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CHAPTER 1

Number Fields

1. Example : Quadratic number fields

Before we consider number fields in general, let us begin with the fairly concrete
case of quadratic number fields. A quadratic number field is an extension K of Q
of degree 2. The fundamental examples (in fact, as we shall see in a moment the
only example) are fields of the form

Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

where d ∈ Q is not the square of another rational number.
There is an issue that arises as soon as we write down these fields, and it is

important that we deal with it immediately: what exactly do we mean by
√
d?

There are several possible answers to this question. The most obvious is that by√
d we mean a specific choice of a complex square root of d. Q(

√
d) is then defined

as a subfield of the complex numbers. The difficulty with this is that the notation
“
√
d” is ambiguous; d has two complex square roots, and there is no algebraic way

to tell them apart.
Algebraists have a standard way to avoid this sort of ambiguity; we can simply

define

Q(
√
d) = Q[x]/(x2 − d).

There is no ambiguity with this notation;
√
d really means x, and x behaves as a

formal algebraic object with the property that x2 = d.
This second definition is somehow the algebraically correct one, as there is no

ambiguity and it allows Q(
√
d) to exist completely independently of the complex

numbers. However, it is far easier to think about Q(
√
d) as a subfield of the complex

numbers. The ability to think of Q(
√
d) as a subfield of the complex numbers also

becomes important when one wishes to compare fields Q(
√
d1) and Q(

√
d2) for

two different numbers d1 and d2; the abstract algebraic fields Q[x]/(x2 − d1) and
Q[y]/(y2−d2) have no natural relation to each other, while these same fields viewed
as subfields of C can be compared more easily.

The best approach, then, seems to be to pretend to follow the formal algebraic
option, but to actually view everything as subfields of the complex numbers. We
can do this through the notion of a complex embedding; this is simply an injection

σ : Q[x]/(x2 − d) ↪→ C.

As we have already observed, there are exactly two such maps, one for each complex
square root of d.

Before we continue we really ought to decide which complex number we mean
by
√
d. There is unfortunately no consistent way to do this, in the sense that we

5



6 1. NUMBER FIELDS

can not arrange to have √
d1

√
d2 =

√
d1d2

for all d1, d2 ∈ Q. In order to be concrete, let us choose
√
d to be the positive

square root of d for all d > 0 and
√
d to be the positive square root of −d times i

for all d < 0. (There is no real reason to prefer these choices, but since it doesn’t
really matter anyway we might as well fix ideas.)

With this choice, our two complex embeddings are simply

σ1 : Q[x]/(x2 − d) ↪→ C

σ2 : Q[x]/(x2 − d) ↪→ C

defined by
σ1(a+ bx) = a+ b

√
d;

σ2(a+ bx) = a− b
√
d.

Given any a+ bx ∈ Q[x]/(x2− d), we define its conjugates to be the images σ1(a+
bx) = a+ b

√
d and σ2(a+ bx) = a− b

√
d.

Note that these maps have the same image. This gives us yet another way to
view the ambiguity: we can take Q(

√
d) to be the subfield {a+ b

√
d | a, b ∈ Q} of

C, and we remember that Q(
√
d) has an automorphism

a+ b
√
d 7→ a− b

√
d.

This is the approach we will take; that is, we will regard Q(
√
d) as a subfield of

C via our choice of
√
d, but we always remember that

√
d is ambiguous, and thus

that we have an automorphism of this field exchanging
√
d and −

√
d. From this

point of view, the conjugates of an element a+ b
√
d are a+ b

√
d and a− b

√
d.

Let us now analyze these fields K = Q(
√
d). Note first that every α ∈ K has

degree either 1 or 2 over Q, and it has degree 1 if and only if it is actually in Q. In
particular, if α /∈ Q then we must have K = Q(α).

Let us now compute the norms and traces from K to Q. We take 1,
√
d as our

basis for K over Q. Multiplication by α = a + b
√
d takes 1 to a + b

√
d and

√
d to

bd+ a
√
d, so the matrix for the linear transformation mα is[

a bd
b a

]
.

The characteristic polynomial of this matrix is

x2 − 2ax+ (a2 − bd2).

Thus
NK/Q(α) = a2 − bd2

and
TrK/Q(α) = 2a.

Note also that we have

NK/Q(α) = (a+ b
√
d)(a− b

√
d)

and
TrK/Q(α) = (a+ b

√
d) + (a− b

√
d).

That is, the norm of α is the product of its conjugates and the trace of α is the
sum of its conjugates. This follows immediately from the fact that the conjugates
of α are the two roots of the characteristic polynomial of α.
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It turns out that every quadratic field is of the form Q(
√
d) for some d ∈ Q.

In fact, in the case of quadratic fields it is actually possible to give a complete
classification, as described in the following theorem.

Theorem 1.1. Let K be a number field of degree 2. Then K is isomorphic to
Q(
√
d) for a unique squarefree integer d 6= 1.

Proof. First we will show that every extension of Q of degree 2 is isomorphic
to one of the desired form. So let K/Q have degree 2 and choose a primitive element
α for K, with minimal polynomial

f(x) = x2 + ax+ b,

a, b ∈ Q. By the quadratic formula we have

α =
−a±

√
a2 − 4b

2
;

put differently, (
2α+ a

)2 = a2 − 4b.

Thus K contains an element β = 2α + a of square a2 − 4b ∈ Q. Note also that
a2− 4b is not a square in Q, for otherwise f(x) would not be irreducible. It follows
that β has degree 2 and thus is a primitive element for K. a2 − 4b may not be a
squarefree integer, but one sees easily from unique factorization in Z that we can
find some rational number c such that c2(a2 − 4b) is a squarefree integer. cβ still
generates K over Q, and it is now in the form we considered above. This shows
that every extension of Q of degree 2 can be generated by the square root of a
squarefree integer.

We now show that no two fields Q(
√
d) with d a squarefree integer (other than

1) are isomorphic. So let d1 and d2 be distinct squarefree integers and suppose that
there is an isomorphism

ϕ : Q(
√
d1)

∼=→ Q(
√
d2).

We will show that d1 = d2. Consider the element α = ϕ(
√
d1) ∈ Q(

√
d2). α has

minimal polynomial x2 − d1, so we read off that

NK2/Q(α) = −d1

and

TrK2/Q(α) = 0.

Writing α = a + b
√
d2, our formulas for the norm and trace imply that a = 0 and

b2d2 = d1. One now shows easily that the fact that d1 and d2 are squarefree integers
implies that b = 1 and d1 = d2, as claimed. �

This sort of analysis does not work for any degree other than 2; even the cubic
and quartic “formulas” are too complicated to use, and beyond that there aren’t
any formulas at all.
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2. Complex embeddings

A number field is a finite extension of the rational numbers Q. (This is not
quite the same as the definitions given in [10] and [14], but it seems to be the most
common definition.) We define the degree of a number field K to be the positive
integer [K : Q]. The fundamental examples are fields of the form

Q[x]/(f(x))

where f(x) ∈ Q[x] is an irreducible polynomial. In fact, Proposition A.2.3 shows
that every number field K is isomorphic to one of this form: simply choose a
primitive element α ∈ K with minimal polynomial f(x) ∈ Q[x]. Then K = Q(α)
and Lemma A.2.1 shows that K is isomorphic to Q[x]/(f(x)).

Let K and K ′ be number fields and suppose that there is a homomorphism

ϕ : K → K ′.

Then ϕ is automatically Q-linear: this is because it must send 1 to 1; it follows
from the fact that it is an additive homomorphism that it must be the identity on
all of Z, and it follows from the fact that it is a multiplicative homomorphism that
it must be the identity on all of Q.

We now investigate complex embeddings of arbitrary number fields. That is,
for a number field K we wish to determine all of the possible injections K ↪→ C.
Recall that in the quadratic case we did this by exhibiting complex square roots.
We will use the same method in the general case, although of course the polynomials
of interest will now have larger degree.

Fix a number field K of degree n and choose a primitive element α ∈ K with
minimal polynomial f(x) ∈ Q[x]. Since C is algebraically closed, f(x) splits into n
linear factors over C; since f(x) is irreducible over Q, these linear factors must be
distinct (see Problem 1.12), and thus f(x) has n distinct roots α1, . . . , αn ∈ C.

For each root αi we define a (necessarily Q-linear) map

σi : K
∼=−→ Q(αi) ⊆ C

sending α to αi; that is,

σi
(
a0 + a1α+ a2α

2 + · · ·+ an−1α
n−1
)

= a0 + a1αi + a2α
2
i + · · ·+ an−1α

n−1
i

where the ai are all in Q. This map is well-defined since αi satisfies f(x), it is
injective since all non-zero maps of fields are injective, and it is surjective since αi
generates Q(αi) over Q.

We have now embedded K as a subfield of C in n distinct ways. (Note that we
mean that the maps are distinct; the images of the embeddings could still be the
same.) We claim that the σi are the only embeddings of K into C. To see this, let
σ : K ↪→ C be any such map. Then σ(α) must have the same minimal polynomial
f(x) over Q as α; thus σ(α) must be one of the complex roots of f(x), which are
precisely the αi. Therefore σ(α) = αi for some i, and since α generates K over Q,
this implies that σ = σi. This proves the claim.

In particular, this implies that the embeddings σi are independent of the choice
of primitive element α, since any other choice would yield n embeddings of K into
C which by the above argument must be the same as the σi. Combining all of this,
we see that there are exactly n distinct embeddings of K into C. We state this as
a proposition.
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Proposition 2.1. Let K be a number field of degree n. Then K has exactly n
distinct complex embeddings.

Example 2.2. Consider the number field Q[x]/(x3 − 2). This has degree 3
over Q, so there should be three complex embeddings. These are determined by
the three roots of x3 − 2 in C. If we let α be the real cube root of 2 and let ζ be
a third root of unity in C, then these roots are α, ζα and ζ2α. The three complex
embeddings are then the three maps

Q[x]/(x3 − 2)→ C

sending x to α, ζα and ζ2α respectively. Note that in contrast to the case of
Q[x]/(x2 − 2) these maps have different images; for example, the first map has
image inside of R, while the other two do not.

Let α be an arbitrary element of K with minimal polynomial f(x) ∈ Q[x] of
degree d. We define the conjugates of α to be the d complex roots of f(x); that
is, they are simply the complex numbers which behave exactly the same as α does
algebraically. Alternately, if τ1, . . . , τd are the d complex embeddings of the subfield
Q(α) of K (which is a number field since K is), the conjugates are precisely

τ1(α), . . . , τd(α),

as is clear from the above discussion. In particular, if α is a primitive element for
K, then its conjugates are the n complex numbers

σ1(α), . . . , σn(α).

As with the quadratic case we would like to be able to think of number fields as
specific subfields of the complex numbers. As we have just seen, we can do this in
n different ways, where n is the degree of the number field K. In general, however,
these embeddings have different images. Thus, although it is often useful to think
of K in terms of these complex images, there is no single field that one can point
to and say is the best choice for a complex version of K. We will always attempt to
be careful about this point. For example, when we write Q( 3

√
2), we do not mean

to single out any of the three complex versions of it; if we wish to do so, we will
make it explicit.

This sets up a slightly strange situation: whenever we say “let K be a number
field”, we want to regard K independent of any complex embedding of K. On the
other hand, our examples will usually involve specific subfields of C in order to
fix ideas. In particular, keep in mind that a subfield of C can still have complex
embeddings, just like any number field.

The one case where one can safely identify a number field with the images of
its complex embeddings are when all of these complex embeddings are the same.
In this case we will say that K is Galois (over Q). We will return to the theory of
Galois extensions later.

3. Example : Cyclotomic fields

3.1. Cyclotomic polynomials. Before we define cyclotomic fields abstractly,
let us work with subfields of the complex numbers. Recall that a complex number
ζ is an mth root of unity if ζm = 1; it is a primitive mth root of unity if m is the
smallest positive integer which works. The complex mth roots of unity are precisely
the numbers

e2πik/m
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for k = 0, 1, . . . ,m− 1, and the primitive mth roots of unity are those for which k
and m are relatively prime. In particular, there are m complex mth roots of unity
and ϕ(m) complex primitive mth roots of unity, where ϕ(m) is the Euler ϕ-function.
(See Appendix B.)

Let ζm be a fixed complex primitive mth root of unity. ζm is a root of xm − 1,
but for m > 1 this can not be its minimal polynomial, as it is not irreducible. We
wish to determine the minimal polynomial f(x) ∈ Q[x] of ζm; we will do this by
determining the complex roots of f(x).

Proposition 3.1. If p is a prime not dividing m, then ζpm is a root of f(x).

Proof. f(x) divides xm − 1 in Q[x]; thus we can write

xm − 1 = f(x)g(x)

for some monic g(x) ∈ Q[x], and by Exercise 1.4 we actually have f(x), g(x) ∈ Z[x].
Since ζpm is a root of xm − 1, to show that it is a root of f(x) it will suffice to show
that it is not a root of g(x).

So suppose that g(ζpm) = 0. Let h(x) ∈ Z[x] be the monic polynomial g(xp).
Then h(ζm) = 0, so f(x) divides h(x) inQ[x]. Writing h(x) = f(x)q(x), Exercise 1.4
again shows that q(x) is actually in Z[x].

We now work modulo p. For any polynomial s(x) ∈ Z[x], we denote by s̄(x) its
image in Fp[x] after reducing the coefficients modulo p. We have h̄(x) = f̄(x)q̄(x);
also,

h̄(x) = ḡ(xp) = ḡ(x)p

by Exercise 1.15. Thus f̄(x) divides ḡ(x)p in Fp[x]. Since Fp[x] is a unique fac-
torization domain, this implies that f̄(x) and ḡ(x) have a monic common factor of
positive degree, say r̄(x).

We have f̄(x)ḡ(x) = xm − 1 ∈ Fp[x], so r̄(x)2 divides xm − 1 in Fp[x]. By
Exercise 1.11, this implies that r̄(x) divides mxm−1. Since p does not divide m (this
is the only place where we use that hypothesis), mxm−1 is a non-zero monomial,
so r̄(x) must also be a non-zero monomial. But r̄(x) also divides xm − 1; the only
monic monomial with this property is 1, so r̄(x) = 1. This contradicts the fact that
r̄(x) has positive degree, so the initial assumption that g(ζpm) = 0 must be false.
Thus f(ζpm) = 0, which completes the proof. �

Corollary 3.2. The conjugates of ζm are precisely the other primitive mth

roots of unity.

Proof. As before let f(x) be the minimal polynomial of ζm. Let ζkm be any
other primitive mth root of unity. Then k is relatively prime to m, so it is divisible
only by primes not dividing m. Write k = p1p2 · · · pn, with the pi not necessarily
distinct. Then Proposition 3.1 shows that ζp1

m is a root of f(x). In particular, f(x)
is also the minimal polynomial of ζp1

m . Applying Proposition 3.1 with respect to
the primitive mth root of unity ζp1

m shows that ζp1p2
m is also a root of f(x), and

continuing in this way we see that ζkm is a root of f(x). Thus all primitive mth

roots of unity are roots of f(x), and therefore conjugates of ζm.
To complete the proof we must show that ζm has no other conjugates. But if

α is any other conjugate of ζm, then there is an isomorphism of Q(ζm) and Q(α)
sending ζm to α; it follows that α must also be a primitive mth root of unity, as
claimed. �
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We now define the mth cyclotomic polynomial Φm(x) ∈ Z[x] to be the minimal
polynomial of the complex primitive mth roots of unity. Since it is a minimal
polynomial Φm(x) is irreducible, and our above arguments show that it has degree
ϕ(m).

Since we have now shown that all primitive mth roots of unity are essentially
“the same” from the point of view of algebraic number theory, we might as well fix
specific complex values for each ζm. Let us take

ζm = e2πi/m ∈ C

for all m. These roots of unity have the nice property that

ζn/mn = ζm

whenever m divides n. (While it may appear to be true even if m doesn’t divide
n, one then has all sorts of multiple-valued function stuff to worry about.) More
generally, any choice of ζm with this compatibility would be fine, but we will stick
with these for concreteness.

Corollary 3.2 gives the expression

Φm(x) =
∏

1≤k<m
(k,m)=1

(x− ζkm).

However, this formula is not very useful for actually computing the Φm(x) by hand.
For this we have the following result, which gives an expression for Φm(x) entirely
in terms of integer arithmetic.

Proposition 3.3. We have

xm − 1 =
∏
d|m

Φd(x)

and

Φm(x) =
∏
d|m

(xd − 1)µ(m/d)

where µ is the Mobius function.

Proof. The first equality is clear since each side has exactly the same complex
roots; namely, each mth root of unity is a root of exactly one of the Φd(x) with
d dividing m. The second equality comes from Mobius inversion of the first. See
Example B.2.5. �

Using this formula we see immediately that for any prime p,

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + +xp−3 · · ·+ x+ 1.
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The first few cyclotomic polynomials are

Φ1(x) = x− 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

Φ8(x) = x4 + 1

Φ9(x) = x6 + x3 + 1

Φ10(x) = x4 − x3 + x2 − x+ 1

Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Φ12(x) = x4 − x2 + 1

There are many patterns which can be found among the cyclotomic polynomials;
we leave these to the reader. (We will at least point out that it is not true that
every Φm has only coefficients ±1 and 0, although Φ105 is the first which violates
this.)

