QUATERNION ALGEBRAS: SET 3

KEITH CONRAD

Unless stated otherwise, F' is a field with characteristic not 2.

1. We know that (2,3)q and (3,11)q are division rings.

a) Prove they are isomorphic. (Can you find a specific ¢ € (2, 3)% which squares to 117?)

b) Prove that for any non-zero integers a, b such that (2,3)q = (a,b)q, at least one of a and b is
a multiple of 3.

¢) Find a quaternion division algebra (3, *)q which is not isomorphic to (2, 3)q.

2. Show H(Q) 2 (=5, —29)q. Is H(Q) = (=2, —5)Q?

3. Let a,b, b/ € F'*.

a) If (a,b)p = My(F), prove (a,b')r = (a,bb’)p. (For example, if p = 2 or p = 1 mod 4, then we
already know (p, —1)q = M2(Q), so (p,7)q = (p, —7)q for any r € Q*.) Is the converse true?

b) By part a, (2,3)q = (2, —3)q. Show (—2,3)q = M3(Q) and (—2,-3)q = H(Q).

4. (Quadratic Dickson’s lemma in action)

a) The quadratic Dickson’s lemma tells us that in H, j = gig~! and —i = gig—! for some ¢ and
¢ in H*. Make this explicit (i.e., find a ¢ and q) by working through the proof of Dickson’s lemma
in these examples. In H(Q), (i + 2j + 2k)/3 is a root of T? + 1, so it also must be conjugate to i.
Make this conjugation explicit.

b) In H(Q), ¢ =1/2+i/6 + j/6 + 5k/6 has trace 1 and norm 1. So does ¢' = (1 +i+j + k)/2.
That makes them both roots of 72 — T + 1. Use the proof of the quadratic Dickson’s lemma to
exhibit a conjugation between them.
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5. Show the quadratic Dickson’s lemma is true in My (F'), where F' has any characteristic. That
is, if f(T) € F[T)] is a quadratic irreducible polynomial and x,y € My (F) are roots, then y = grq~!
for some invertible ¢ in My(F).

6. (A special case of the quadratic Dickson’s lemma via linear algebra) Let D be a finite-
dimensional division ring over its center F', with dimgp D > 1. Suppose x € D — F is a root of
the quadratic polynomial T2 + ¢;T + ¢y € F[T]. Another root is y = —x — ¢;. Prove x and —x — ¢;
are conjugate by considering the function L: D — D given by L(d) = dx —yd. Show L(d) commutes
with z for every d € D, so L can’t be onto (D is non-commutative). Use linear algebra to explain
why L(d) = 0 for some non-zero d.

7. Let B be a quaternion algebra over a field F' and let f: B — B be an F-algebra homomorphism.

Then f(q) = f(q) for every ¢ € B. (Hint: Reduce to the case of pure quaternions ¢ and show
f(BY) c BY)

8. (Characterizing quaternionic conjugation) Let R be a ring, possibly noncommutative. An

involution on R is a map a — a* which satisfies the properties

o (a+b)* =a*+ b,

o (ab)* =b*a*,

° a** =aq,
for all a,b € R, where a** means (a*)*. Examples of involutions are conjugation on quadratic fields,
transposition on matrices, and quaternionic conjugation on (a,b)r (when char F' # 2). Prove the
following properties of involutions.
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a) 1* =

b) (aar)® = a

¢) a € R* <= a* € R, in which case (a*)~! = (a71)*.
d) When R is non- commutatlve a* # a for some a € R.

e) a is in the center of R if and only if a* is in the center of R.

f) Let B be a quaternion algebra over F', where char F' # 2. Show quaternionic conjugation on B
is the unique involution on B which fixes F' pointwise and which satisfies q¢* € F for every q € B.

g) Can you find a mapping ¢ — ¢* on H which satisfies the first two properties of an involution
but not the third (that is, ¢** # ¢ for some ¢)?

9. On the previous set, the isomorphism (a,b)r = (a + b, —ab)r was obtained by an explicit
change of basis. As a different argument, show (a, —ab)r = (a + b, —ab)p using the theorem from
lecture which describes when two quaternion algebras with a “common slot” are isomorphic. (Then
the isomorphism (a,b)r = (a, —ab) r finishes the proof.)

10. (Normalizing quadratic fields). Let F' be a field of any characteristic and let K be a quadratic
extension field of the F: K = Fr] where r is the root of an irreducible quadratic polynomial in
F[T]. There can be many such representations of a quadratic extension, e.g., if « is a real root of
T? — 6T + 7 and 3 is a real root of T2 + 2T — 17, then Q[a] = Q[4] = Q[v/2]. In some sense, the
last representation, corresponding to the polynomial 72 — 2, is nicest. We want to obtain such nice
representations for most quadratic fields.

a) If char F' # 2 and K = F[r] is a quadratic extension field, show a quadratic polynomial in F[T)
with r as a root has non-zero discriminant and then show we can write K = F[s]|, where s is the
root of a quadratic with the “normal form” T2 — ¢ for some ¢ € F'*. (Hint: complete the square of
the polynomial with r as a root.)

b) If char F' = 2 and the quadratic polynomial with r as a root has non-zero discriminant, show
K = F[s] where s is the root of a quadratic with the “normal form” T2 + T + ¢ for some ¢ € F.
Also, show it is impossible to write this field K in the form F[s’] where s’ is the root of a quadratic
with the form T2 — ¢ for some ¢ € F*. (Hint: if it is possible, prove o € F for every a € K, and
get a contradiction from that.)

¢) (a pathological quadratic extension) Let F' = Fa(z) and f(T) = T? — 2. Show f(T) is an
irreducible in F[T] with discriminant 0. Setting K = F[r] where f(r) = 0, show o? € F for every
ac K.

11. For a € F*, show (a,a)r 2 (—1,a)p. Also, if a,b € F* satisfy a +b = ¢? for some ¢ € F,
show (a,b) = Ma(F).
12. Show —1 is not a sum of two squares in the field Q[v/—7], so H(Q[v/—7]) is a division ring,.

Is H(Q[v/~2]) a division ring? What about H(Q[v/—3])?

13. For A € My(F), show A? is a scalar matrix if and only if A is a scalar matrix or A has trace 0.
Then determine if the analogous statement is true in any quaternion algebra (a,b)r. (When F = R,
you looked at this in exercise 16¢ on set 1.)

14. If you know quadratic reciprocity for F[t], where F is a finite field with odd characteristic,
then prove for f € F(¢)* that

(f.9)r() = Ma(F(1)) for all g # 0 <= f € F(1)*”

This is an analogue of the last exercise on the previous set.



