QUATERNION ALGEBRAS: SET 3

KEITH CONRAD

Unless stated otherwise, F is a field with characteristic not 2 .

1. We know that $(2,3)_{\mathbf{Q}}$ and $(3,11)_{\mathbf{Q}}$ are division rings.
a) Prove they are isomorphic. (Can you find a specific $q \in(2,3)_{\mathbf{Q}}^{0}$ which squares to 11 ?)
b) Prove that for any non-zero integers a, b such that $(2,3)_{\mathbf{Q}} \cong(a, b)_{\mathbf{Q}}$, at least one of a and b is a multiple of 3 .
c) Find a quaternion division algebra $(3, *)_{\mathbf{Q}}$ which is not isomorphic to $(2,3)_{\mathbf{Q}}$.
2. Show $\mathbf{H}(\mathbf{Q}) \cong(-5,-29)_{\mathbf{Q}}$. Is $\mathbf{H}(\mathbf{Q}) \cong(-2,-5)_{\mathbf{Q}}$.
3. Let $a, b, b^{\prime} \in F^{\times}$.
a) If $(a, b)_{F} \cong \mathrm{M}_{2}(F)$, prove $\left(a, b^{\prime}\right)_{F} \cong\left(a, b b^{\prime}\right)_{F}$. (For example, if $p=2$ or $p \equiv 1 \bmod 4$, then we already know $(p,-1)_{\mathbf{Q}} \cong \mathrm{M}_{2}(\mathbf{Q})$, so $(p, r)_{\mathbf{Q}} \cong(p,-r)_{\mathbf{Q}}$ for any $r \in \mathbf{Q}^{\times}$.) Is the converse true?
b) By part a, $(2,3)_{\mathbf{Q}} \cong(2,-3)_{\mathbf{Q}}$. Show $(-2,3)_{\mathbf{Q}} \cong \mathrm{M}_{2}(\mathbf{Q})$ and $(-2,-3)_{\mathbf{Q}} \cong \mathbf{H}(\mathbf{Q})$.
4. (Quadratic Dickson's lemma in action)
a) The quadratic Dickson's lemma tells us that in $\mathbf{H}, j=q i q^{-1}$ and $-i=\widetilde{q} \widetilde{q}^{-1}$ for some q and \widetilde{q} in \mathbf{H}^{\times}. Make this explicit (i.e., find a q and \widetilde{q}) by working through the proof of Dickson's lemma in these examples. In $\mathbf{H}(\mathbf{Q}),(i+2 j+2 k) / 3$ is a root of $T^{2}+1$, so it also must be conjugate to i. Make this conjugation explicit.
b) In $\mathbf{H}(\mathbf{Q}), q=1 / 2+i / 6+j / 6+5 k / 6$ has trace 1 and norm 1 . So does $q^{\prime}=(1+i+j+k) / 2$. That makes them both roots of $T^{2}-T+1$. Use the proof of the quadratic Dickson's lemma to exhibit a conjugation between them.
5. Show the quadratic Dickson's lemma is true in $\mathrm{M}_{2}(F)$, where F has any characteristic. That is, if $f(T) \in F[T]$ is a quadratic irreducible polynomial and $x, y \in \mathrm{M}_{2}(F)$ are roots, then $y=q x q^{-1}$ for some invertible q in $\mathrm{M}_{2}(F)$.
6. (A special case of the quadratic Dickson's lemma via linear algebra) Let D be a finitedimensional division ring over its center F, with $\operatorname{dim}_{F} D>1$. Suppose $x \in D-F$ is a root of the quadratic polynomial $T^{2}+c_{1} T+c_{0} \in F[T]$. Another root is $y=-x-c_{1}$. Prove x and $-x-c_{1}$ are conjugate by considering the function $L: D \rightarrow D$ given by $L(d)=d x-y d$. Show $L(d)$ commutes with x for every $d \in D$, so L can't be onto (D is non-commutative). Use linear algebra to explain why $L(d)=0$ for some non-zero d.
7. Let B be a quaternion algebra over a field F and let $f: B \rightarrow B$ be an F-algebra homomorphism. Then $\overline{f(q)}=f(\bar{q})$ for every $q \in B$. (Hint: Reduce to the case of pure quaternions q and show $f\left(B^{0}\right) \subset B^{0}$.)
8. (Characterizing quaternionic conjugation) Let R be a ring, possibly noncommutative. An involution on R is a map $a \mapsto a^{*}$ which satisfies the properties