3.2. Abstract cyclotomic fields. We define the mth cyclotomic field to be
the field

Q[x]/(Φm(x))
where Φm(x) is the mth cyclotomic polynomial. Q[x]/(Φm(x)) has degree ϕ(m)
over Q since Φm(x) has degree ϕ(m). The roots of Φm(x) are just the primitive
mth roots of unity, so the complex embeddings of Q[x]/(Φm(x)) are simply the
ϕ(m) maps

σk : Q[x]/(Φm(x)) ↪→ C,

1 ≤ k < m, (k,m) = 1, where
σk(x) = ζkm,

ζm being our fixed choice of primitive mth root of unity. Note that ζkm ∈ Q(ζm)
for every k; it follows that Q(ζm) = Q(ζkm) for all k relatively prime to m. In
particular, the images of the σi coincide, so Q[x]/(Φm(x)) is Galois over Q. This
means that we can write Q(ζm) for Q[x]/(Φm(x)) without much fear of ambiguity;
we will do so from now on, the identification being ζm 7→ x. One advantage of this
is that one can easily talk about cyclotomic fields being extensions of one another,
or intersections or compositums; all of these things take place considering them as
subfields of C.

We now investigate some basic properties of cyclotomic fields. The first issue
is whether or not they are all distinct; to determine this, we need to know which
roots of unity lie in Q(ζm). Note, for example, that if m is odd, then −ζm is a 2mth

root of unity. We will show that this is the only way in which one can obtain any
non-mth roots of unity.
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Lemma 3.4. If m divides n, then Q(ζm) is contained in Q(ζn).

Proof. Since ζn/mn = ζm, we have ζm ∈ Q(ζn), so the result is clear. �

Lemma 3.5. If m and n are relatively prime, then

Q(ζm, ζn) = Q(ζmn)

and
Q(ζm) ∩Q(ζn) = Q.

(Recall that Q(ζm, ζn) is the compositum of Q(ζm) and Q(ζn).)

Proof. One checks easily that ζmζn is a primitive mnth root of unity, so that
Q(ζmn) ⊆ Q(ζm, ζn). Furthermore, by Lemma A.3.3,

[Q(ζm, ζn) : Q] ≤ [Q(ζm) : Q][Q(ζn) : Q] = ϕ(m)ϕ(n) = ϕ(mn);

since [Q(ζmn) : Q] = ϕ(mn), this implies that

Q(ζm, ζn) = Q(ζmn).

We now have a field diagram

Q(ζm, ζn)

ppppppppppp

NNNNNNNNNNN

Q(ζm)

NNNNNNNNNNN

ϕ(m)

>>>>>>>>>>>>>>>>>>
Q(ζn)

ppppppppppp

ϕ(n)

������������������

Q(ζm) ∩Q(ζn)

Q

We know that Q(ζm, ζn) has degree ϕ(mn) over Q, so we must have

[Q(ζm, ζn) : Q(ζm)] = ϕ(n)

and
[Q(ζm, ζn) : Q(ζn)] = ϕ(m).

Now Lemma A.3.3 shows that

[Q(ζm) : Q(ζm) ∩Q(ζn)] ≥ ϕ(m)

and thus that Q(ζm) ∩Q(ζn) = Q. �

Proposition 3.6. For any m and n,

Q(ζm, ζn) = Q(ζ[m,n])

and
Q(ζm) ∩Q(ζn) = Q(ζ(m,n));

here [m,n] and (m,n) denote the least common multiple and the greatest common
divisor of m and n, respectively.
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Proof. Write m = pe11 · · · p
ek
k and n = pf1

1 · · · p
fk
k where the pi are distinct

primes. (We allow ei or fi to be zero.) By Lemma 3.5 we have

Q(ζm) = Q(ζpe11
)Q(ζpe22

) · · ·Q(ζpekk )

and
Q(ζn) = Q(ζ

p
f1
1

)Q(ζ
p
f2
2

) · · ·Q(ζ
p
fk
k

).

Thus

Q(ζm, ζn) = Q(ζpe11
) · · ·Q(ζpekk )Q(ζ

p
f1
1

) · · ·Q(ζ
p
fk
k

)

= Q(ζpe11
)Q(ζ

p
f1
1

) · · ·Q(ζpekk )Q(ζ
p
fk
k

)

= Q(ζ
p

max{e1,f1}
1

) · · ·Q(ζ
p

max{ek,fk}
k

)

= Q(ζ
p

max{e1,f1}
1 ···pmax{ek,fk}

k

)

= Q(ζ[m,n]);

the third equality uses Lemma 3.4, the fourth uses Lemma 3.5 and the last uses a
standard expression for least common multiples. An entirely similar computation
shows that Q(ζm) ∩Q(ζn) = Q(ζ(m,n)). �

Corollary 3.7. If m is even, then the only roots of unity in Q(ζm) are the
mth roots of unity. If m is odd, then the only roots of unity in Q(ζm) are the 2mth

roots of unity.

Proof. Suppose that ζn ∈ Q(ζm). Then ζmζn is a [m,n]th root of unity, so
Q(ζ[m,n]) ⊆ Q(ζm). Thus

ϕ([m,n]) ≤ ϕ(m).

One easily shows that this can happen only if m is odd and n divides 2m, or if m
is even and n divides m. This proves the corollary. �

Corollary 3.8. If m < n and Q(ζm) = Q(ζn), then m is odd and n = 2m.

4. Galois theory of number fields

Let K be a Galois extension of Q of degree n. Recall that this means that
if σ1, . . . , σn denote the complex embeddings of K, then the σi all have the same
image in C. Let us denote this image by K0 for the remainder of this section. We
wish to reinterpret the complex embeddings as automorphisms of K. To do this,
fix one embedding, say σ1 : K → K0. Consider the n maps

σ−1
1 ◦ σi : K → K.

These maps are all automorphisms of K (that is, isomorphisms from K to K) since
the σi are all isomorphisms from K to K0.

We claim that in fact these are all of the automorphisms of K. So suppose that
σ : K → K is any automorphism of K. Then σ1 ◦ σ : K → K0 ↪→ C is a complex
embedding of K, and thus equals one of the σi. Thus σ = σ−1

1 ◦ σi, as claimed.
In general, if M is any sort of object, then the set of automorphisms of M form

a group with composition as the group law; this is because the composition of two
automorphisms and the inverse of an automorphism are again automorphisms. We
define the Galois group Gal(K/Q) of K over Q to be the group of automorphisms
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of K; our above arguments show that as a set Gal(K/Q) is just the maps σ−1
1 ◦σi :

K → K. Note in particular that

(σ−1
1 ◦ σi) ◦ (σ−1

1 ◦ σj)
and

(σ−1
1 ◦ σi)−1 = σ−1

i ◦ σ1

are again of the form σ−1
1 ◦ σk for some k, although it is not at all clear which k it

is.
Note that Gal(K/Q) has order n; even if K is not Galois one could still consider

the automorphisms of K, but the above construction no longer works and it is
somewhat harder to determine how many automorphisms there are.

When one actually computes Galois groups, it is usually much simpler to con-
sider the fields as subfields of C. So let K be a Galois number field which is also
a subfield of C. The automorphisms of K are now simply its complex embeddings
σi : K → K ⊆ C. (With our earlier notation, we really are just considering the
case where σ1 is the identity map.) Note in particular that σi ◦σj and σ−1

i are also
complex embeddings of K, although it is not immediately clear which.

To determine which, let α be a primitive element for K over Q and let α1 =
α, α2, . . . , αn be its conjugates, so that the complex embeddings of K are given by
σi(α) = αi. We can now determine σi ◦ σj simply by determining for which k we
have

σi ◦ σj(α) = αk;
we then have σi ◦ σj = σk.

Example 4.1. Let d be a squarefree integer (other than 1) and consider the
field Q(

√
d). This has the two embeddings σ1 and σ2 characterized by

σ1(
√
d) =

√
d

and
σ2(
√
d) = −

√
d.

We find that
σ2σ2(

√
d) = σ2(−

√
d) = −σ2(

√
d) =

√
d;

that is, σ2
2 = σ1. This confirms that

Gal(Q(
√
d)/Q) ∼= Z/2Z

as it must be; σ1 is the identity element and σ2 is the non-trivial element.
Example 4.2. Consider the field Q(

√
2,
√

3). This field has degree 4 over Q,
with complex embeddings characterized by

σ1(
√

2) =
√

2, σ1(
√

3) =
√

3

σ2(
√

2) = −
√

2, σ2(
√

3) =
√

3

σ3(
√

2) =
√

2, σ3(
√

3) = −
√

3

σ4(
√

2) = −
√

2, σ4(
√

3) = −
√

3

One computes easily that each of σ2, σ3 and σ4 have square σ1 and that the
product of any two of them is the third, so that Gal(Q(

√
2,
√

3)/Q) is isomorphic
to Z/2Z× Z/2Z.
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Example 4.3. Consider the cyclotomic field Q(ζm). This has ϕ(m) complex
embeddings σk (for (k,m) = 1), where σk(ζm) = ζkm. We compute

σkσj(ζm) = σk(ζjm) = σk(ζm)j = ζjkm ;

if jk ≡ l (mod m), then this shows that σkσj = σl. In particular, we obtain a map

Gal(Q(ζm)/Q)→ (Z/mZ)∗

sending σk to the class of k in (Z/mZ)∗; the above calculation shows that this is a
group homomorphism. It is also clearly bijective by our characterization of the σk.
Thus we have obtained an isomorphism

Gal(Q(ζm)/Q)
∼=−→ (Z/mZ)∗.

Note that if ζ = ζim is any mth root of unity in Q(ζm), then

σk(ζ) = σk(ζim) = σk(ζm)i = ζkim = ζk.

This means that the above isomorphism is completely canonical, in the sense that
the automorphism corresponding to k ∈ (Z/mZ)∗ has the effect of exponentiation
by k on any mth root of unity in Q(ζm). Note also that Gal(Q(ζm)/Q) is abelian;
in some sense this is the fact which will make all of the applications in this class
work.

Example 4.4. For a non-abelian example, let 4
√

2 be the positive real fourth
root of 2 and consider the fieldQ(

√
−1, 4
√

2). The conjugates of 4
√

2 are 4
√

2,
√
−1 4
√

2,
− 4
√

2, −
√
−1 4
√

2. This field has degree 8 over Q, with embeddings σ0, . . . , σ7 char-
acterized by

σi(
4
√

2) =
√
−1

i 4
√

2
and

σi(
√
−1) =

{√
−1 i = 0, 1, 2, 3;
−
√
−1 i = 4, 5, 6, 7.

(To see that this field has degree 8, it is enough to show that [Q( 4
√

2) : Q] = 4 and
that

√
−1 /∈ Q( 4

√
2). The first of these follows from Exercise 1.8 and the second can

be done in the same way as Exercise 1.16.)
We compute easily

σiσj(
√
−1) =

{√
−1 both i, j ∈ {0, 1, 2, 3} or both i, j ∈ {4, 5, 6, 7};
−
√
−1 otherwise.

On the other hand,

σiσj(
4
√

2) = σi(
√
−1

j 4
√

2)

= σi(
√
−1)jσi(

4
√

2)

=

{√
−1

j√−1
i 4
√

2 i ∈ {0, 1, 2, 3};
(−
√
−1)j

√
−1

i 4
√

2 i ∈ {4, 5, 6, 7};

=

{√
−1

i+j 4
√

2 i ∈ {0, 1, 2, 3};
√
−1

i−j 4
√

2 i ∈ {4, 5, 6, 7}.

For example,
σ3σ5(

√
−1) = −

√
1
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and
σ3σ5( 4

√
2) =

√
−1

8 4
√

2 = 4
√

2,
so σ3σ5 = σ4. On the other hand,

σ5σ3(
√
−1) = −

√
−1

and
σ5σ3( 4

√
2) =

√
−1

2 4
√

2 = − 4
√

2

so σ5σ3 = σ6. Thus Gal(Q( 4
√

2, i)/Q) is non-abelian; with a little squinting one
discovers that it is isomorphic to the dihedral group of order 8.

5. Relative extensions

5.1. Relative embeddings. Let L and K be two number fields such that
L ⊇ K; set n = [L : Q], m = [K : Q], d = [L : K] = n/m. We wish to relate the
complex embeddings of L to those of K. Let us fix an embedding

σ : K ↪→ C

and determine how many complex embeddings of L restrict to σ on K. (Such an
embedding of L is said to extend σ.)

Choose a primitive element α for L/K and let f(x) ∈ K[x] be its minimal
polynomial. Let g(x) = σ(f(x)) ∈ C[x]. Since C is algebraically closed and g(x) is
irreducible in K[x], g(x) has d distinct roots α1, . . . , αd in C. For each such root
we can define a map

τi : L ↪→ C

to be σ on K and to send α to αi. This procedure yields exactly d distinct embed-
dings of L into C, all of which restrict to σ on K. Explicitly, we have

τi
(
a0+a1α+a2α

2+· · ·+an−1α
n−1
)

= σ(a0)+σ(a1)αi+σ(a2)α2
i +· · ·+σ(an−1)αn−1

where the ai are all in K.
We can actually conclude that these are all of the embeddings of L into C

extending σ by a counting argument. Specifically, for any of the m complex em-
beddings σ′ of K the above procedure yields d complex embeddings of L restricting
to σ′ on K. In this way we can therefore obtain md = n distinct complex embed-
dings of L. But these are then all of the n complex embeddings of L; this implies
that each embedding of K has exactly d extensions to L, as if it had any more then
we would obtain too many complex embeddings of L.

Summarizing our work to this point, we have shown that each complex embed-
ding of K extends to d complex embeddings of L. In the case that K = Q, σ must
be the unique embedding of Q into C, and this all reduces to our original discussion
of complex embeddings.

We extend some of our earlier terminology to this situation. Given α ∈ L with
minimal polynomial f(x) over K of degree e, we say that the σ-K-conjugates of α
are the e (distinct) complex roots of σ(f(x)). Continuing to let τ1, . . . , τd be the
extensions of σ to L, we find that each σ-K-conjugate of α occurs precisely d/e
times among the numbers τ1(α), . . . , τd(α). To see this, fix a σ-K-conjugate α1 of
α and consider the embedding ρ : K(α) ↪→ C given by σ on K and sending α to
α1. By the above discussion applied to L/K(α), there are exactly [L : K(α)] = d/e
embeddings of L extending ρ, which means that there are exactly d/e embeddings
of L extending σ and sending α to α1, as claimed. In particular, in the case K = Q
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we find that each conjugate of α appears exactly d/e times among the images of α
under the complex embeddings of L.

Example 5.1. Let K = Q(
√

2), L = Q(
√

2,
√

3). Let σ1 : K ↪→ C be the
complex embedding

σ1(a+ b
√

2) = a+ b
√

2.
The two extensions τ1, τ2 : L ↪→ C of σ to L are given by

τ1(a+ b
√

2 + c
√

3 + d
√

6) = a+ b
√

2 + c
√

3 + d
√

6

τ2(a+ b
√

2 + c
√

3 + d
√

6) = a+ b
√

2− c
√

3− d
√

6.
Similarly, the two embeddings extending the other embedding σ2 of K are

τ3(a+ b
√

2 + c
√

3 + d
√

6) = a− b
√

2 + c
√

3− d
√

6

τ2(a+ b
√

2 + c
√

3 + d
√

6) = a− b
√

2− c
√

3 + d
√

6.
Let α =

√
2 +
√

3 ∈ K. The σ1-K-conjugates of α are τ1(α) =
√

2 +
√

3
and τ2(α) =

√
2 −
√

3. The σ2-K-conjugates of α are τ3(α) = −
√

2 +
√

3 and
τ4(α) = −

√
2−
√

3. Together these give the four conjugates of α.

5.2. Relations to characteristic polynomials. Our next goal is to relate
complex embeddings to norms and traces. We first work with characteristic poly-
nomials.

Lemma 5.2. Let L/K be an extension of number fields of degree d and let α
be a primitive element for L/K. Let σ be a fixed complex embedding of K and
let τ1, . . . , τd be the extensions of σ to L. Let g(x) ∈ K[x] be the characteristic
polynomial (and thus the minimal polynomial) of α for L/K. Then

σ(g(x)) =
d∏
i=1

(x− τi(α)) ∈ C[x].

Proof. We know that the τi are constructed by taking the complex roots
α1, . . . , αd of σ(g(x)) and mapping α to each αi; that is, we have τi(α) = αi. Thus
the τi(α) are precisely the complex roots of σ(g(x)), which is the statement of the
lemma. �

Proposition 5.3. Let L/K be an extension of number fields of degree d and
let α be an arbitrary element of L. Let σ be a fixed complex embedding of K and
let τ1, . . . , τd be the extensions of σ to L. Let g(x) be the characteristic polynomial
of α for L/K. Then

σ(g(x)) =
d∏
i=1

(x− τi(α)).

Proof. Let α have minimal polynomial f(x) of degree e over K and consider
the tower of fields L/K(α)/K. Let ρ1, . . . , ρe be the extensions of σ to K(α). By
Lemma 5.2 we know that

σ(f(x)) =
e∏
i=1

(x− ρi(α)).

By Corollary A.4.4 we know that g(x) = f(x)d/e. We also know, from the discussion
of the previous section, that each σ-K-conjugate ρi(α) of α occurs exactly d/e times
among τ1(α), . . . , τd(α). Combining all of these facts yields the proposition. �
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The next result gives the fundamental connection between embeddings and
norms and traces.

Corollary 5.4. Let L/K be an extension of number fields of degree d. Let
σ : K ↪→ C be a complex embedding of K and let τ1, . . . , τd be the d complex
embeddings of L extending σ. Then for any α ∈ K,

σ(NL/K α) = τ1(α) · · · τd(α)

and
σ(TrL/K α) = τ1(α) + · · ·+ τd(α).

Proof. This is immediate from Proposition 5.3 and the definitions of the norm
and trace in terms of characteristic polynomials. �

For convenience, let us restate our main results in the case of an extension
K/Q.

Corollary 5.5. Let K be a number field of degree n with complex embeddings
σ1, . . . , σn. Let α be an element of K with characteristic polynomial g(x). Then

g(x) =
n∏
i=1

(x− σi(α)).

Furthermore,
NK/Q α = σ1(α) · · ·σn(α)

and
TrK/Q α = σ1(α) + · · ·+ σn(α).

