a division ring.

- 7. When $q \in [a,b]_F$ is not in F, does $\{r \in [a,b]_F : rq = qr\} = F[q]$? For the particular element u, check $ur = r(u+1) \Leftrightarrow ru = (u+1)r$. Does $ur = r(u+1) \Leftrightarrow r \in Fv + Fw$?
- 8. Define the pure quaternions $[a,b]_F^0$ as the elements with trace 0 (that is, $\bar{q}=-q=q$). Concretely, $[a,b]_F^0 = F + Fv + Fw$. If r is pure and q is invertible, show qrq^{-1} is pure.
- 9. The characteristic 2 analogue of $x \mapsto x^2$ is $x \mapsto x^2 + x$. The former is multiplicative while the latter is (in characteristic 2) additive. Denote this operation by \wp : $\wp(x) = x^2 + x$. In particular, $\wp(x)=0$ if and only if x=0 or 1. (This is analogous to $x^2=1\Leftrightarrow x=\pm 1$ in characteristic not 2.) We write $\wp(F)$ for $\{x^2 + x : x \in F\}$, which is an additive subgroup of F. (This is analogous to the multiplicative subgroup $F^{\times 2}$ of F^{\times} when char $F \neq 2$.)

Define the ring \widetilde{E}_a to be $F[t]_{t^2+t+a}$, when $a \in F$. This is a characteristic 2 analogue of $E_a =$ $F[t]_{t^2-a}$ for $a \neq 0$ from characteristic not 2.

- a) Show E_a is a field if and only if $a \notin \wp(F)$.
- b) Show $\widetilde{E}_a \cong F \times F$ if $a \in \wp(F)$ (e.g., if a = 0).
- c) Let the conjugate of x+yt in E_a be x+y(t+1), and the norm of an element of E_a is defined to be the product of it and its conjugate: $N(x+yt) = x^2 + xy + ay^2$. Check the norm is multiplicative,

$$F^{\times^2} \subset \mathcal{N}(\widetilde{E}_a^{\times}) \subset F^{\times}.$$

- d) Show $N(\widetilde{E}_a^{\times}) = F^{\times}$ when $a \in \wp(F)$. (Hint: $c^2 + c(c + c') = cc'$, so every product has the form
- 10. Verify the following properties in characteristic 2, and identify what they are analogues of in characteristic not 2:
 - $[a,b)_F \cong [a+b,b)_F$
 - $[a,b)_F \cong [a,b(x^2+xy+ay^2))_F$ when $x^2+xy+ay^2 \neq 0$ $[a,b)_F \cong [a,bc^2]$ for $c \in F^{\times}$

 - $[a,b)_F \cong [a+c^2+c,b)_F$
 - $[a,1)_F \cong M_2(F)$
 - $[0,b)_F \cong \mathrm{M}_2(F)$
 - $[a, c^2)_F$, $[c^2 + c, b)_F$, $[a, a)_F$ are all isomorphic to $M_2(F)$
 - $[a,b)_F \cong [a,b')_F \Leftrightarrow b'/b \in N(\widetilde{E}_a^{\times})$, and in particular $[a,b)_F \cong M_2(F) \Leftrightarrow b \in N(\widetilde{E}_a^{\times})$
 - When $[a,b)_F$ is a division ring and $c \in F$, $[a,b)_F \cong [c,*)_F$ if and only if ??????
- 11. Choose a field L with characteristic 2. Let π be irreducible in L[t] and let $f \in L[t]$ satisfy $f \not\equiv g^2 + g \mod \pi$ for any g. Conclude that $[f,\pi)_{L(t)}$ is a division ring. In particular, $[1,t)_{\mathbf{F}_2(t)}$ is a non-commutative division ring with characteristic 2.
- 12. Show the only quaternion algebra over a finite field with characteristic 2 is the 2×2 matrix algebra over that field.
- 13. If you know quadratic reciprocity in characteristic 2 (e.g., if you attended my lectures last summer and have the notes), show for $a \in \mathbf{F}(t)$ that $[a,b]_{\mathbf{F}(t)} \cong \mathrm{M}_2(\mathbf{F}(t))$ for all b if and only if $a \in \wp(\mathbf{F}(t))$. Here **F** is a finite field of characteristic 2.
- 14. Show conjugation on $[a,b)_F$ is the unique involution $q\mapsto q^*$ which fixes F pointwise and satisfies $qq^* \in F$ for every $q \in [a,b)_F$.
- 15. (An alternate basis for quaternion algebras in characteristic 2) For any $a, b \in F$, let $((a, b))_F =$ F + Fr + Fs + Frs with the rules $r^2 = a$, $s^2 = b$, and sr = rs + 1. Remember, char F = 2.
- a) For $a \in F$ and $b \in F^{\times}$, check that in $((a,b))_F$ the choice u = rs and v = s shows $((a,b))_F \cong$ $[ab,b)_F$.
 - b) What can you say about $((a,0))_F$?

