
QUATERNION ALGEBRAS: SET 3

KEITH CONRAD

Unless stated otherwise, F is a field with characteristic not 2.

1. We know that (2, 3)Q and (3, 11)Q are division rings.
a) Prove they are isomorphic. (Can you find a specific q ∈ (2, 3)0Q which squares to 11?)
b) Prove that for any non-zero integers a, b such that (2, 3)Q ∼= (a, b)Q, at least one of a and b is

a multiple of 3.
c) Find a quaternion division algebra (3, ∗)Q which is not isomorphic to (2, 3)Q.

2. Show H(Q) ∼= (−5,−29)Q. Is H(Q) ∼= (−2,−5)Q?

3. Let a, b, b′ ∈ F×.
a) If (a, b)F

∼= M2(F ), prove (a, b′)F
∼= (a, bb′)F . (For example, if p = 2 or p ≡ 1 mod 4, then we

already know (p,−1)Q ∼= M2(Q), so (p, r)Q ∼= (p,−r)Q for any r ∈ Q×.) Is the converse true?
b) By part a, (2, 3)Q ∼= (2,−3)Q. Show (−2, 3)Q ∼= M2(Q) and (−2,−3)Q ∼= H(Q).

4. (Quadratic Dickson’s lemma in action)
a) The quadratic Dickson’s lemma tells us that in H, j = qiq−1 and −i = q̃iq̃−1 for some q and

q̃ in H×. Make this explicit (i.e., find a q and q̃) by working through the proof of Dickson’s lemma
in these examples. In H(Q), (i + 2j + 2k)/3 is a root of T 2 + 1, so it also must be conjugate to i.
Make this conjugation explicit.

b) In H(Q), q = 1/2 + i/6 + j/6 + 5k/6 has trace 1 and norm 1. So does q′ = (1 + i + j + k)/2.
That makes them both roots of T 2 − T + 1. Use the proof of the quadratic Dickson’s lemma to
exhibit a conjugation between them.

5. Show the quadratic Dickson’s lemma is true in M2(F ), where F has any characteristic. That
is, if f(T ) ∈ F [T ] is a quadratic irreducible polynomial and x, y ∈ M2(F ) are roots, then y = qxq−1

for some invertible q in M2(F ).

6. (A special case of the quadratic Dickson’s lemma via linear algebra) Let D be a finite-
dimensional division ring over its center F , with dimF D > 1. Suppose x ∈ D − F is a root of
the quadratic polynomial T 2 + c1T + c0 ∈ F [T ]. Another root is y = −x− c1. Prove x and −x− c1

are conjugate by considering the function L : D → D given by L(d) = dx−yd. Show L(d) commutes
with x for every d ∈ D, so L can’t be onto (D is non-commutative). Use linear algebra to explain
why L(d) = 0 for some non-zero d.

7. Let B be a quaternion algebra over a field F and let f : B → B be an F -algebra homomorphism.
Then f(q) = f(q) for every q ∈ B. (Hint: Reduce to the case of pure quaternions q and show
f(B0) ⊂ B0.)

8. (Characterizing quaternionic conjugation) Let R be a ring, possibly noncommutative. An
involution on R is a map a 7→ a∗ which satisfies the properties

• (a + b)∗ = a∗ + b∗,
• (ab)∗ = b∗a∗,
• a∗∗ = a,

for all a, b ∈ R, where a∗∗ means (a∗)∗. Examples of involutions are conjugation on quadratic fields,
transposition on matrices, and quaternionic conjugation on (a, b)F (when charF 6= 2). Prove the
following properties of involutions.
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a) 1∗ = 1.
b) (aa∗)∗ = aa∗.
c) a ∈ R× ⇐⇒ a∗ ∈ R×, in which case (a∗)−1 = (a−1)∗.
d) When R is non-commutative, a∗ 6= a for some a ∈ R.
e) a is in the center of R if and only if a∗ is in the center of R.
f) Let B be a quaternion algebra over F , where char F 6= 2. Show quaternionic conjugation on B

is the unique involution on B which fixes F pointwise and which satisfies qq∗ ∈ F for every q ∈ B.
g) Can you find a mapping q 7→ q∗ on H which satisfies the first two properties of an involution

but not the third (that is, q∗∗ 6= q for some q)?

9. On the previous set, the isomorphism (a, b)F
∼= (a + b,−ab)F was obtained by an explicit

change of basis. As a different argument, show (a,−ab)F
∼= (a + b,−ab)F using the theorem from

lecture which describes when two quaternion algebras with a “common slot” are isomorphic. (Then
the isomorphism (a, b)F

∼= (a,−ab)F finishes the proof.)

10. (Normalizing quadratic fields). Let F be a field of any characteristic and let K be a quadratic
extension field of the F : K = F [r] where r is the root of an irreducible quadratic polynomial in
F [T ]. There can be many such representations of a quadratic extension, e.g., if α is a real root of
T 2 − 6T + 7 and β is a real root of T 2 + 2T − 17, then Q[α] = Q[β] = Q[

√
2]. In some sense, the

last representation, corresponding to the polynomial T 2 − 2, is nicest. We want to obtain such nice
representations for most quadratic fields.

a) If charF 6= 2 and K = F [r] is a quadratic extension field, show a quadratic polynomial in F [T ]
with r as a root has non-zero discriminant and then show we can write K = F [s], where s is the
root of a quadratic with the “normal form” T 2 − c for some c ∈ F×. (Hint: complete the square of
the polynomial with r as a root.)

b) If charF = 2 and the quadratic polynomial with r as a root has non-zero discriminant, show
K = F [s] where s is the root of a quadratic with the “normal form” T 2 + T + c for some c ∈ F .
Also, show it is impossible to write this field K in the form F [s′] where s′ is the root of a quadratic
with the form T 2 − c for some c ∈ F×. (Hint: if it is possible, prove α2 ∈ F for every α ∈ K, and
get a contradiction from that.)

c) (a pathological quadratic extension) Let F = F2(x) and f(T ) = T 2 − x. Show f(T ) is an
irreducible in F [T ] with discriminant 0. Setting K = F [r] where f(r) = 0, show α2 ∈ F for every
α ∈ K.

11. For a ∈ F×, show (a, a)F
∼= (−1, a)F . Also, if a, b ∈ F× satisfy a + b = c2 for some c ∈ F ,

show (a, b) ∼= M2(F ).

12. Show −1 is not a sum of two squares in the field Q[
√
−7], so H(Q[

√
−7]) is a division ring.

Is H(Q[
√
−2]) a division ring? What about H(Q[

√
−3])?

13. For A ∈ M2(F ), show A2 is a scalar matrix if and only if A is a scalar matrix or A has trace 0.
Then determine if the analogous statement is true in any quaternion algebra (a, b)F . (When F = R,
you looked at this in exercise 16c on set 1.)

14. If you know quadratic reciprocity for F[t], where F is a finite field with odd characteristic,
then prove for f ∈ F(t)× that

(f, g)F(t)
∼= M2(F(t)) for all g 6= 0⇐⇒ f ∈ F(t)×2

.

This is an analogue of the last exercise on the previous set.