5.3. Relative Galois extensions. Let L/K be an extension of number fields
of degree d. Fix a complex embedding σ of K with image K0, and let τ1, . . . , τd be
the extensions of σ to L. If the τi all have the same image L0 in C, we will say that
L is Galois over K. (We will check in a moment that this definition is independent
of the choice of σ.)

Let us define the Galois group Gal(L/K) to be the group of K-linear auto-
morphisms of L; that is, it is the group of automorphisms of L which fix every
element of K. As with Galois groups over Q, we can describe Gal(L/K) in terms
of embeddings. Specifically, fix the embedding τ1 and consider the d maps

τ−1
1 ◦ τi : L→ L.

These are automorphisms of L, since the τi are all isomorphisms; furthermore, they
are the identity on K, since both τi and τ1 act on K as σ. Thus we have exhibited
d K-linear automorphisms of L.

We claim that all K-linear automorphisms of L are of this form. So suppose
that τ : L→ L is another such automorphism. Then τ1 ◦ τ : L→ L0 is a complex
embedding of L. Furthermore, it is simply σ on K, since τ is the identity on K.
Thus τ1 ◦ τ must be one of the τi, so that τ = τ−1

1 ◦ τi, as claimed.
Notice now that the definition of Gal(L/K) made no mention of σ. In particu-

lar, let σ′ : K → C be another complex embedding of K with extensions τ ′1, . . . , τ
′
d.

We claim that the τ ′i all have the same image. To see this, note that for every
ρ ∈ Gal(L/K), τ ′1 ◦ ρ is a complex embedding of L which extends σ. The d dif-
ferent elements of Gal(L/K) yield d different such embeddings, all with the same
image τ ′1(L); these must be nothing more than τ ′1, . . . , τ

′
d, since those are all of the
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embeddings of L which extend σ. In particular, this shows that the property of L
being Galois over K is independent of the choice of embedding of K.

As before, one can actually compute Gal(L/K) by considering L and K as
specific subfields of C and then considering the action on σ-K-conjugates of gener-
ators.

Example 5.6. Take L = Q(
√

2,
√

3) and K = Q(
√

2). We computed Gal(L/Q)
in Example 4.2. Of the four automorphisms given there, σ1 and σ3 are the identity
on K, so we can identify

Gal(L/K) = {σ1, σ3} ∼= Z/2Z.

Notice in particular that if L/Q is Galois, then Gal(L/K) is a subgroup of
Gal(L/Q). The main theorem of Galois theory is a generalization of this fact.

Theorem 5.7. Let L/K be a Galois extension of number fields. There is a
bijective correspondence between subgroups of Gal(L/K) and subfields of L, given
by

H ⊆ Gal(L/K)→ LH = {x ∈ L;h(x) = x for all h ∈ H}
{σ ∈ Gal(L/K);σ|L′ = id} ← L′.

This correspondence is inclusion reversing, and L is Galois over each subfield LH

with Galois group Gal(L/LH) = H. Lastly, LH is Galois over K if and only if H
is a normal subgroup of Gal(L/K), in which case Gal(LH/K) ∼= Gal(L/K)/H.

Corollary 5.8. Let L/K be a Galois extension and let α be an element of L.
Then α ∈ K if and only if σ(α) = α for all σ ∈ Gal(L/K).

Proof. The fact that σ(α) = α for all α ∈ K and all σ ∈ Gal(L/K) is part of
the definition of the Galois group. Conversely, by Theorem 5.7, the subfield K of L
must correspond to the largest subgroup of Gal(L/K); that is, it corresponds to the
entire groupG = Gal(L/K), and thus by the definition of the Galois correspondence
we find that K = LG, as claimed. �

We conclude with the promised strengthening of Lemma A.3.3.

Lemma 5.9. Let M/K be an extension of number fields and let L1 and L2 be
subfields of M containing K. Suppose that L2 is Galois over L1 ∩ L2. Then L1L2

is Galois over L1 and

Gal(L1L2/L1) ∼= Gal(L2/L1 ∩ L2).

In particular,
[L1L2 : L1] = [L2 : L1 ∩ L2]

and
[L1L2 : L2] = [L1 : L1 ∩ L2].

Proof. Set d = [L2 : L1 ∩ L2]. Let σ be an element of Gal(L2/L1 ∩ L2). We
define an automorphism σ̃ of L1L2 to act as σ on L2 and to be the identity on L1;
one checks easily that this is well-defined, since σ is the identity on L1∩L2. Applying
this construction to every element of Gal(L2/L1 ∩L2), we obtain d automorphisms
of L1L2 fixing L1.
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Let now τ : L1 ↪→ C be a complex embedding and let ρ : L1L2 ↪→ C extend τ .
Then the d maps ρ ◦ σ̃ are all distinct complex embeddings of L1L2 extending τ ,
and they all have the same image. By Lemma A.3.3,

[L1L2 : L1] ≤ d,
so the existence of these embeddings implies both that

[L1L2 : L1] = d

and that L1L2 is Galois over L1, since we have exhibited d automorphisms of L1L2

over L1.
Our map σ 7→ σ̃ can now be interpreted as a map

Gal(L2/L1 ∩ L2)→ Gal(L1L2/L1).

One checks immediately that the map restricting an automorphism of L1L2 to L2

gives an inverse map, so they must both be isomorphisms. This proves everything
but the last equality of the lemma; this follows from Lemma A.1.1 and the second
to last equality. �
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6. Exercises

6.1. Factorization of polynomials over Z and Q.

Exercise 1.1. A polynomial f(x) ∈ Z[x] is said to be primitive if the greatest
common divisor of its coefficients is 1. Show that for any non-zero f(x) ∈ Q[x]
there exists a unique (up to sign) c ∈ Q∗ such that cf(x) is primitive.

Exercise 1.2. Let f(x) and g(x) be two primitive polynomials. Show that
f(x)g(x) is also primitive.

Exercise 1.3. Since we are not interested in constant factors of polynomials,
we will say that f(x) ∈ Z[x] is irreducible if it does not factor as f(x) = g(x)h(x)
with neither g(x) nor h(x) a constant polynomial. (This disagrees with the usually
notion of irreducible in a ring, but hopefully no confusion will result.) Show that
f(x) ∈ Z[x] is irreducible in Z[x] if and only if it is irreducible in Q[x].

Exercise 1.4. Let f(x) ∈ Z[x] be monic and suppose that f(x) factors as
f(x) = g(x)h(x) with g(x), h(x) ∈ Q[x] and monic. Show that g(x), h(x) ∈ Z[x].

6.2. Irreducibility criteria. Let

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a0

be a polynomial in Z[x]. We are interested in finding ways to show that f(x) is
irreducible in Z[x] (and thus in Q[x] by Exercise 1.3). Since constant factors are
not of any importance, we may as well assume that f(x) is primitive; we will do so
without further comment in Exercises 1.5–1.10.

Exercise 1.5. Show that if f(α) = 0 for some α ∈ Q, then x−α divides f(x)
in Q[x]. Conclude that if deg f is 2 or 3, then f(x) is irreducible in Q[x] if and only
if it has no rational roots.

Exercise 1.6. Suppose that there is some prime p for which p does not divide
an and f(x) is irreducible modulo p; that is, in Fp[x]. Show that f(x) is irreducible
in Q[x].

Exercise 1.7 (Eisenstein irreducibility criterion). Suppose that there is some
prime p such that p does not divide an, p does divide an−1, . . . , a0, and p2 does
not divide a0. Show that f(x) is irreducible in Q[x]. Such an f(x) is called an
Eisenstein polynomial.

Exercise 1.8. Use Exercise 1.7 to show that xn− p and xn + p are irreducible
in Q[x] for all primes p and all n ≥ 2.

Exercise 1.9. Show without using the results of Section 4 that for any prime
p,

xp − 1
x− 1

= xp−1 + xp−2 + xp−3 + · · ·+ 1

is irreducible in Q[x]. (Hint: Make the substitution y + 1 = x.)
Exercise 1.10. Show that x4 − 10x2 + 1 is irreducible in Q[x]. (Hint: Do it

directly.)

6.3. More on minimal and irreducible polynomials.

Exercise 1.11. Let K be a field and let

f(x) = anx
n + an−1x

n−1 + . . .+ a0
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be a polynomial in K[x]. Define the formal derivative f ′(x) of f(x) to be

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + . . .+ 2a2x+ a1.

Convince yourself that all of the usual properties of derivatives (linearity, product
rule, chain rule) can be proven for formal derivatives by completely algebraic means.
Then show that if g(x)2 divides f(x), then g(x) divides f ′(x).

Exercise 1.12. Let K be a field of characteristic 0 and let L be an extension
of K (not necessarily finite). Let f(x) ∈ K[x] be an irreducible polynomial. Show
that f(x) has no repeated factors in L[x]; in particular, it has no multiple roots in
L.

Exercise 1.13. Let M ⊇ L ⊇ K be fields. Let α ∈ M be algebraic over K
with minimal polynomial f(x) ∈ K[x]. Show that if K(α) ∩ L = K and L/K is
Galois, then f(x) is also the minimal polynomial for α over L.

Exercise 1.14. Let L/K be a finite extension and let α and β be two elements
of L. Explain how to compute polynomials (over K) which are satisfied by α+ β,
αβ and α−1. (Hint: use linear algebra.) Give an example to show that your method
does not always yield minimal polynomials. Use your method (and Exercise 1.10)
to determine the minimal polynomial of

√
2 +
√

3 ∈ Q(
√

2,
√

3).
Exercise 1.15. Let f(x) ∈ Fp[x]. Show that f(xp) = f(x)p.

6.4. Some trace calculations.
Exercise 1.16. Use the following method to show that

√
3 /∈ Q( 4

√
2): Suppose

that it is, so that
√

3 = a + b 4
√

2 + c
√

2 + d 4
√

8 with a, b, c, d ∈ Q. Compute the
trace (from Q( 4

√
2) to Q) of both sides to conclude that a = 0. Thus

√
3/ 4
√

2 =
b+ c 4

√
2 + d

√
2. Continue the procedure to show that b = c = 0, and then derive a

contradiction.
Exercise 1.17. Let d1, . . . , dn be pairwise relatively prime squarefree integers,

all different from 1. Show that

Q(
√
d1, . . . ,

√
dn)

has degree 2n overQ. Conclude with an interesting fact about square roots summing
to rational numbers.

Exercise 1.18. Show that cos(72◦) = (
√

5 − 1)/4. (Hint: Use trigonometric
identities to find some polynomial which cos(72◦) satisfies. Then compare this with
the minimal polynomial of (

√
5− 1)/4.)

Exercise 1.19. Compute the norm and trace maps from Q(ζ5) to Q. (Hint:
Exercise 1.18 can be used to cut down on the computations needed.)

6.5. Arithmetical functions.
Exercise 1.20. For any positive integer n, define ϕ(n) to be the number of

positive integers less than n and relatively prime to n. ϕ is called the Euler ϕ-
function. Show that ϕ(mn) = ϕ(m)ϕ(n) if m and n are relatively prime, and show
that ϕ(pk) = pk − pk−1 for p prime.





CHAPTER 2

Rings of Integers

1. Unique factorization

1.1. Factorization in subrings of number fields. Let K be a number field.
Although there is much information which can be obtained just by considering K,
answering many of the most interesting questions will require some sort of notion
of factorization into primes. Factorization in K itself is not very interesting: every
non-zero element is a unit, so there are no primes at all. In order to obtain these
primes we must somehow define a special subring of K; this ring should have lots
of primes, and factorizations in it should hopefully yield interesting arithmetic
information.

Example 1.1. As a first example of the useful of factorizations, let us solve
the Diophantine equation

x2 − y2 = 105.

(When we speak of solving a Diophantine equation, we always mean that we are
interested in solutions with x, y ∈ Z, or occasionally Q.) We can solve this equation
by first factoring it as

(x+ y)(x− y) = 105.

Since both x + y and x − y are integers, we see that we are searching for pairs
of integers d = x + y, e = x − y such that de = 105. The fact that x and y are
integers implies that d and e must be congruent modulo 2, so we are really looking
for complimentary pairs of divisors of 105 which are congruent modulo 2. These
pairs (up to reordering and negation) are

(d, e) = (105, 1), (35, 3), (21, 5), (15, 7);

they yield the solutions

(x, y) = (53, 52), (19, 16), (13, 8), (11, 4)

and their negatives. This example illustrates the usefulness of factorizations for
solving Diophantine equations. On the other hand, when one has an equation like
x2+y2 = p which can not be factored over Z, it becomes necessary to add additional
numbers with which to factor. In this case, x2 + y2 does factor over Z[i].

The question, then, is which subring. We take as our model the subring Z of
the number field Q. Of course, we have a very good theory of factorization in Z:
every non-zero n ∈ Z factors uniquely as a product

n = ±pe11 · · · p
ek
k

where the pi are distinct positive primes and all ei ≥ 0. This sort of factorization
actually extends to the field Q : any non-zero rational number m

n ∈ Q can be

25
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uniquely written as a product
m

n
= ±pe11 · · · p

ek
k

where now we allow the ei to be negative as well. Of course, the pi are not really
prime in Q, but so long as we remember that they come from Z we can still consider
them as distinguished elements to be used in factorizations. In any event, note that
this sort of factorization shows that we have an isomorphism

Q
∗ ∼= Z/2Z×

⊕
p

Z

where the direct sum is over all positive primes p of Z.
It is probably worth pausing a moment here to clarify the sign issue. In Z

we have two “copies” p and −p of each prime. They behave exactly the same in
factorizations (the ± sign absorbing any changes), and there is no real reason to
prefer one over the other. For the time being just assume that we have chosen one
of them to use in factorizations; in the case of Z, the positive primes are the natural
choice, but later on, when we have rings with lots of non-trivial units, there will be
no obvious natural choices. Fortunately, all of this confusion will go away as soon
as we begin working with ideals rather than elements.

Returning to the previous discussion of factorization in Z, our first requirement
must be that we have some sort of good factorization theory in our special subring
R of K. We shall see later that it is unreasonable to ask for unique factorization,
but we would like something close.

First condition (vague): R should have a good theory of factor-
ization.

Our second requirement should be that the factorizations in R should extend
to K in some way. The easiest way to insure this is to require that K be the field of
fractions of R; this just means that every element of K can be written as a quotient
of two elements of R. In particular, the subring Z of K, while a wonderful ring in
many ways, has field of fractions Q, so it is not suitable for a theory of factorization
in any number field larger than Q.

Second condition: The field of fractions of R should be K.
We will in fact obtain a stronger version of the second condition, and since it

is easier to check we state it as well.
Second condition (strong form) : Every α ∈ K can be written as
α′/n where α′ ∈ R and n ∈ Z.

All of the above conditions amount to asking that R be “big enough”; this is
clear for the second condition, while for the first we will see that in order to get a
good factorization theory one must not leave out too many elements of K.

Now, it happens that Q has lots of subrings with all of Q as field of fractions.
For example, for any set of primes S we have the ring.

S−1
Z =

{a
b
∈ Q | all prime factors of b are in S

}
.

In terms of unique factorization in Z, rational numbers are in S−1
Z if and only if

they can be written as
±pe11 · · · p

ek
k
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where we allow ei to be any integer for pi ∈ S, but we require ei to be positive if
pi /∈ S. Of course, these rings seem somewhat contrived; we are really just adding
some denominators to Z. In fact, it is easy to see that all p ∈ S are now units in
S−1

Z, so the primes of S−1
Z are just the primes of Z not in S. Thus factorizations

into primes of S−1
Z contains less information than those in Z. Somehow, then, in

order to get the most information we want to choose for R the smallest subring of
K which satisfies the first two conditions.

Taking advantage of our knowledge that Z is a good prototype for R, one
possibility for this third condition is to require that R ∩Q = Z.

Third condition: R ∩Q = Z.
Our goal, then, is to find a good interpretation of the first condition, and then

we will hope that there is a natural subring of K satisfying the three conditions.

1.2. First attempts. In order to help us figure out what interpretations to
give to our first condition, let us begin by making some guesses. Let K be a
quadratic number field. We know that we can write K = Q(

√
d) for a unique

squarefree integer d. Let us take our guess for the special subring to be

R = Z[
√
d].

Now, while there are many other d′ ∈ Q such that K = Q(
√
d′), this ring R has

several things recommending it. First of all, if d′ is not an integer, then d′ ∈ Z[
√
d′]∩

Q, so this intersection is larger than Z; this would violate our third condition. Also,
if d′ is a non-squarefree integer, then we can write d′ = e2d, so

√
d′ ∈ R

but √
d /∈ Z[

√
d′].

Thus Z[
√
d′] seems to missing the element

√
d which it really ought to contain,

while R does not appear to be missing anything. (Later we will see that sometimes
R is missing some non-obvious elements, but let us not worry about this yet.)
Considering all of this, then, Z[

√
d] seems to be the most natural choice for special

subring R.
As a second example, take K = Q(ζm). This time there is really only one

obvious ring to write down, that being R = Z[ζm]. (Note that R is independent
of the choice of primitive mth root of unity ζm since every primitive mth root of
unity is a power of every other one. One can also check that if m is odd, then
Z[ζm] = Z[ζ2m], so that we have defined the same ring no matter which m is used
to define K.) So for lack of any better choices, we will take R = Z[ζm] to be our
guess for Q(ζm).

The astute reader will have noticed that we have now made two different choices
for the special subring of K = Q(

√
−3). On the one hand, K is a quadratic field,

so we have chosen R = Z[
√
−3]. On the other hand, K is also a cyclotomic field:

we have K = Q(ζ3), since

ζ3 =
−1 +

√
−3

2
.