- $(a+b)^{*}=a^{*}+b^{*}$,
- $(a b)^{*}=b^{*} a^{*}$,
- $a^{* *}=a$,
for all $a, b \in R$, where $a^{* *}$ means $\left(a^{*}\right)^{*}$. Examples of involutions are conjugation on quadratic fields, transposition on matrices, and quaternionic conjugation on $(a, b)_{F}$ (when char $F \neq 2$). Prove the following properties of involutions.
a) $1^{*}=1$.
b) $\left(a a^{*}\right)^{*}=a a^{*}$.
c) $a \in R^{\times} \Longleftrightarrow a^{*} \in R^{\times}$, in which case $\left(a^{*}\right)^{-1}=\left(a^{-1}\right)^{*}$.
d) When R is non-commutative, $a^{*} \neq a$ for some $a \in R$.
e) a is in the center of R if and only if a^{*} is in the center of R.
f) Let B be a quaternion algebra over F, where char $F \neq 2$. Show quaternionic conjugation on B is the unique involution on B which fixes F pointwise and which satisfies $q q^{*} \in F$ for every $q \in B$.
g) Can you find a mapping $q \mapsto q^{*}$ on \mathbf{H} which satisfies the first two properties of an involution but not the third (that is, $q^{* *} \neq q$ for some q)?

9. On the previous set, the isomorphism $(a, b)_{F} \cong(a+b,-a b)_{F}$ was obtained by an explicit change of basis. As a different argument, show $(a,-a b)_{F} \cong(a+b,-a b)_{F}$ using the theorem from lecture which describes when two quaternion algebras with a "common slot" are isomorphic. (Then the isomorphism $(a, b)_{F} \cong(a,-a b)_{F}$ finishes the proof.)
10. (Normalizing quadratic fields). Let F be a field of any characteristic and let K be a quadratic extension field of the $F: K=F[r]$ where r is the root of an irreducible quadratic polynomial in $F[T]$. There can be many such representations of a quadratic extension, e.g., if α is a real root of $T^{2}-6 T+7$ and β is a real root of $T^{2}+2 T-17$, then $\mathbf{Q}[\alpha]=\mathbf{Q}[\beta]=\mathbf{Q}[\sqrt{2}]$. In some sense, the last representation, corresponding to the polynomial $T^{2}-2$, is nicest. We want to obtain such nice representations for most quadratic fields.
a) If char $F \neq 2$ and $K=F[r]$ is a quadratic extension field, show a quadratic polynomial in $F[T]$ with r as a root has non-zero discriminant and then show we can write $K=F[s]$, where s is the root of a quadratic with the "normal form" $T^{2}-c$ for some $c \in F^{\times}$. (Hint: complete the square of the polynomial with r as a root.)
b) If char $F=2$ and the quadratic polynomial with r as a root has non-zero discriminant, show $K=F[s]$ where s is the root of a quadratic with the "normal form" $T^{2}+T+c$ for some $c \in F$. Also, show it is impossible to write this field K in the form $F\left[s^{\prime}\right]$ where s^{\prime} is the root of a quadratic with the form $T^{2}-c$ for some $c \in F^{\times}$. (Hint: if it is possible, prove $\alpha^{2} \in F$ for every $\alpha \in K$, and get a contradiction from that.)
c) (a pathological quadratic extension) Let $F=\mathbf{F}_{2}(x)$ and $f(T)=T^{2}-x$. Show $f(T)$ is an irreducible in $F[T]$ with discriminant 0 . Setting $K=F[r]$ where $f(r)=0$, show $\alpha^{2} \in F$ for every $\alpha \in K$.
11. For $a \in F^{\times}$, show $(a, a)_{F} \cong(-1, a)_{F}$. Also, if $a, b \in F^{\times}$satisfy $a+b=c^{2}$ for some $c \in F$, show $(a, b) \cong \mathrm{M}_{2}(F)$.
12. Show -1 is not a sum of two squares in the field $\mathbf{Q}[\sqrt{-7}]$, so $\mathbf{H}(\mathbf{Q}[\sqrt{-7}])$ is a division ring. Is $\mathbf{H}(\mathbf{Q}[\sqrt{-2}])$ a division ring? What about $\mathbf{H}(\mathbf{Q}[\sqrt{-3}])$?
13. For $A \in \mathrm{M}_{2}(F)$, show A^{2} is a scalar matrix if and only if A is a scalar matrix or A has trace 0 . Then determine if the analogous statement is true in any quaternion algebra $(a, b)_{F}$. (When $F=\mathbf{R}$, you looked at this in exercise 16c on set 1.)
14. If you know quadratic reciprocity for $\mathbf{F}[t]$, where \mathbf{F} is a finite field with odd characteristic, then prove for $f \in \mathbf{F}(t)^{\times}$that

$$
(f, g)_{\mathbf{F}(t)} \cong \mathrm{M}_{2}(\mathbf{F}(t)) \text { for all } g \neq 0 \Longleftrightarrow f \in \mathbf{F}(t)^{\times^{2}}
$$

This is an analogue of the last exercise on the previous set.