- 16. Recall from lecture, for a separable quadratic field extension K/F, and $b \in F^{\times}$, the quaternion algebra (K/F, b) is defined to be K + Kv where $v^2 = b$ and $v\alpha = \sigma(\alpha)v$ for all $\alpha \in K$. (We write σ for the conjugation on K that fixes F.) Find $K \supset \mathbf{F}_2(t)$ such that $[1, t)_{\mathbf{F}_2(t)} = (K/\mathbf{F}_2(t), t)$.
- 17. In a quaternion algebra of characteristic not 2, the equation $q_1q_2 q_2q_1 = 1$ has no solution, since the left side has trace 0 for any q_1 and q_2 , while the right side has trace $2 \neq 0$. But in characteristic 2, where 2 = 0, this obstruction does not occur. Is there a solution to $q_1q_2 q_2q_1 = 1$ in the split quaternion algebra $M_2(F)$ when char F = 2? What about in the quaternion division algebra $[1,t)_{\mathbf{F}_2(t)}$?
- 18. Let F be a field of any characteristic. Let K/F be a separable quadratic field extension. For a quaternion algebra D over F, show K is isomorphic to a subfield of D if and only if $D \cong (K/F, b)$ for some $b \in F^{\times}$.
- 19. Let F be a field of any characteristic and let K/F be a separable quadratic field extension. On (K/F, b), set $(\alpha_1 + \alpha_2 v)^* = \alpha_1 \sigma(\alpha_2)v$. Show this operation is an involution on (K/F, b), but $qq^* \notin F$ for some q. For the particular example $(K/F, 1) \cong M_2(F)$, is this operation the transpose on matrices?
- 20. Fill in the details of the following proof of Noether's theorem: for F of characteristic 2 and D a 4-dimensional F-division algebra, some $q \in D F$ has $q^2 \notin F$.
- Suppose there is some $d \in D-F$ such that $d^2 \in F$ (otherwise we're certainly done). Some $\alpha \in D$ satisfies $d\alpha \neq \alpha d$. Let $\beta = d\alpha d^{-1} \alpha \neq 0$. Then d and β commute. Let $q = \beta^{-1}\alpha$. Then looking at dqd^{-1} and dq^2d^{-1} shows $q \in D-F$ and $q^2 \in D-F$.
- 21. Let F be a field of any characteristic. Let B be a 4-dimensional simple F-algebra which is not a division ring. In the lectures we saw a proof that $B \cong M_2(F)$. Fill in the details of the following alternate proof.

Pick $q \in B$ with $q \neq 0$, $q \notin B^{\times}$. Set M = Bq (the left multiples of q). Then $1 \leq \dim_F M \leq 3$. Let B act on M by left multiplications. Check this yields an F-algebra homomorphism $B \to \mathcal{L}(M,M)$, so $\dim_F M \geq 2$. Then let B act on B/M by left multiplications to get a reverse inequality, so $\dim_F M = 2$ and our homomorphism $B \to \mathcal{L}(M,M) \cong M_2(F)$ is the desired isomorphism. That proves the result. (If instead $\dim_F(B) = n^2$ where n > 2, what lower and upper bounds on $\dim_F M$ do we get by this argument?)