In this case we have the choice R′ = Z[−1+
√
−3

2 ], which is actually larger than R.
Right away we see that one of these must be wrong. We will figure out which one
it is a bit later.
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Ignoring that issue, note that at the very least these choices all satisfy the
strong form of our second condition, and one can show without too much difficulty
that they satisfy the third condition. The main remaining consideration is the
factorization condition.

1.3. Example : the Gaussian integers. Just to see that at least sometimes
we have obtained the nice theory we were looking for, let us analyze in detail the
case of K = Q(i) and R = Z[i], where i =

√
−1. Since i2 = −1, we have

Q(i) = {a+ bi | a, b ∈ Q}
and

Z[i] = {a+ bi | a, b ∈ Z}.
We claim that Z[i] is a unique factorization domain. The proof of this rests

upon the fact that there is a division algorithm. In order to state it we need some
measure of the size of a Gaussian integer; the most natural measure is the norm
NQ(i)/Q, which explicitly is just

NQ(i)/Q(a+ bi) = a2 + b2.

Let us just write N for this norm for the remainder of the section; we also write
a+ bi for the conjugate a − bi (recalling our earlier conventions, this is just the
image of a+ bi under the other complex embedding), so that

N(α) = α · ᾱ
for all α ∈ Q(i). Note also that

N(α) = N(ᾱ),

and that if α ∈ Z[i], then N(α) ∈ Z.
Lemma 1.2. For any α, β ∈ Z[i] with β 6= 0, there exists q, r ∈ Z[i] such

α = βq + r

and
0 ≤ N(r) ≤ 1

2
N(β).

The key here is to reduce to a division problem in Z. Specifically, the equation

α = βq + r

is equivalent to
αβ̄ = ββ̄q + β̄r,

and now ββ̄ ∈ Z.

Proof. Write
αβ̄ = a+ bi

with a, b ∈ Z; by division in Z we can write

a = N(β)q1 + r1

and
b = N(β)q2 + r2

with q1, q2, r1, r2 ∈ Z and 0 ≤ r1, r2 < N(β). In fact, replacing the qi by qi + 1 and
the ri by ri −N(β), if necessary, we can obtain the stronger bound

0 ≤ |r1|, |r2| ≤
1
2

N(β).
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We now have

a+ bi = N(β)(q1 + q2i) + (r1 + r2i)

αβ̄ = ββ̄(q1 + q2i) + (r1 + r2i)

α = β(q1 + q2i) +
r1 + r2i

β̄
.

Note that this equation implies in particular that
r1 + r2i

β̄
= α− β(q1 + q2i) ∈ Z[i].

Write r ∈ Z[i] for this quotient and set q = q1 + q2i, so that we have

α = βq + r.

It remains to show that r satisfies the desired bound. We calculate

β̄r = r1 + r2i

N(β̄) N(r) = N(r1 + r2i)

N(r) =
N(r1 + r2i)

N(β̄)

=
r2
1 + r2

2

N(β̄)

≤
1
4 N(β)2 + 1

4 N(β)2

N(β̄)

=
1
2

N(β)2

N(β)

=
1
2

N(β)

as claimed. �

Since Z[i] is obviously noetherian (it is a quotient of the noetherian ring Z[x]),
this shows that Z[i] is Euclidean. By Proposition C.4.7 we conclude that Z[i] is a
unique factorization domain.

Before we begin actually factoring elements of Z[i], we should determine the
units.

Lemma 1.3. u ∈ Z[i] is a unit if and only if N(u) = 1; in particular, the only
units are ±1 and ±i.

Proof. Suppose first that N(u) = 1. Then uū = 1 and ū ∈ Z[i], so u is a
unit. Conversely, if u ∈ Z[i] is a unit, then there exists v ∈ Z[i] with uv = 1. Thus
N(u) N(v) = 1. Since N(u) and N(v) are integers, this implies that N(u) = ±1.
Since it is not possible in Z[i] to have N(u) = −1, this proves the first statement
of the lemma. Writing u = x + yi with x, y ∈ Z, the last statement of the lemma
amounts to solving the equation x2 + y2 = 1. �

The key to the determination of the primes of Z[i] is to use our knowledge of
the primes of Z. The connection comes from the next lemma.

Lemma 1.4. Let π ∈ Z[i] be a prime element. Then π divides (in Z[i]) some
prime p of Z.
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Proof. Note that N(π) = ππ̄ ∈ Z and π divides this integer. If N(π) is prime,
then the lemma is immediate. If N(π) is not prime, then factor N(π) as a product
of primes of Z; since π is prime in Z[i], the definition of prime implies that π must
divide one of these factors. �

Lemma 1.4 implies that we can determine all primes of Z[i] by determining how
all primes of Z factor in Z[i]. Later on we will see a general method for approaching
this problem, but for now let us not worry about motivating our next few steps.
So let p be a positive prime in Z such that p ≡ 3 (mod 4). Suppose that p factors
over Z[i], say as αβ, with α and β not units. Then

p2 = N(p) = N(α) N(β),

so Lemma 1.3 implies that
N(α) = N(β) = p.

Writing α = a + bi, this implies that p = a2 + b2. But this is impossible, since
modulo 4 all sums of two squares are congruent to 0, 1 or 2. Thus p is still prime
as an element of Z[i].

Now let p be a positive prime such that p ≡ 1 (mod 4) and suppose that p does
not factor in Z[i]. By Exercise 2.2 we have that there exists a ∈ Z such that

a2 ≡ −1 (mod p).

Thus p divides a2 + 1 in Z. Factoring a2 + 1 as (a+ i)(a− i) over Z[i], we have that
p divides the product (a + i)(a − i). Our assumption that p is prime in Z[i] now
implies that p divides one of these factors. But this is absurd, since p would then
divide the coefficient of i, which is ±1. This is a contradiction, so such a p is not
prime. We summarize all of this in the next proposition.

Proposition 1.5. Let π be a prime of Z[i]. Then one of the three following
conditions holds:

(1) π is associate to a positive rational prime p such that p ≡ 3 (mod 4);
(2) N(π) = p where p is a positive rational prime such that p ≡ 1 (mod 4).

In this case every prime of norm p is associate to exactly one of π and π̄;
(3) π is associate to 1 + i.

Proof. By Lemma 1.4 we know that π divides some rational prime p. If
p ≡ 3 (mod 4), then p itself is prime in Z[i], so π must be associate to p. The
p ≡ 1 (mod 4) case is Exercise 2.3. Lastly, if p = 2, then the fact that 2 factors as
−i(1 + i)2 shows that π must be associate to 1 + i. �

Example 1.6. Let us factor α = −133− 119i ∈ Z[i]. We compute that

N(α) = 31850 = 2 · 52 · 72 · 13.

Since 2 divides N(α), we know that 1 + i divides α. Since 7 ≡ 3 (mod 4), we
know that 7 is prime in Z[i], so we must have that 7 divides α. To determine what
happens with the primes of norm 5 and 13 we must determine what these primes
are. We have

5 = (2 + i)(2− i)
and

13 = (3 + 2i)(3− 2i).
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To finish the factorization we simply have to figure out which of the prime factors
of 13 divides α and whether one or both of the prime factors of 5 divide α. One
finds that (2 + i)2 and 3 + 2i divide α. Up to a unit, then, the factorization of α is

(1 + i) · (2 + i)2 · 7 · (3 + 2i);

multiplying it out we find that the unit is i, so that

−133− 119i = i · (1 + i) · (2 + i)2 · 7 · (3 + 2i).

Our analysis of factorization in Z[i] seems to have suggested some connection
with primes of the form x2 + y2. In fact, using our knowledge of the arithmetic of
Z[i], we can easily obtain the full result.

Proposition 1.7. A positive rational prime p can be written as x2 + y2 with
x, y ∈ Z if and only if p factors in Z[i].

Proof. Suppose that p = x2 + y2. Then p = (x+ yi)(x− yi), and one easily
checks that neither factor could be a unit; thus p factors in Z[i]. Conversely, if p
factors in Z[i], say as αβ, then N(α) = N(β) = p. If α = x+ yi, then we conclude
that p = x2 + y2, as desired. �

Corollary 1.8. A positive rational prime p can be written as x2 + y2 with
x, y ∈ Z if and only if p = 2 or p ≡ 1 (mod 4). Furthermore, this decomposition is
unique up to switching x and y and negating either (or both) x or y.

Proof. Everything but uniqueness is immediate from Proposition 1.5 and
Proposition 1.7. In fact, uniqueness also follows easily, since there are exactly 8
primes x + yi dividing any p ≡ 1 (mod 4) (two conjugates times four units) and
these all have x and y the same up to negation and switching the factors. �

1.4. Failure of unique factorization. Having given one example where ev-
erything works perfectly, let us now give several where things do not work. Before
we do, we state a simple lemma which is extremely useful in factoring and finding
irreducibles.

Lemma 1.9. Let R be a subring of a number field K such that NK/Q(α) is an
integer for every α ∈ R. Let α and β be elements of R such that α divides β in
R. Then NK/Q(α) divides NK/Q(β) in Z. In particular, if NK/Q(α) is prime in Z,
then α is irreducible in R. Also, α is a unit only if NK/Q(α) = ±1.

We leave the proof to the reader.
Let us begin with the field K = Q(

√
−5) and the ring R = Z[

√
−5]. Consider

the factorization of 6 in Z[
√
−5]. On the one hand, 6 = 2 · 3. Both 2 and 3 are

irreducible in R, as is easy to check using Lemma 1.9. On the other hand,

6 = (1 +
√
−5)(1−

√
−5),

and both of these factors are also irreducible. R has only the two units ±1 (use
Lemma 1.9 to prove this), so none of these are associates. (This could also be seen
directly from the norms.) Thus R is not a UFD.

All is not lost, however. The problem, as Kummer realized, is simply that R is
missing some “elements”. He repaired unique factorization with his theory of ideal
numbers. In modern terms, we use the somewhat simpler method of factorization
into ideals. Specifically, the factorizations above are only using principal ideals,
and it turns out that R is not a principal ideal domain. We need the non-principal
ideals in order to solve our factorization problem.
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The ideals we want (we will see later how to compute them) are

a1 =
(
2, 1 +

√
−5
)

a2 =
(
3, 1 +

√
−5
)

a3 =
(
3, 1−

√
−5
)
.

Note that we can also write

a1 =
(
2, 1−

√
−5
)

since 2 ∈ a1. We now find that

a2
1 =

(
2 · 2, 2 · (1−

√
−5), (1 +

√
−5) · 2, (1 +

√
−5) · (1−

√
−5)

)
=
(
4, 2− 2

√
−5, 2 + 2

√
−5, 6

)
=
(
2
)

since 2 = 6− 4 ∈ a2
1 and every generator is divisible by 2. Similarly, one finds that

a1a2 =
(
1 +
√
−5
)

a1a3 =
(
1−
√
−5
)

a2a3 =
(
3
)
.

In particular, (
6
)

=
(
2
)(

3
)

= (a1a1)(a2a3)
and (

6
)

=
(
1 +
√
−5
)(

1−
√
−5
)

= (a1a2)(a1a3)
are really the same factorization in terms of ideals. The two different factorizations
in terms of elements comes from regrouping the non-principal factors in two different
ways. (Before it becomes too confusing let us acknowledge the fact that it can often
be difficult to tell in an equation when symbols like (2) are ideals or simply elements.
We will usually try to write principal ideals with slightly large parentheses, like

(
2
)
,

if there is any chance of confusion. Fortunately, it rarely matters very much whether
one is working with principal ideals or with actual elements, and hopefully whenever
it does matter it will be clear which is being done.)

So, then, while we do not have unique factorization of elements in Z[
√

5], we
can still hope that we have unique factorization of ideals. This is not perfect, but
it is a pretty good substitute.

Let us now consider K = Q(ζ) and R = Z[ζ] where ζ = ζ23. Here things are
much more complicated (K has degree 22 over Q), but we should at least state
Kummer’s famous counterexample to unique factorization. He found that

(1 + ζ2 + ζ4 + ζ5 + ζ6 + ζ10 + ζ11)(1 + ζ + ζ5 + ζ6 + ζ7 + ζ9 + ζ11)

is divisible by 2. (Work it out. It’s not nearly as bad as it looks. You will need to
use the identity

ζ22 = −1− ζ − ζ2 − · · · − ζ21,

which is just the statement that Φ23(ζ) = 0.) He also showed that 2 is irreducible
in R (a non-trivial fact in this situation), and that 2 doesn’t divide either factor.
Thus R can not possibly be a UFD.

Here again one can show that unique factorization is restored if factorizations
are considered as factorizations of ideals. We will not even attempt to write them
down, however. (One might ask why we went all the way up to Q(ζ23) to give our
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counterexample. The answer is fairly remarkable: for m ≤ 22, every ring Z[ζm] is
a UFD.)

Let us consider one last example. Take K = Q(
√
−3) and R = Z[

√
−3]. Recall

that for this field we already suspected that something was wrong, as we had another
possible choice for R. It turns out that in this ring things go very wrong. First of
all, we have

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3),

and 2, 1 +
√
−3 and 1 −

√
−3 are all easily checked to be irreducible. Thus R is

not a UFD.
This time, however, we do not even have unique factorization of ideals. Let a

be the ideal
(
2, 1 +

√
−3
)
. Then we compute

a2 =
(
4, 2 + 2

√
−3, (1 +

√
−3)2

)
=
(
4, 2 + 2

√
−3,−2 + 2

√
−3
)

=
(
4, 2 + 2

√
−3
)

=
(
2
)(

2, 1 +
√
−3
)

=
(
2
)
a.

But a 6= (2), since 1 +
√
−3 /∈ (2). Thus we have an example of non-unique

factorization of ideals.
Luckily, we did have another choice for this ring. In fact, the ring R′ =

Z[−1+
√
−3

2 ] not only has unique factorization of ideals, it is actually a UFD. (See
Exercise 2.5. Note that in this ring,(

2, 1 +
√
−3
)

=
(
2
)

since now 2 does divide 1 +
√
−3.) Thus it is certainly a much better choice than

R. The problem with R is that it is missing certain elements; we will see the full
solution in the next section.

2. Algebraic integers

2.1. Integrally closed rings. The key to our search for the right special
subring of a number field K is the “good factorization theory” condition. As we
have seen, it is unreasonable to expect unique factorization, although there is still
some hope that we may be able to get unique factorization of ideals. What we
need, then, is some condition which is weaker than UFD but still strong enough
to eliminate the problem case of Z[

√
3]. The correct condition turns out to be the

following.

Definition 2.1. Let R be an integral domain contained in some field K. An
element α ∈ K is said to be integral over R if it satisfies some monic polynomial in
R[x]. R is said to be integrally closed in K if every element in K which is integral
over R actually lies in R.

Note that the definition says nothing about monic polynomials in R[x] actually
having roots in K; it says only that if they do have roots in K, then these roots
lie in R. Note also that there is nothing about the minimal polynomial of α in the
definition; any monic polynomial at all will do, irreducible or not.
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Example 2.2. Let R = Z and K = Q. Suppose that there is some r
s ∈ Q (with

r and s assumed to be relatively prime) satisfying some monic polynomial

xn + an−1x
n−1 + · · ·+ a0 ∈ Z[x].

Then (r
s

)n
+ an−1

(r
s

)n−1

+ · · ·+ a0 = 0,

so

rn + an−1sr
n−1 + · · ·+ a0s

n = 0

s(−an−1r
n−1 − san−2r

n−2 − · · · − a0s
n−1) = rn.

Thus s divides rn. Since r and s were assumed to be relatively prime, this implies
that s = 1. Thus r

s ∈ Z. This shows that if a monic polynomial with integer
coefficients has a rational root, then the root is actually an integer; in other words,
Z is integrally closed in Q.

The exact same proof works for any UFD R with field of fractions K, thus
yielding the desired connection between integrally closed rings and UFDs.

Proposition 2.3. Let R be a UFD with field of fractions K. Then R is inte-
grally closed in K.

Example 2.4. The converse of Proposition 2.3 is false. For example, it is not
too hard to show that Z[

√
−5] is integrally closed in Q(

√
−5) (we will do this soon),

but as we saw before Z[
√
−5] is not a UFD.

Example 2.5. Proposition 2.3 does not hold if K is replaced with a larger
field. For example, take R = Z and K = Q(i). Then the element i ∈ Q(i) satisfies
the monic polynomial x2 + 1 ∈ Z[x], but i /∈ Z; thus Z is not integrally closed in
Q(i).

Example 2.6. Let R = Z[
√
−3] and K = Q(

√
−3). Consider the polynomial

x2 + x+ 1 ∈ R[x].

By the quadratic formula this has roots

α =
−1±

√
−3

2
∈ K.

These roots are not in R, so R is not integrally closed in K. On the other hand,
R′ = Z[−1+

√
−3

2 ] is integrally closed inK, as we will show shortly. We have therefore
found a way to distinguish between these two choices for special subring of K.

Note that as promised the property of being integrally closed corresponds to R
being “large enough” in K; that is, R can not leave out any elements of K which
are integral over R. What we are looking for, then, is a ring R which has K as its
field of fractions, which is integrally closed in K, and which is as small as possible
given the first two conditions. That such a ring exists is not immediately clear; we
will show that it does and give a more concrete description of it in the next section.
In order to do this we first should define the notion of integral closure of a ring in
a field.

Definition 2.7. Let R be a subring of a field K. The integral closure of R in
K is defined to the subset of K of elements which are integral over R.
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Note that it is not at all clear that the integral closure R′ of R is even a ring,
let alone integrally closed if it is. (R′ contains all elements which are roots of
monic polynomials with coefficients in R, but what about monic polynomials with
coefficients in R′?)

2.2. Rings of integers. Let K be a number field. We define the ring of
integers OK of K to be the integral closure of Z in K. Thus OK consists of all
elements of K which satisfy monic polynomials in Z[x]. (While every element of
K satisfies a monic polynomial with rational coefficients and also satisfies a not
necessarily monic polynomial with integral coefficients, it is not true that every
element of K satisfies a monic polynomial with integer coefficients.) An element of
OK will be called an algebraic integer. Note that by Example 2.2, we have OQ = Z.
From now on, in order to avoid confusion we will refer to elements of Z as rational
integers.

Example 2.8. Let K = Q(
√
d) with d a squarefree integer. Then

√
d ∈ OK ,

since it satisfies the monic polynomial x2 − d ∈ Z[x]. More generally, if a, b ∈ Z,
then a+ b

√
d ∈ OK , as it satisfies the polynomial

x2 − 2ax+ (a2 − db2) ∈ Z[x].

Thus Z[
√
d] ⊆ OK . We will see later that this is the entire ring of integers if d ≡ 2, 3

(mod 4), but that there are more integers if d ≡ 1 (mod 4).
Our first goal is to prove that OK really is a ring. To do this we must find ana-

logues for algebraic integers and Z-modules of the fundamental relations between
algebraic numbers and Q-vector spaces. Recall that a Z-module A is said to be
finitely generated if there is some finite set a1, . . . , am ∈ A such that every element
of A can be written as a Z-linear combination of the ai.

Proposition 2.9. Let K be a number field. For any α ∈ K, the following are
equivalent:

(1) α is an algebraic integer;
(2) The minimal polynomial of α has coefficients in Z;
(3) The ring Z[α] is a finitely generated Z-module;
(4) α is contained in some subring A of K which is a finitely generated Z-

module;
(5) There is some finitely generated Z-submodule A of K such that αA ⊆ A.

Proof. We show first that each statement implies the next. For (1) implies
(2), suppose that α is an algebraic integer, so that it satisfies some monic polynomial
f(x) ∈ Z[x]. Let g(x) ∈ Q[x] be the minimal polynomial of α. Then g(x) divides
f(x) in Q[x]. By Exercise 1.4, g(x) actually lies in Z[x], as claimed.

To show that (2) implies (3), note that

Z[x]/(g(x)) ∼= Z[α]

where g(x) is the minimal polynomial of α. (Just consider the map sending x to
α, which is easily seen to be an isomorphism.) Since g(x) is monic, the elements
1, x, . . . , xn−1 (where n is the degree of g(x)) are a Z-basis for Z[x]/(g(x)). (This
is certainly not true if g(x) is not monic, since then, while some multiple of xn

can be written in terms of 1, x, . . . , xn−1, the power xn itself can not be. For an
example, compare Z[x]/(x2 +1), which is generated as a Z-module by 1 and x, with
Z[x]/(2x− 1), which requires infinitely many Z-generators.) Thus 1, α, . . . , αn−1 is
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a Z-basis for Z[α], so Z[α] is a finitely generated Z-module. That (3) implies (4)
and (4) implies (5) is clear.

It remains to show that (5) implies (1). So suppose that there exists a finitely
generated Z-submodule A of K such that αA ⊆ A. Since A is a submodule of K
and K is Z-torsion-free (being a field of characteristic 0), A is also torsion-free.
Since A is finitely generated by hypothesis, it follows that it is a free Z-module of
finite rank. (See Appendix C, Section 5.) Let a1, . . . , am be a Z-basis for A. Since
multiplication by α maps A to itself we can view it as a map

mα : A→ A;

expressing this in terms of the Z-basis a1, . . . , am, we can represent mα as an m×m
matrix M with coefficients in Z. Let f(x) be the characteristic polynomial of mα,
which is just the determinant of xI−M . The Cayley-Hamilton theorem shows that
f(M) = 0 (if you are uncomfortable with the Cayley-Hamilton theorem over rings,
note that for this calculation we can consider M as a matrix over the rationals and
apply Cayley-Hamilton there); since the map f(M) : A→ A is just multiplication
by f(α) and A is torsion free, this implies that f(α) = 0. But f(x) is clearly a
monic polynomial with coefficients in Z (every characteristic polynomial is monic,
and f(x) has integer coefficients since M has integer entries), so α is an algebraic
integer, as claimed. �

From this proposition it is easy to obtain the fundamental properties of OK .
Note first that the fact that the minimal polynomial of an algebraic integer has
rational integer coefficients implies that its norm and trace are rational integers.
In particular, Lemma 1.9 applies. The next lemma is just the strong form of our
second condition on the special subring.

Lemma 2.10. Let α ∈ K. Then there is some a ∈ Z such that aα ∈ OK .

Proof. Let f(x) = xn+an−1x
n−1+· · ·+a0 ∈ Q[x] be the minimal polynomial

of α. Let a ∈ Z be some integer such that af(x) ∈ Z[x]. (Such an a clearly exists.)
Let g(x) be the monic polynomial

xn + aan−1x
n−1 + a2an−2x

n−2 + · · ·+ ana0,

which is in Z[x] since af(x) is. We have

g(aα) = anαn + anan−1x
n−1 + · · ·+ ana0 = anf(α) = 0.

Thus aα satisfies a monic polynomial with integral coefficients, and therefore lies
in OK . �

We next show that OK really is a ring. The proof of this is quite similar to the
proof that the set of algebraic elements of a field form a field.

Lemma 2.11. Let α, β be elements of OK . Then Z[α, β] is a finitely gener-
ated Z-submodule of K. More generally, if α1, . . . , αm are elements of OK , then
Z[α1, . . . , αm] is a finitely generated Z-submodule of K.

Proof. If a1, . . . , am are Z-generators of Z[α] and b1, . . . , bn are Z-generators
of Z[β], one shows easily that the products aibj are Z-generators of Z[α, β]. The
general case is similar. �

Proposition 2.12. The sum and product of algebraic integers of K are again
algebraic integers of K. In particular, OK is a ring.
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Proof. Let α, β be in OK . By Lemma 2.11 the ring Z[α, β] is a finitely-
generated Z-module. This ring contains α+ β and αβ; it now follows from Propo-
sition 2.9 that α + β and αβ are algebraic integers, and therefore that OK is a
ring. �

Next we show that OK is integrally closed in K; this is our first condition.
Lemma 2.13. Let f(x) be a monic polynomial with coefficients in OK . Let

α ∈ K be a root of f(x). Then α ∈ OK . In particular, OK is integrally closed in
K.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a0 with ai ∈ OK . Let S be the

ring Z[a0, . . . , an−1]; Lemma 2.11 show that S is a finitely generated Z-module.
Now, since f(x) is monic with coefficients in S, the ring S′ = S[α] will be finitely
generated over S, with generators 1, α, . . . , αn−1 (not necessarily a basis). Thus S′

is finitely generated over S, which in turn is finitely generated over Z; it follows
easily that S′ is finitely generated over Z. Since α ∈ S′, we now conclude by
Proposition 2.9 that α is an algebraic integer. �

The last thing we need to show is that OK satisfies the third condition.
Lemma 2.14. OK ∩Q = Z.

Proof. Let α be a rational number which is integral over Z. Then by Propo-
sition 2.9 the minimal polynomial x− α has coefficients in Z; that is, α ∈ Z. �

More generally, we have the following.
Lemma 2.15. Let K and L be number fields such that K ⊆ L. Then

OK = OL ∩K.

Proof. OL is the subset of L of elements which satisfy monic integer poly-
nomials. Therefore, OL ∩ K is just the set of elements of K which satisfy monic
integer polynomials; in other words, OK . �

We have seen, then, that OK satisfies all of the conditions which we had set
down. In the next section we give the fundamental algebraic description of OK .

2.3. Integral bases. Let K be a number field of degree n. Recall that K is
a Q-vector space of dimension n. A natural question is whether or not a similar
statement can be made about OK as a Z-module. Remarkably, it turns out that
the strongest analogue of the Q-statement is true: OK is a free Z-module of rank
n. We will prove this fact in this section. (Note that if we knew that OK was a
finitely-generated Z-module, then the fact that it was a free Z-module would follow
immediately from the fact that it was torsion-free. However, the fact that OK is a
finitely-generated Z-module is not immediately clear. Even if we knew it was, and
thus that A is a free Z-module, it still would not be obvious that it actually had
rank n.)

To begin with, let α1, . . . , αn be a Q-basis for K. Further assume that the αi
are all algebraic integers; this can be done by applying Lemma 2.10 to any Q-basis
for K. Since the αi satisfy no linear dependence with Q-coefficients, they certainly
satisfy no linear dependence with Z-coefficients; thus

Zα1 + Zα2 + · · ·+ Zαn
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is a free Z-module of rank n. Furthermore, it is clearly contained in OK ; thus OK
contains a free Z-module of rank n. To complete the proof we will just need to find
some free Z-module of rank n which contains OK .

This direction requires a bit more care. Our basic strategy is the following: let
α1, . . . , αn be a Q-basis for K consisting entirely of algebraic integers. Then any
α ∈ K can be written uniquely as

a1α1 + · · ·+ anαn

for some ai ∈ Q. We want to find some bound on the possible denominators for the
ai in the case that α is an algebraic integer; the desired result will follow easily from
this. The bound in question is a number which comes up very often in algebraic
number theory.

Definition 2.16. Let K be a number field of degree n with complex embed-
dings σ1, . . . , σn. Let α1, . . . , αn be elements of K. The discriminant ∆(α1, . . . , αn)
of this n-tuple is defined to be the square of the determinant of the n× n matrix(

σi(αj)
)
.

Example 2.17. Take K = Q(
√

2) and α1 = 1, α2 =
√

2. Then

∆(1,
√

2) = det
(

1
√

2
1 −

√
2

)2

= (−
√

2−
√

2)2 = 8.

Note that the squaring kills any −1 factors coming from changing the order of
the αi, so that ∆(α1, . . . , αn) depends only on the numbers themselves and not on
the order. The discriminant has a second fundamental expression.

Lemma 2.18. Let K be a number field as above and let α1, . . . , αn be elements
of K. Then ∆(α1, . . . , αn) is equal to the determinant of the n× n matrix(

TrK/Q(αiαj)
)
.

Proof. Let A = (σi(αj)). Since detAt = detA (where At is the transpose of
A), we see that ∆(α1, . . . , αn) is equal to the determinant of At · A. The ij entry
of this matrix is

n∑
k=1

σk(αi)σk(αj) =
n∑
k=1

σk(αiαj) = TrK/Q(αiαj)

by Corollary I.5.5. This proves the lemma. �

Corollary 2.19. ∆(α1, . . . , αn) ∈ Q; if the αi are all algebraic integers, then
∆(α1, . . . , αn) ∈ Z.

Proof. This follows immediately from Lemma 2.18 and the corresponding
results for the trace. �

Example 2.20. We will use Lemma 2.18 to recompute the discriminant of
Example 2.17. We have Tr

Q(
√

2)/Q(a+ b
√

2) = 2a, so

∆(1,
√

2) = det
(

Tr(1) Tr(
√

2)
Tr(
√

2) Tr(2)

)
= det

(
2 0
0 4

)
= 8

as before.
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The first use of the discriminant is in determining if a collection of elements of
K is a basis; that is, α1, . . . , αn is a Q-basis for K if and only if ∆(α1, . . . , αn) is
non-zero. (See Exercise 2.20.) The second use of the discriminant is the following
result.

Proposition 2.21. Let K be a number field of degree n and let α1, . . . , αn be
a Q-basis for K consisting entirely of algebraic integers. Set ∆ = ∆(α1, . . . , αn).
Fix α ∈ OK and write

α = a1α1 + · · ·+ anαn

with each ai ∈ Q. Then ∆ai ∈ Z for all i.

Proof. Note that by Corollary 2.19 and Exercise 2.20 ∆ is a non-zero integer,
so the statement of the proposition makes sense. To prove the proposition, apply
the embedding σi to the expression for α, yielding

σi(α) = a1σi(α1) + · · ·+ anσi(αn).

This can be considered to be a system of n linear equations in the n “unknowns”
a1, . . . , an; that is, we have the matrix equation

σ1(α)
σ2(α)

...
σn(α)

 =


σ1(α1) σ1(α2) · · · σ1(αn)
σ2(α1) σ2(α2) · · · σ2(αn)

...
...

...
σn(α1) σn(α2) · · · σn(αn)




a1

a2

...
an


By Cramer’s rule, this has the unique solution

ai = γi/δ

where δ is the determinant of A = (σi(αj)) (so that δ2 = ∆; in particular, the
solution is unique since ∆ 6= 0) and γi is the determinant of the matrix obtained
from A by replacing the ith column by (σj(α)). Note that both γi and δ are algebraic
integers, since each entry in each matrix is. Since δ2 = ∆, we have

∆ai = δγi.

The left-hand side is rational and the right-hand side is an algebraic integer, so both
sides must be rational integers by Lemma 2.14. This proves the proposition. �

Theorem 2.22. Let K be a number field with ring of integers OK . Let n =
[K : Q]. Then OK is a free Z-module of rank n.

Proof. Let α1, . . . , αn be a Q-basis for K consisting entirely of algebraic in-
tegers. We have

Zα1 + · · ·Zαn ⊆ OK ,
and by Proposition 2.21 we have

OK ⊆
1
∆

(Zα1 + · · ·Zαn)

where ∆ = ∆(α1, . . . , αn). Thus we have shown that OK lies between two free
Z-modules of rank n; it follows from Appendix C, Section 5 that OK itself is free
of rank n. �

Corollary 2.23. Let K be a number field with ring of integers OK . Then OK
is noetherian.
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Proof. By Theorem 2.22 we can find a Z-basis α1, . . . , αn for OK . Thus, in
particular,

OK = Z[α1, . . . , αn].
(This is far weaker than Theorem 2.22, but it is all that we need at the moment.)
This allows us to define a surjective homomorphism

Z[x1, . . . , xn]� OK
sending xi to αi. Since Z[x1, . . . , xn] is noetherian (see Example C.3.2) and quo-
tients of noetherian rings are noetherian (see Exercise 2.8), this implies that OK is
noetherian. �

A Z-basis for OK is called an integral basis. In contrast to the situation
with number fields, it is not always possible to find an integral basis of the form
1, α, α2, . . . , αn−1; that is, one can not always write OK = Z[α] for some α. This
tends to complicate things quite a bit; fortunately, in the situations we will be most
interested in we will always have an expression of this form.

We conclude with one last definition. We define the discriminant ∆K of the
number field K to be the discriminant of any integral bases of K; that this is
independent of the choice of integral basis is Exercise 2.21. The discriminant is an
extremely useful invariant of the number field, although we will not make much use
of it in this course.

2.4. Integers in quadratic fields. Let K = Q(
√
d) be a quadratic field,

where d is a squarefree integer distinct from 1. In this section we will determine
the ring of integers OK .

Lemma 2.14 tells us that OK ∩Q = Z, so we need only consider α ∈ K which
do not lie in Q. We can write such an α as α = a + b

√
d with b 6= 0. Since α is

automatically a primitive element for K, its minimal polynomial is the same as its
characteristic polynomial. This we computed in Section I.3; it is just

x2 − 2ax+ (a2 − b2d).

By Proposition 2.9, α is an algebraic integer if and only if

2a ∈ Z and a2 − b2d ∈ Z.
It is immediately clear from this that Z[

√
d] ⊆ OK , as then both a, b ∈ Z; however,

it is still possible that there are additional integral elements.
Suppose first that a ∈ Z. Then a2 ∈ Z, so b2d ∈ Z. Since d is squarefree this

implies that b ∈ Z; thus we do not get any additional integers in this case.
The other case is that a = a1/2, where a1 ∈ Z is odd. Since

a2
1

4
− b2d ∈ Z

we must have b = b1/2 where b1 in Z is also odd. Substituting this in, we find that

a2
1 − b21d ≡ 0 (mod 4),

this being an ordinary congruence over the integers. Now, since a1 and b1 are both
odd,

a2
1 ≡ b21 ≡ 1 (mod 4).

Substituting these in, we find that

1− d ≡ a2
1 − b21d ≡ 0 (mod 4),
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so
d ≡ 1 (mod 4).

Thus in the case that d ≡ 2, 3 (mod 4) there are no algebraic integers with a half
an odd integer; if d ≡ 1 (mod 4), then there are additional integers of the form

a1 + b1
√
d

2

where a1 and b1 are odd. (Note that d ≡ 0 (mod 4) can not happen since d is
squarefree.) We summarize this in the following proposition.

Proposition 2.24. Let K = Q(
√
d) be a quadratic field with d a squarefree

integer. If d ≡ 2, 3 (mod 4), then OK = Z[
√
d] ∼= Z[x]/(x2 − d) and OK is free

of rank 2 over Z with basis 1,
√
d. If d ≡ 1 (mod 4), then OK = Z[ 1+

√
d

2 ] ∼=
Z[x]/(x2 − x+ 1−d

4 ) and OK is free of rank 2 over Z with basis 1, 1+
√
d

2 .

Proof. The previous discussion makes the proposition clear in the case that
d ≡ 2, 3 (mod 4); it is easy to see that Z[

√
d] is free of rank 2 over Z with the

asserted basis. If d ≡ 1 (mod 4), then we have

OK =
{
a+ b

√
d | a, b ∈ Z

}
∪

{
a+ b

√
d

2
| a, b ∈ Z, a, b odd

}
.

One can then check that OK = Z[ 1+
√
d

2 ] by direct computation; we leave this to the
reader. The minimal polynomial of 1+

√
d

2 is x2 − x + 1−d
4 , which yields the other

expression for OK . �

2.5. More examples of rings of integers. Given an arbitrary number field
K it is a difficult computational task to determine the ring of integers. There are
several very clever algorithms available; see [5]. We will content ourselves with
stating a few more examples.

We first consider the case of biquadratic fields; these are fields of the form K =
Q(
√
d,
√
e) = Q[x, y]/(x2− d, y2− e) where d and e are distinct squarefree integers.

That such a field has degree 4 was (pretty much) shown in Exercise 1.17. Note first
that K contains the square root of one other squarefree integer: f = de/(d, e)2.
Note also that if one starts with e and f , the third integer computed is d, and
similarly if one starts with d and e.

Proposition 2.25. Let K = Q(
√
d,
√
e,
√
f) be a biquadratic field as above.

Then we have the following possibilities for the ring of integers OK :

(1) If d ≡ 3 (mod 4) and e, f ≡ 2 (mod 4), then

1,
√
d,
√
e,

√
e+
√
f

2
is an integral basis for OK .

(2) If d ≡ 1 (mod 4) and e, f ≡ 2 or 3 (mod 4), then

1,
1 +
√
d

2
,
√
e,

√
e+
√
f

2
is an integral basis for OK .
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(3) If d, e, f ≡ 1 (mod 4), then

1,
1 +
√
d

2
,

1 +
√
e

2
,

(
1 +
√
d

2

)(
1 +
√
f

2

)
is an integral basis for OK .

Proof. See Exercise 2.11 for the case of Q(
√

2,
√

3). The general case is sim-
ilar. Note that despite appearances the cases listed cover all possible cases, up to
re-ordering of d, e, f . �

Next we consider the case of a pure cubic field K = Q( 3
√
d) ∼= Q[x]/(x3 − d)

where d is a cubefree integer. (In contrast to the quadratic case, not all cubic fields
are of this form.) Write d = ef2 where e and f are squarefree and relatively prime;
this amounts to grouping all of the p such that p2 divides d into f and putting the
rest in e.

Proposition 2.26. Let K = Q( 3
√
d) be a pure cubic field as above. Then we

have the following possibilities for the ring of integers OK .

(1) If d ≡ 0, 2, 3, 4, 5, 6, 7 (mod 9), then

1, 3
√
d,

3
√
d

2

f

is an integral basis for OK .
(2) If d ≡ 1 (mod 9), then

1, 3
√
d,

3
√
d

2
+ f2 3

√
d+ f2

3f

is an integral basis for OK .
(3) If d ≡ 8 (mod 9), then

1, 3
√
d,

3
√
d

2
− f2 3

√
d+ f2

3f

is an integral basis for OK .

Proof. We omit the proof. For a sketch see [14, Chapter 2, Exercise 41]. �

As a final example we consider cyclotomic fields. In this case, thankfully, things
work out to be somewhat simpler.

Proposition 2.27. Let K = Q(ζm) be the mth cyclotomic field. Then OK =
Z[ζm]; thus OK has integral basis

1, ζm, . . . , ζϕ(m)−1
m .

We will prove this proposition in the case that m is a prime (which is the only
case we will need in the applications) in Section 4.
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3. Unique factorization of ideals in Dedekind domains

3.1. Dedekind domains. Our next goal is to prove that rings of integers of
number fields have unique factorization into ideals. The proof we will give works
for a larger class of rings called Dedekind domains; as is often the case in algebra,
the proof becomes somewhat easier to follow when abstracted to the appropriate
axiomatic setting.

Definition 3.1. Let R be an integral domain with field of fractions K. R is
said to be a Dedekind domain if it has the following three properties.

(1) R is noetherian;
(2) R is integrally closed in K;
(3) Every non-zero prime ideal of R is a maximal ideal. (R is said to have

dimension ≤ 1.)
Of course, in order for this to be useful to us we must show that rings of integers

are Dedekind domains. We will need the following useful lemma in the proof.
Lemma 3.2. Let K be a number field and let a be a non-zero ideal of OK . Then

a ∩ Z is non-zero; that is, a contains some non-zero integer.

Proof. Let α be any non-zero element of a; in particular, α is an algebraic
integer. We claim that NK/Q(α) ∈ a; since it is a rational integer, this will prove
the lemma.

In order to prove this we will need to consider K as a subfield of the complex
numbers. So let σ : K ↪→ C be some fixed complex embedding of K. Let α1, . . . , αn
be the images of α under the different complex embeddings of K, ordered so that
α1 = σ(α). By Corollary I.5.5 we have

NK/Q(α) = α1 · · ·αn.
Set α′ = α2 · · ·αn. α′ is an algebraic integer since it is a product of algebraic
integers, and it is in σ(K) since

α′ =
NK/Q(α)

α1

and both factors on the right are in σ(K). Thus α′ is in σ(OK). Let α′′ ∈ OK be
such that σ(α′′) = α′. Since a is an ideal and α ∈ a we have

α′′α ∈ a;

since α′′α = NK/Q(α) this completes the proof. �

Proposition 3.3. Let K be a number field. Then the ring of integers OK is a
Dedekind domain.

Proof. ThatOK is noetherian is Corollary 2.23, and that it is integrally closed
in K is Lemma 2.13. Thus it remains to show that every non-zero prime ideal of
OK is maximal. So let p be a non-zero prime ideal of OK . By Lemma 3.2 there is
some non-zero rational integer m in p. (We will see later that m could be taken to
be a prime number, but we don’t need this at the moment.) Thus there is a natural
surjection

OK/
(
m
)
� OK/p.

Now, by Theorem 2.22, OK is a free Z-module of rank n = [K : Q]. It follows
easily that OK/(m) is finite and has size mn. Since this ring surjects onto OK/p,
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it follows that OK/p is finite. Finally, since p is prime OK/p is an integral domain;
since it is also finite, Exercise 2.6 implies that it is actually a field, so that p is a
maximal ideal, as claimed. �

There are other examples of Dedekind domains that come up in mathemat-
ics (for example, the local ring of a nonsingular point on an algebraic curve is a
Dedekind domain), but we will not take the time to consider them here.

Before we begin the proof of unique factorization into ideals, let us consider
briefly some of the peculiarities of ideal arithmetic. The main issue is that every-
thing seems to happen backwards. For example, let (m) and (n) be ideals in Z.
Then the ideal (m)(n) = (mn) is smaller (as a set) than either of the ideals (m)
and (n), although the integer mn is larger in absolute value than either m or n.
Thus the larger the number, the smaller the ideal. The same sort of behavior holds
in arbitrary Dedekind domains, and one must always remember to take it into ac-
count. In particular, in a Dedekind domain the prime ideals are the largest ideals
even though one would usually think of them as being the “smallest” elements.

3.2. Invertible ideals. Let R be a Dedekind domain with field of fractions K
and let a be a non-zero ideal of R. The key step in the proof of unique factorization
of ideals is to show that there is some other ideal b of R such that ab is principal;
after we prove this result, the remainder of the proof is pretty easy, as it is easy to
do manipulations with principal ideals.

We will eventually need to prove that every ideal of R equals a product of prime
ideals. We begin with a weaker statement.

Lemma 3.4. Let a be a non-zero ideal of R. Then there exist (not necessarily
distinct) non-zero prime ideals p1, . . . , pk of R such that

a ⊇ p1 · · · pk.

Proof. Let S be the set of non-zero ideals of R which do not contain a product
of non-zero prime ideals. Suppose that S is non-empty. Since R is noetherian S
has a maximal element, say a. a is certainly not prime, since then it would contain
a product of prime ideals (namely, itself). Thus there exist α, β ∈ OK such that
α, β /∈ a but αβ ∈ a. Consider now the ideals a+

(
α
)

and a+
(
β
)
, which are strictly

larger than a and thus not in S. Therefore a +
(
α
)

and a +
(
β
)

both contain a
product of non-zero prime ideals, by the definition of S. But then the same is true
of (

a + (α)
)(

a + (β)
)

= a · a + αa + βa + αβ ⊆ a.

This is a contradiction, so S is empty; this proves the lemma. �

Note that the proof of this lemma is very similar to the proof of Proposi-
tion C.3.3.

The next step is to show that pairs of ideals of R can be distinguished from
each other by a single element of K, even though the ideals themselves may not be
principal. We will only need this at the moment in the case that one of the ideals
is all of R, so we prove only this version.

Lemma 3.5. Let a be a non-zero ideal of R such that a 6= R. Then there exists
γ ∈ K such that γ /∈ R and γa ⊆ R.
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The lemma just says that a is significantly distinct from R in the sense that
there is some non-integral element of K we can multiply it by which will not cause
the ideal to become non-integral. R itself certainly does not have this property, for
example.

Proof. Fix any non-zero α in a. By Lemma 3.4 the principal ideal
(
α
)

contains
some product of non-zero prime ideals; choose (not necessarily distinct) primes
p1, . . . , pk such that (

α
)
⊇ p1 · · · pk

and k is as small as possible. Since R is noetherian, it is also true that a is contained
in some maximal ideal p. (Some might claim that this statement is true independent
of whether or not R is noetherian.) Thus

p ⊇ a ⊇
(
α
)
⊇ p1 · · · pk.

It follows from Exercise 2.9 that p contains one of the pi; we assume without loss
of generality that it is p1. Since R is Dedekind, p1 is a maximal ideal, and thus
p = p1.

Now, since
(
α
)

contains no product of k − 1 prime ideals, there must exist
some β ∈ p2 · · · pk such that β /∈

(
α
)
. Set γ = β/α. We claim that γ satisfies the

conditions of the lemma. First of all, γ /∈ R since β /∈
(
α
)
. For the other part, if

α′ ∈ a, then

γα′ =
βα′

α
.

But α′ ∈ a ⊆ p = p1, so
βα′ ∈ p1p2 · · · pk ⊆

(
α
)
;

thus γα′ = βα′/α ∈ R, as claimed. �

We are now in a position to prove that every ideal of R is “invertible”, using
the above two lemmas and the fact that R is integrally closed in K. (Note that we
used the fact that R is noetherian very explicitly in Lemma 3.4 and the fact that
R has dimension ≤ 1 in Lemma 3.5.)

Proposition 3.6. Let R be a Dedekind domain and let a be a non-zero ideal
of R. Then there is some non-zero ideal b of R such that ab is principal.

Proof. Fix any non-zero α ∈ a and set

b = {β ∈ R | βa ⊆
(
α
)
}.

One checks easily that b is a non-zero ideal, and by definition we have ab ⊆
(
α
)
.

We will prove that we have equality.
To do this, we consider

c =
1
α

ab.

One checks immediately that c is an ideal of R, and to show that ab =
(
α
)

is visibly
the same as to show that c = R. So suppose that c 6= R. Then by Lemma 3.5 we
can find γ ∈ K such that γ /∈ R and γc ⊆ R. We will show that γ is satisfies a
monic polynomial with coefficients in R; since R is integrally closed in K, this will
imply that γ ∈ R, which is a contradiction.
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We want to apply the methods of Proposition 2.9 (5) ⇒ (1). At the moment
we have a submodule c of K such that γc ⊆ R, which isn’t quite good enough.
Note, however, that b ⊆ c since α ∈ a. Thus

γb ⊆ γc ⊆ R.
We will show that γb ⊆ b.

So, take an arbitrary element β ∈ b. We want to show that γβ ∈ b. To do this
we will show that for all α′ ∈ a, we have

γβα′ ∈
(
α
)
;

this will imply that γβ ∈ b by the definition of b. (Note that γβ ∈ R since
γβ ∈ γb ⊆ γc ⊆ R.) So fix α′ ∈ a. Then βα′ ∈

(
α
)

by definition of b, so we can
write βα′ = αδ for some δ ∈ R. Now, visibly δ ∈ c, so γδ ∈ γc ⊆ R. So, finally,

γβα′ = (γδ)α ∈
(
α
)
.

Thus γβ ∈ b; since this is true for all β ∈ b, we have γb ⊆ b. But b is an ideal of R,
and thus finitely generated over R. We can not directly apply Proposition 2.9, since
that requires that b be finitely generated over Z, but the same method as used there
constructs a monic polynomial with coefficients in R which γ satisfies. Specifically,
let b1, . . . , bk be a finite R-generating set for b (we do not require that they are
a basis; this is important, since b need not be free), and let A be the matrix for
multiplication by γ with respect to this basis. The Cayley-Hamilton theorem still
applies to show that γ satisfies the characteristic polynomial of this matrix, which
is a monic polynomial with coefficients in R. (Convince yourself that it doesn’t
matter that the bi are not a basis.) Since R is integrally closed, this implies That
γ ∈ R, which is the desired contradiction. �

3.3. Factorizations of ideals. With Proposition 3.6 in hand it will not be
difficult to prove unique factorization of ideals. We first give some useful preliminary
results. We continue to let R be a Dedekind domain with field of fractions K.

Lemma 3.7. Let a, b, c be ideals of R. Suppose that ab = ac. Then b = c.

Proof. Let a′ be an ideal of R such that aa′ is principal; a′ exists by Propo-
sition 3.6. Let α be a generator of aa′. Then

a′ab = a′ac

αb = αc

which implies that b = c. �

This lemma is not true if R is not a Dedekind domain; see the case of Z[
√
−3]

in Section 1.4.
If a and b are ideals of R, we say that b divides a if there is some third ideal

c such that a = bc. Note in particular that this implies that b ⊇ a; in Dedekind
domains these statements are actually equivalent.

Lemma 3.8. Let a and b be ideals of R. Then b divides a if and only if b ⊇ a.

Proof. We have already seen one direction, so suppose that b ⊇ a. Let b′ be
such that bb′ is principal, say bb′ =

(
β
)
. One verifies easily that c = 1

β b′a is an
ideal of R (using the fact that b ⊇ a). We compute

bc =
1
β

bb′a =
1
β

(
β
)
a = a,
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so b divides a, as claimed. �

We now prove the unique factorization theorem. We will say that an ideal a of
R factors into primes if we can write

a = p1 . . . pk

where the pi are non-zero prime ideals of R. We will say that a factors uniquely
into primes if any two such factorizations are the same up to rearrangement of
the factors. (Note that the whole business of units and associates does not enter
into these definitions since units are irrelevant on the level of ideals and associates
generate the same ideal.)

Theorem 3.9. Let R be a Dedekind domain. Then every non-zero ideal of R
factors uniquely into prime ideals.

Proof. We first show that every non-zero ideal of R actually factors into
primes. Let S be the set of non-zero ideals of R which do not factor into primes.
Suppose that S is non-empty. Since R is noetherian, S has a maximal element,
say a. We know that a is contained in some maximal ideal p; by Lemma 3.8 this
implies that a = pb for some ideal b. Lemma 3.8 now implies that b ⊇ a; in fact,
we also have b 6= a since if it did, Lemma 3.7 would imply that R = p, which it
does not. Thus b /∈ S, since a is a maximal element of S, so it factors into primes;
now so does a = pb, which is a contradiction. Thus S is empty, so every non-zero
ideal of R factors into primes.

We now show that this factorization is unique. Let a be an ideal with two
factorizations, say

p1 · · · pr = a = q1 · · · qs.
Lemma 3.8 shows that p1 ⊇ q1 . . . qs, and now Exercise 2.9 implies that p1 ⊇ qi
for some i. Reordering the qj if necessary, we assume that p1 ⊇ q1. Since every
non-zero prime of R is maximal, this implies that p1 = q1. Using Lemma 3.7 we
can cancel p1 = q1 from both sides, leaving us with

p2 · · · pr = q2 · · · qs.

Continuing in this way we find that r = s and that the factors on each side are
identical. This proves the theorem. �

4. Rings of integers in cyclotomic fields

Let p be a rational prime and let K = Q(ζp). We write ζ for ζp for this section.
Recall that K has degree ϕ(p) = p − 1 over Q. We wish to show that OK = Z[ζ].
Note that ζ is a root of xp − 1, and thus is an algebraic integer; since OK is a ring
we have that Z[ζ] ⊆ OK . We need to show the other inclusion.

Following [15], we give a proof without assuming unique factorization of ideals.
We begin with some norm and trace computations. Let j be any integer. If j is
not divisible by p, then ζj is a primitive pth root of unity, and thus its conjugates
are ζ, ζ2, . . . , ζp−1. Therefore

TrK/Q(ζj) = ζ + ζ2 + · · ·+ ζp−1 = Φp(ζ)− 1 = −1.

If p does divide j, then ζj = 1, so it has only the one conjugate 1, and

TrK/Q(ζj) = p− 1.
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By linearity of the trace, we find that

TrK/Q(1− ζ) = TrK/Q(1− ζ2) = · · · = TrK/Q(1− ζp−1) = p.

We also need to compute the norm of 1− ζ. For this, we use the factorization

xp−1 + xp−2 + · · ·+ 1 = Φp(x) = (x− ζ)(x− ζ2) · · · (x− ζp−1);

plugging in x = 1 shows that

p = (1− ζ)(1− ζ2) · · · (1− ζp−1).

Since the 1− ζj are the conjugates of 1− ζ, this shows that

NK/Q(1− ζ) = p.

The key result for determining the ring of integers OK is the following.
Lemma 4.1.

(1− ζ)OK ∩ Z = pZ.

Proof. We saw above that p is a multiple of 1− ζ in OK , so the inclusion

(1− ζ)OK ∩ Z ⊇ pZ

is immediate. Suppose now that the inclusion is strict. Since (1− ζ)OK ∩ Z is an
ideal of Z (check the definition) containing pZ and pZ is a maximal ideal of Z, we
must have

(1− ζ)OK ∩ Z = Z.

Thus we can write
1 = α(1− ζ)

for some α ∈ OK . That is, 1 − ζ is a unit in OK . But this is impossible by
Lemma 1.9, since we know that 1− ζ has norm p, while units have norm ±1. This
is a contradiction, which proves the lemma. �

Corollary 4.2. For any α ∈ OK ,

TrK/Q
(
(1− ζ)α

)
∈ p · Z.

Proof. We have

TrK/Q
(
(1− ζ)α

)
= σ1((1− ζ)α) + · · ·+ σp−1((1− ζ)α)

= σ1(1− ζ)σ1(α) + · · ·+ σp−1(1− ζ)σp−1(α)

= (1− ζ)σ1(α) + · · ·+ (1− ζp−1)σp−1(α)

where the σi are the complex embeddings of K (which we are really viewing as
automorphisms of K) with the usual ordering. Furthermore, by Exercise 2.12 1−ζj
is a multiple of 1− ζ in OK for every j 6= 0. Thus

TrK/Q
(
α(1− ζ)

)
∈ (1− ζ)OK .

Since the trace is also a rational integer, Lemma 4.1 completes the proof. �

Proposition 4.3. Let p be a prime number and let K = Q(ζp) be the pth

cyclotomic field. Then
OK = Z[ζp] ∼= Z[x]/(Φp(x));

thus 1, ζp, . . . , ζp−2
p is an integral basis for OK .
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Proof. Let α ∈ OK and write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

with ai ∈ Q. Then

α(1− ζ) = a0(1− ζ) + a1(ζ − ζ2) + · · ·+ ap−2(ζp−2 − ζp−1).

By the linearity of the trace and our above calculations we find that

TrK/Q
(
α(1− ζ)

)
= pa0.

By Corollary 4.2 we also have

TrK/Q
(
α(1− ζ)

)
∈ pZ,

so a0 ∈ Z.
Next consider the algebraic integer

(α− a0)ζ−1 = a1 + a2ζ + · · ·+ ap−2ζ
p−3;

this is an algebraic integer since ζ−1 = ζp−1 is. The same argument as above shows
that a1 ∈ Z, and continuing in this way we find that all of the ai are in Z. This
completes the proof. �

One can use an almost identical proof in the case where ζ is a pk-root of unity
for some k. The case of ζm where m has multiple prime factors is usually handled
by a general lemma on rings of integers in compositums of number fields (see [14,
Chapter 2, Theorem 12]).
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5. Exercises

5.1. A Diophantine equation.

Exercise 2.1. Determine all right triangles with integer sides and one leg of
length 21.

5.2. Problems on Z[i], Z[
√
−2] and Z[ζ3].

Exercise 2.2. Let p be a positive prime in Z. Show that −1 is a square modulo
p if and only if p = 2 or p ≡ 1 (mod 4). Can you give any sort of explicit expression
for
√
−1 in this case?

Exercise 2.3. Complete the analysis of the factorization of primes congruent
to 1 modulo 4 in Proposition 1.5.

Exercise 2.4. Show that Z[
√
−2] is Euclidean and analyze the factorization

of rational primes in this ring. What can you conclude about primes of the form
x2 + 2y2?

Exercise 2.5. Show that Z[ζ3] is Euclidean and analyze the factorization of
rational primes in this ring. About what quadratic form do we obtain information
this time?

5.3. Problems on ideals.

Exercise 2.6. Show that every finite commutative integral domain is a field.

Exercise 2.7. Let R be a commutative ring. Show that the following proper-
ties are equivalent.

(1) Every ideal of R is finitely generated; that is, if I is an ideal, then there
exist a1, . . . , an ∈ I such that

I = {r1a1 + · · ·+ rnan | ri ∈ R}.

(2) Every increasing sequence of ideals of R eventually stabilizes; that is, if

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

then there exists an N such that for all n, n′ > N , In = In′ .
(3) Every non-empty set S of ideals of R contains a maximal element. (Recall

that this means that there is an ideal I ∈ S such that S contains no ideal
strictly containing I. Note that a set can have many maximal elements.)

If R satisfies the above equivalent conditions, then R is said to be noetherian.

Exercise 2.8. Let R be a noetherian ring and let I be an ideal of R. Show
that R/I is noetherian.

Exercise 2.9. Let R be a ring, let p be a prime ideal and let I1, . . . , In be
ideals of R. Suppose that

p ⊇ I1 · · · In.
Show that p ⊇ Ii for some i.

5.4. Problems on rings of integers.

Exercise 2.10. Show that a Dedekind domain is a UFD if and only if it is a
PID. (This is not true in general.)
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Exercise 2.11. Compute the ring of integers in K = Q(
√

2,
√

3). (Hint:
Note that

√
6 ∈ K. First show that α ∈ K is an algebraic integer if and only

if TrK/Q(
√

2)(α) and NK/Q(
√

2)(α) are algebraic integers. Next show that the same
is true if

√
2 is replaced by

√
3 or

√
6. Now consider an arbitrary element

α = a+ b
√

2 + c
√

3 + d
√

6 ∈ K
with a, b, c, d ∈ Q, and use the trace conditions to restrict a, b, c, d when α is an
integer. Use norms to finish the analysis.)

5.5. Problems on cyclotomic fields.
Exercise 2.12. Show that 1 − ζip and 1 − ζjp are associates in Z[ζp] for any i

and j which are not divisible by p.
Exercise 2.13. Show that the ideal

(
1−ζp

)
is a prime in Z[ζp]. Conclude that

the ideal (p) factors as (1− ζp)p−1.
Exercise 2.14. Redo exercises 2.12 and 2.13 for ζpn . Specifically, show that

1− ζipn and 1− ζjpn are associates in Z[ζpn ] for any i and j which are not divisible
by p; show that

(
1 − ζpn

)
is a prime ideal in Z[ζpn ]; and show that

(
p
)

factors as(
1− ζpn

)ϕ(pn).
Exercise 2.15. Show that 1 − ζm is a unit in Z[ζm] if and only if m is not a

prime power.
Exercise 2.16. Let K be a number field with complex embeddings σ1, . . . , σn.

Let α ∈ K be an algebraic integer such that σi(α) has absolute value 1 for every i.
Show that α is a root of unity. (Hint: Show that there are only finitely many such
α in K.)

Exercise 2.17. Let u be a unit in Z[ζp] Show that u/ū is a power of ζp. Here
ū is the complex conjugate of u.

Exercise 2.18. For m ≥ 2, let Q(ζm)+ be the subfield of Q(ζm) corresponding
to the subgroup {±1} of Gal(Q(ζm)/Q) ∼= (Z/mZ)∗. Show that Q(ζm)+ = Q(ζm+
ζ−1
m ) and that every complex embedding of Q(ζm)+ has image in R. Q(ζm)+ is

called the maximal real subfield of Q(ζm).
Exercise 2.19. Show that the ring of integers of Q(ζm)+ is Z[ζm + ζ−1

m ].

5.6. Problems on discriminants.
Exercise 2.20. Let K be a number field of degree n and let α1, . . . , αn be

elements of K. Show that the αi form a basis for K if and only if ∆(α1, . . . , αn) 6= 0.
Exercise 2.21. Let K be a number field with ring of integers OK . Suppose

that we have two integral bases α1, . . . , αn and α′1, . . . , α
′
n of OK . Show that

∆(α1, . . . , αn) = ∆(α′1, . . . , α
′
n).

Exercise 2.22. LetK = Q(
√
d) be a quadratic number field with d a squarefree

integer. Show that

∆K =

{
d d ≡ 1 (mod 4);
4d d ≡ 2, 3 (mod 4).





CHAPTER 3

Prime Splitting

In this chapter we will investigate how to explicitly factor ideals in rings of
integers of number fields. A common theme will be considering ideals of one ring
in another. Specifically, we will often have the following situation: K and L will
be number fields with K ⊆ L (so OK ⊆ OL), a will be an ideal of OK , and we will
consider the ideal aOL of OL generated by a. We will be especially interested in
the case where a = p is a prime of OK ; determining how pOL factors into primes
of OK (even though p is prime in OK , it doesn’t still have to be prime in OL) will
be the key to our factorization results.

One other construction which is sometimes useful is to take a prime P of OL
and to consider the ideal P ∩ OK of OL; this ideal is necessarily prime since there
is an injection

OK/P ∩ OK ↪→ OL/P
and subrings of integral domains are again integral domains.

Very often we will be considering the case of an extension K/Q, in which case
the relevant ideals are of the form pOK for rational primes p. Note that we could
also write these ideals as

(
p
)
, assuming that the ring the principal ideal is formed

in is clear from context.

1. Example : Quadratic number fields

1.1. The prime ideals. Before we restrict to the case of quadratic number
fields, we prove the following useful fact about prime ideals.

Lemma 1.1. Let K be a number field and let p be a non-zero prime ideal of
OK . Then p contains a rational prime.

Proof. By Lemma II.3.2 we know that p contains a non-zero integer. Let n
be the smallest positive integer in p; n is not 1 since p 6= OK . Suppose that n is
not prime in Z. Then n factors as ab for some a, b ∈ Z+; since p is a prime ideal
it must contain at least one of a and b. But both of these factors are smaller than
n, which contradicts the definition of n. Thus n must be prime, which proves the
lemma. �

Lemma 1.1 tells us that every prime of OK contain a rational prime; it then
follows from Lemma II.3.8 that all non-zero primes of OK divide an ideal of the
form pOK for some prime p of Z. In particular, we can determine all primes of OK
simply by determining the factorization of these ideals pOK . Our main results will
be explicit determinations of these factorizations.

In the calculations below we will be working with polynomials both in Z[x] and
in Fp[x]. We will write ḡ(x) for polynomials in Fp[x], and we will then let g(x)

53
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denote some choice of a polynomial in Z[x] reducing modulo p to ḡ(x); the precise
choice of g(x) will never matter.

We now restrict to the case of quadratic number fields. Let K = Q(
√
d) be

a quadratic number field, where d is a squarefree integer. Set α =
√
d if d ≡ 2, 3

(mod 4) and α = 1+
√
d

2 if d ≡ 1 (mod 4), so that OK = Z[α]. Let f(x) be the
minimal polynomial of α, so that f(x) = x2 − d if d ≡ 2, 3 (mod 4) and f(x) =
x2 − x+ 1−d

4 if d ≡ 1 (mod 4).
Let p be a rational prime. To determine the factorization of the ideal pOK in

OK we will compute in an easier setting. Specifically, pOK is the kernel of the map

OK → OK/pOK ,

and we will find a second expression for this kernel. To do this, recall that OK ∼=
Z[x]/(f(x)), where under the isomorphism α corresponds to x. We now have

OK/pOK ∼=
(
Z[x]/f(x)

)
/p ∼= Z[x]/(p, f(x)).

This last ring is isomorphic to

Fp[x]/(f̄(x)),

and here we can finally compute easily.
There are three possibilities for the factorization of f̄(x) in Fp[x]. First of

all, f̄(x) could be irreducible. Second, f̄(x) could factor as a product of distinct,
monic linear (and therefore irreducible) polynomials. Third, f̄(x) could factor as
the square of a single monic linear polynomial. We will consider all three cases
separately.

Suppose first that f̄(x) is irreducible in Fp[x]. Then Fp[x]/(f̄(x)) is a field, so
OK/pOK is as well. pOK is therefore a prime ideal of OK , by the definition of
prime ideal, so it does not factor any further.

Before we do the next case, let us determine exactly what all of these maps are,
since this will be important in determining the kernel. The sequence of maps is

OK //

∼=
��

OK/pOK
∼=

��

Z[x]/(f(x)) // Z[x]/(p, f(x))
∼= // Fp[x]/(f̄(x))

Both of the horizontal maps of the square are the natural quotient maps, and the
two vertical isomorphisms send α to x. The last horizontal isomorphism simply
sends x to x. (All maps always send 1 to 1, of course, which determines what
happens to all of Z.) The ideal pOK has now been expressed as the kernel of the
map

OK → Fp[x]/(f̄(x))
sending α to x.

Suppose now that f̄(x) factors as ḡ(x)h̄(x) in Fp[x], where ḡ(x) and h̄(x) are
distinct, monic, linear polynomials. Then the Chinese remainder theorem (see
Exercise 3.5) gives an isomorphism

Fp[x]/(f̄(x))
∼=−→ Fp[x]/(ḡ(x))× Fp[x]/(h̄(x))

sending x to (x, x). Note that both of these factors are fields since ḡ(x) and h̄(x)
are irreducible in Fp[x]; in fact, they are both isomorphic to Fp.
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Consider now the composite map

OK → Fp[x]/(ḡ(x))× Fp[x]/(h̄(x))

sending α to (x, x), which still has kernel pOK . The kernel into the first factor is
the ideal

(
p, g(α)

)
of OK (since α maps to x in this factor), and the kernel into the

second factor is
(
p, h(α)

)
. Thus the kernel of the map (which by construction is

just pOK) can also be written as(
p, g(α)

)
∩
(
p, h(α)

)
;

however, these ideals are easily seen to be relatively prime (see Exercise 3.3), so
Exercise 3.4 shows that(

p, g(α)
)
∩
(
p, h(α)

)
=
(
p, g(α)

)(
p, h(α)

)
.

Furthermore, both of these ideals are prime, since as we saw above

OK/(p, g(α)) ∼= Fp[x]/(ḡ(x)), OK/(p, h(α)) ∼= Fp[x]/(h̄(x))

are fields. Thus we have determined the prime factorization

pOK =
(
p, g(α)

)(
p, h(α)

)
of pOK . (Note that it does not matter which lifts of ḡ(x) and h̄(x) are chosen, since
any two lifts differ by multiples of p and p lies in these ideals.)

The last case is the case where f̄(x) = ḡ(x)2 for some monic, linear polynomial
ḡ(x) ∈ Fp[x]. In this case the above analysis does not quite work since the Chinese
remainder theorem does not apply. However, it suggests strongly that

pOK =
(
p, g(α)

)2
,

and this we can check directly. We check the case where d ≡ 2, 3 (mod 4) and
p 6= 2; the other cases are similar. We have that f̄(x) = x2− d is a square in Fp[x].
One checks easily that this implies that p divides d (since p 6= 2), so we can take
g(x) = x. Thus the claim is that

pOK =
(
p, α

)2
.

To check this, we simply compute(
p, α

)(
p, α

)
=
(
p2, pα, α2

)
.

Since α2 = d is divisible by p, every generator of the ideal is divisible by p. Fur-
thermore, since d is squarefree, p2 does not divide d; it follows that p is a linear
combination of p2 and d, so that p lies in the ideal. Thus the ideal is simply pOK
as claimed.

We summarize our results in a proposition.

Proposition 1.2. Let K = Q(
√
d) be a quadratic number field with d a square-

free integer and let

f(x) =

{
x2 − d d ≡ 2, 3 (mod 4);
x2 − x+ 1−d

4 d ≡ 1 (mod 4).

Let p be a rational prime and let

f̄(x) = ḡ1(x)e1 · · · ḡr(x)er
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be the factorization of f̄(x) in Fp[x]. (Of course, we have r = 1 or 2 and ei = 1 or
2.) Then the factorization of pOK into primes of OK is

pOK =
(
p, g1(α)

)e1 · · · (p, gr(α)
)er
.

We will say that pOK is inert in K if it is a prime ideal in OK ; that it splits
in K if it is a product of distinct prime ideals in OK ; and that it ramifies in K
if it is the square of a prime ideal. Our above results show that pOK is inert if
and only if f(x) is irreducible modulo p; it splits if and only if f(x) factors into
distinct linear factors; and it ramifies if and only if f(x) is the square of a linear
polynomial. Determination of the ramification in a number field turns out to be of
great importance, and our above analysis yields the following result.

Corollary 1.3. Let K = Q(
√
d) be a quadratic number field with d a square-

free integer. If d ≡ 1 (mod 4), then a prime of Z is ramified in OK if and only if
it divides d. If d ≡ 2, 3 (mod 4), then a prime of Z is ramified in OK if and only
if it is 2 or it divides d.

Proof. First take d ≡ 2, 3 (mod 4). Modulo 2 we have

x2 − d ≡ (x− d)2 (mod 2),

so p = 2 is always ramified. It was shown above that otherwise ramification occurs
if and only if p divides d, which completes the analysis in this case.

When d ≡ 1 (mod 4), x2−x+ 1−d
4 is never a square modulo 2, since all squares

have no linear term. Thus p = 2 never ramifies. The fact that all p dividing d do
ramify follows from the determination of the roots of x2−x+ 1−d

4 by the quadratic
formula; we leave the details to the reader. �

Example 1.4. Let K = Q(
√
−5) and OK = Z[

√
−5]. Let us factor the first

few primes. First take p = 2. Then

x2 + 5 ≡ (x+ 1)2 (mod 2),

so 2OK ramifies:
2OK =

(
2,
√
−5 + 1

)2
.

For p = 3, we have
x2 + 5 ≡ (x+ 1)(x+ 2) (mod 3),

so 3OK splits as
3OK =

(
3,
√
−5 + 1

)(
3,
√
−5 + 2

)
.

(Note that these factorizations agree with those in Chapter 2, Section 1.4.) For
p = 5,

x2 + 5 ≡ x2 (mod 5),
so

5OK =
(
5,
√
−5
)2
.

Note that the second ideal is just the principal ideal
(√
−5
)
, since

√
−5 divides 5

in Z[
√
−5]. This illustrates the general fact that the above algorithm does not tell

you whether or not the factors are principal ideals. Note also that 2OK and 5OK
are the only primes which ramify in K, as we proved above that in this case that
either p = 2 or p divides d = −5.

Continuing,
x2 + 5 ≡ (x+ 3)(x+ 4) (mod 7),
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so
7OK =

(
7,
√
−5 + 3

)(
7,
√
−5 + 4

)
.

Next, x2 + 5 is irreducible in F11[x], so 11OK is still a prime ideal in Z[
√
−5]. For

a final example, take p = 29. Then

x2 + 5 = (x+ 13)(x+ 16) (mod 29),

so
29OK =

(
29,
√
−5 + 13

)(
29,
√
−5 + 16

)
.

In this case, however, we also find the element factorization

29 = (3− 2
√
−5)(3 + 2

√
−5).

One can show with a little calculation that(
29,
√
−5 + 13

)
=
(
3− 2

√
−5
)

(
29,
√
−5 + 16

)
=
(
3 + 2

√
−5
)
,

so we actually have the ideal factorization(
29
)

=
(
3− 2

√
−5
)(

3 + 2
√
−5
)

of
(
29
)

into principal ideals.

1.2. Quadratic forms. There are many deep and important connections be-
tween quadratic forms and the splitting of primes in quadratic fields. In this section
we investigate some of the simplest; for more information on this subject, see [7].

We begin by refining our results of the previous section. Let K = Q(
√
d)

and let p be a a rational prime. Recall that the behavior of the prime ideal pOK
was determined by the factorization of a certain polynomial in Fp[x]. The various
behaviors of pOK are captured well by the Legendre symbol.

Definition 1.5. Let p be an odd prime. We define the Legendre symbol(
·
p

)
: Z/pZ→ {0,±1}

by (
a

p

)
=


1 if a is a non-zero square modulo p;
0 if a ≡ 0 (mod p);
−1 if a is not a square modulo p.

By abuse of notation we use the same symbol for a ∈ Z.

The fundamental properties of the Legendre symbol are in Exercise 3.9 and
Exercise 3.10. It is possible to extend the definition of the Legendre symbol to
include the case p = 2, but we will not do so here.

Proposition 1.6. Let K = Q(
√
d) be a quadratic number field and let p be an

odd rational prime. Then the prime ideal pOK splits in K if and only if
(
d
p

)
= 1; it

ramifies in K if and only if
(
d
p

)
= 0; and it is inert in K if and only if

(
d
p

)
= −1.
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Proof. First suppose that d ≡ 2, 3 (mod 4). Then the behavior of pOK is
determined by the factorization of the polynomial x2−d in Fp[x]. If d ≡ 0 (mod p),
then this polynomial has the repeated factor x, so pOK ramifies; if d is a non-zero
square modulo p, then it splits into distinct linear factors, so pOK splits; and if d
is not a square modulo p, then it does not factor, so pOK is inert. This is precisely
the statement of the proposition in this case.

Now take d ≡ 1 (mod 4). This time the behavior is determined by the factor-
ization of the polynomial x2 − x+ 1−d

4 in Fp[x]. By the quadratic formula (which
applies since p 6= 2), this polynomial has roots

1±
√
d

2
,

from which the same analysis as above proves the proposition. �

We now turn to quadratic forms. Recall that in the cases of Q(i),Q(
√
−2)

and Q(ζ3) = Q(
√
−3) the natural quadratic form to study were the “norm forms”

x2 + y2, x2 + 2y2 and x2 − xy + y2. If d ≡ 2, 3 (mod 4), then the appropriate
quadratic form is

NK/Q(x+ y
√
d) = x2 − dy2,

while if d ≡ 1 (mod 4), then it is

NK/Q

(
x+ y

1 +
√
d

2

)
= x2 + xy +

1− d
4

y2.

(We get a different quadratic form for Q(
√
−3) here because we are using a different

generator of the field; we nevertheless will obtain an equivalent result.) Write
qK(x, y) for the quadratic form attached to K. Then an integer n can be written
as qK(x, y) if and only if n is the norm of some element of OK .

Note in particular that we can not at the moment study “natural” quadratic
forms like x2 +3y2; the correct quadratic form for Q(

√
−3) is x2 +xy+y2. To study

other quadratic forms one must work in certain subrings of OK , where factorization
is more complicated; we won’t go into it here.

The basic result is the following.

Proposition 1.7. Let K = Q(
√
d) be a quadratic number field and let qK(x, y)

be its norm quadratic form. Let p be a positive rational prime number. Then (at
least) one of ±p is of the form qK(x0, y0) for some x0, y0 ∈ Z if and only if p splits
(or ramifies) in K into principal ideals. If d < 0, then it is always p which is of
this form, and never −p.

Proof. Suppose first that p factors into principal ideals in OK , say pOK =(
π
)(
π′
)
. Then ππ′ is an associate of p, say ππ′ = up for some unit u. Thus

N(π) N(π′) = N(u) N(p) = ±p2

by Lemma II.1.9. It follows that N(π) = ±N(π′) = ±p, which gives the desired
expression for p.

Now suppose that ±p is of the form qK(x0, y0) for some x0, y0 ∈ Z. By the
definition of qK(x, y),

±p = NK/Q(x0 + y0α),
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where α is
√
d or 1+

√
d

2 , as appropriate. This implies that

pOK =
(
x0 + y0α

)(
x0 + y0ᾱ

)
,

where ᾱ is the conjugate of α. Furthermore, each of these ideals is easily seen to
be prime. Thus pOK splits (or possibly ramifies) into principal ideals. The fact
that p must be positive for d < 0 follows immediately from the fact that qK(x, y)
is positive definite in that case. �

Corollary 1.8. With the above notation, ±p = qK(x0, y0) for some x0, y0 ∈ Z
only if

(
d
p

)
= 0 or 1. The converse is also true if OK is a PID.

In non-PID cases our answer is still far from complete. We will return to this
question and give some surprising results in the next chapter.

2. Abstract factorization of primes

2.1. Factorization of rational primes. Before we extend the methods of
Section 1 to more general number fields, it will be useful to give the abstract
factorization results. We begin with the factorization of rational primes in number
fields. Let K be a number field of degree n. If p is a prime ideal of OK and p is a
rational prime, we say that p lies above p if p∩Z = pZ. It is clear from Lemma 1.1
that every non-zero prime of OK lies above a unique prime of Z, and it follows
from Lemma II.3.8 that the primes of OK lying above p are precisely those ideals
occurring in the prime factorization of pOK .

Let p be a prime of OK lying over p ∈ Z. Let e be the exact power of p
dividing pOK . We call e the ramification index of p/p and write it as e(p/p). The
factorization of pOK is thus

pOK =
∏

p∩Z=pZ

pe(p/p).

We will also need a way to measure the relative “sizes” of ideals. The most natural
way to do this is to consider the residue field OK/p, which we proved earlier is a
finite field. Since it clearly has characteristic p, it must have order pf for some f .
We define the inertial degree f(p/p) of p/p to be this integer f .

Example 2.1. Take K = Q(
√
−5). Our calculations in Example 1.4 yield the

following values for e and f :

e
(
(2,
√
−5 + 1)/2

)
= 2 f

(
(2,
√
−5 + 1)/2

)
= 1

e
(
(3,
√
−5 + 1)/3

)
= 1 f

(
(3,
√
−5 + 1)/3

)
= 1

e
(
(3,
√
−5 + 2)/3

)
= 1 f

(
(3,
√
−5 + 2)/3

)
= 1

e
(
(5,
√
−5)/5

)
= 2 f

(
(5,
√
−5)/5

)
= 1

e
(
(7,
√
−5 + 3)/7

)
= 1 f

(
(7,
√
−5 + 4)/7

)
= 1

e
(
(11)/11

)
= 1 f

(
(11)/11

)
= 2

The values of f can be computed using expressions for quotients of Fp[x]; for
example,

OK/
(
3,
√
−5 + 1

) ∼= F3[x]/
(
x+ 1) ∼= F3.

It is useful to have a notion of the size of an ideal for non-prime ideals. Since
in this case we can no longer isolate a specific rational prime of interest, we define
the norm N′K/Q(a) of an ideal a to be the size of the quotient ring OK/a; that this
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is finite follows easily from Lemma II.3.2 and Theorem II.2.22. (We will prove later
that the ideal norm agrees with the absolute value of the usual element norm in the
case that a is a principal ideal; hopefully this notation should cause no confusion
until then.) It follows immediately from the definition of inertial degree that if p is
a prime of OK such that p ∩ Z = pZ, then

N′K/Q(p) = pf(p/p).

A first indication that the ideal norm behaves like the usual norm is given by the
following lemma.

Lemma 2.2. The ideal norm is multiplicative; that is,

N′K/Q(ab) = N′K/Q(a) N′K/Q(b)

for any non-zero ideals a, b of OK .

Proof. Suppose first that a and b are relatively prime. Then by the Chinese
remainder theorem (see Exercise 3.5) we have

OK/ab ∼= OK/a×OK/b,
from which the lemma follows immediately. It will therefore be enough to prove
that for any prime p of OK we have

N′K/Q(pm) = N′K/Q(p)m;

the lemma will then follow from unique factorization of ideals and the relatively
prime case.

Note that it is immediate from elementary group theory that

N′K/Q(pm) = #(OK/pm) = #(OK/p) ·#(p/p2) ·#(p2/p3) · · ·#(pm−1/pm).

(All quotients here are simply as abelian groups.) Thus it will suffice to show that

#(pk/pk+1) = #(OK/p)

for any k. To do this let γ be any element of pk which does not lie in pk+1; such a
γ must exist since if the containment pk ⊇ pk+1 were an equality it would violate
unique factorization of ideals. We claim that the map

OK/p // pk/pk+1

α � // γα

is an isomorphism; we leave the details to the reader. �

We can now give the fundamental relationship between the numbers e(p/p),
f(p/p) and the degree n of K/Q.

Proposition 2.3. Let K be a number field of degree n and let p be a rational
prime. Let

pOK = pe11 · · · perr
be the factorization of pOK into primes of OK . (Thus ei = e(pi/p).) Set fi =
f(pi/p). Then

r∑
i=1

eifi = n.
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Proof. Both pOK and pe11 · · · perr have the same norm, so by Lemma 2.2

N′K/Q(pOK) = N′K/Q(p1)e1 · · ·N′K/Q(pr)er

= pf1e1 · · · pfrer

= pf1e1+···+frer .

On the other hand, we know that OK/pOK has pn elements, since OK is a free Z-
module of rank n. Thus N′K/Q(pOK) = pn and the proposition follows immediately.

�

Example 2.4. Let K be a quadratic number field and let p be a rational prime.
We saw that there were three possibilities for the factorization of p: first of all, pOK
could still be prime, in which case f(pOK/p) = 2 and e(pOK/p) = 1. Next, pOK
could factor as p1p2 where f(p1/p) = f(p2/p) = 1 and e(p1/p) = e(p2/p) = 1.
Lastly, pOK could ramify as p2, in which case f(p/p) = 1 and e(p/p) = 2. In all
three cases we do indeed have the equality of Proposition 2.3.

2.2. Localizations of integer rings. Before we extend the above results to
the case of relative extensions we will need to introduce an additional piece of
machinery. Very often in algebraic number theory it is convenient to work “one
prime at a time”. More precisely, given a number field K with ring of integers OK
and given a prime p, we would like to find a larger subring of K in which the only
non-zero prime ideal is p. We will construct such a ring in this section.

The definition of the ring is actually fairly simple. We define the local ring of
OK at p to be the ring

OK,p =
{
α

β
∈ K | α ∈ OK , β ∈ OK − p

}
.

That is, OK,p consists of all elements of K which can be written as ratios of integers
with the denominator not in p. (The terminology here is influenced by algebraic
geometry. In fact, in a suitably general setting one can think of a ring of integers
OK as a curve, where the points are the non-zero prime ideals. In this setting the
ring OK,p really is the ring of regular functions on the curve OK at the point p.)
One can check easily that OK,p is actually a ring.

Example 2.5. Let K = Q. Then the local ring Z(p) is simply the subring of Q
of rational numbers with denominator relatively prime to p. (We considered such
rings in Chapter 2, Section 1.) Note that this ring Z(p) is not the ring Zp of p-adic
integers; to get Zp one must complete Z(p), which is a process which we will not go
into here.

The usefulness of OK,p comes from the fact that it has a particularly simple
ideal structure. Let a be any proper ideal of OK,p and consider the ideal a∩OK of
OK . We claim that

a = (a ∩ OK)OK,p;

that is, that a is generated by the elements of a in a ∩ OK . It is clear from the
definition of an ideal that a ⊇ (a ∩ OK)OK,p. To prove the other inclusion, let α
be any element of a. Then we can write α = β/γ where β ∈ OK and γ /∈ p. In
particular, β ∈ a (since β/γ ∈ a and a is an ideal), so β ∈ a∩OK . Since 1/γ ∈ OK,p,
this implies that α = β/γ ∈ (a ∩ OK)OK,p, as claimed.
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We can use this fact to determine all of the ideals of OK,p. Let a be any ideal
of OK,p and consider the ideal factorization of a ∩ OK in OK . Write it as

a ∩ OK = pnb

for some n and some ideal b, relatively prime to p. We claim first that bOK,p =
OK,p. To see this, note that b is not contained in p since b is assumed to be relatively
prime to p, and thus is not divisible by it. In particular, b contains elements of
OK − p; these are units in OK,p, so bOK,p = OK,p.

We now find that

a = (a ∩ OK)OK,p = pnbOK,p = pnOK,p
since bOK,p = OK,p. Thus every ideal of OK,p has the form pnOK,p for some n; it
follows immediately that OK,p is noetherian.

It is also now clear that pOK,p is the unique non-zero prime ideal in OK,p.
Furthermore, the inclusion OK ↪→ OK,p induces an injection

OK/p ↪→ OK,p/pOK,p
since pOK,p∩OK = p, as the reader can easily check. This map is also a surjection,
since the residue class of α/β ∈ OK,p (with α ∈ OK and β /∈ p) is the image of
αβ−1 in OK/p, which makes sense since β is invertible in OK/p. Thus the map
is an isomorphism. In particular, it is now abundantly clear that every non-zero
prime ideal of OK,p is maximal.

To show that OK,p is a Dedekind domain, it remains to show that it is integrally
closed in K. So let γ ∈ K be a root of a polynomial with coefficients in OK,p; write
this polynomial as

xm +
αm−1

βm−1
xm−1 + · · ·+ α0

β0

with αi ∈ OK and βi ∈ OK − p. Set β = β0β1 · · ·βm−1. Multiplying by βm we find
that βγ is the root of a monic polynomial with coefficients in OK . Thus βγ ∈ OK ;
since β /∈ p, we have βγ/β = γ ∈ OK,p Thus OK,p is integrally closed in K.

Let us summarize our results in a proposition.
Proposition 2.6. Let K be a number field and let p be a non-zero prime of

OK . Then OK,p is a Dedekind domain and every ideal of OK,p has the form pnOK,p
for some n ≥ 0. In particular, pOK,p is the only prime ideal of OK,p.

We have now shown that OK,p is a Dedekind domain with a unique non-zero
prime ideal. Such a ring is called a discrete valuation ring or a DVR. These rings
will be useful to us for the following reason.

Proposition 2.7. Let R be a discrete valuation ring. Then R is a principal
ideal domain.

Proof. Let p be the unique non-zero prime ideal of R. By unique factorization
of ideals, every ideal of R has the form pn for some n; thus it will suffice to show
that p itself is principal. Let π be any element in p but not in p2. By unique
factorization of ideals, we have πR = pn for some n ≥ 1. But we can not have
n ≥ 2, since then π would lie in p2. Thus πR = p, so p is indeed principal. �

A generator of the unique non-zero prime ideal of a DVR R is called a uni-
formizer. R has a particularly simple sort of unique factorization: every α ∈ R can
be written as uπn, where u ∈ R∗ and n ≥ 0.
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The usefulness of OK,p comes from the fact that it has all of the information
about the prime p, but it has no other prime ideals to clutter things up. This makes
OK,p much simpler than OK , but also still useful for studying the prime p.

Example 2.8. Let p be a rational prime and consider the ring Z(p). The units
of this ring are

Z
∗
(p) =

{m
n
| (m, p) = (n, p) = 1

}
.

The unique prime ideal of Z(p) is
(
p
)
, and every α ∈ Z(p) can be written uniquely

as
α = upn

where u ∈ Z∗(p) and n ≥ 0.

Now let L/K be an extension of number fields of degree n. Let p be a prime
ideal of OK ; denote by OL,p the ring{

α

β
∈ L | α ∈ OL, β ∈ OK − p

}
.

OL,p is not quite a discrete valuation ring, since we allow only denominators in
OK − p, but it will suffice for our purposes. We will need to know two key facts
about OL,p. First of all, note that pOL,p ∩ OL = pOL. Thus the natural inclusion
OL ↪→ OL,p induces an injection

OL/pOL ↪→ OL,p/pOL,p.

We claim that this map is an isomorphism. So let α/β represent a residue class
in the range, where α ∈ OL and β ∈ OK − p. We know that OK/p injects into
OL/pOL; thus β is invertible in OL/pOL. It follows that the element αβ−1 is well-
defined in OL/pOL, and it maps to α/β. Thus the map is surjective, and therefore
an isomorphism.

The second fact we need is that OL,p is a free OK,p-module of rank n. The
proof of this fact is exactly the same as the proof that OL is a free OK-module of
rank n. One begins with a basis α1, . . . , αn for L/K with each αi ∈ OL,p. Next,
the discriminant ∆ = ∆(α1, . . . , αn) lies in OK,p (using Lemma II.2.18). The same
proof as in Proposition II.2.21 shows that

OL,p ⊆
1
∆

(OK,pα1 + · · ·+OK,pαn),

and we obviously have

OK,pα1 + · · ·+OK,pαn ⊆ OL,p.

Since OK,p is a PID, these two facts combine to show that OL,p is a free OK,p-
module of rank n. (See Appendix C, Section 5.)

The fact we actually need from all of this is contained in the next proposition.
Proposition 2.9. Let L/K be an extension of number fields of degree n and

let p be a non-zero prime of OK . Then

#(OL/pOL) =
(
#(OK/pOK)

)n
.

Proof. We saw above that OL,p is a free OK,p-module of rank n. Thus
OL,p/pOL,p is a free OK,p/pOK,p-module of rank n as well. Therefore

#(OL,p/pOL,p) = #(OK,p/pOK,p)n.
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But these residue rings are isomorphic to OL/pOL and OK/pOK respectively, so
the proposition follows. �

Corollary 2.10. Let L/K be an extension of number fields of degree n and
let a be a nonzero ideal of OK . Then

N′L/Q(aOL) = N′K/Q(a)n.

Proof. Since each side of the desired equality is multiplicative in a, it will
suffice to prove the result in the case that a = p is a prime of OK . In this case the
corollary is precisely Proposition 2.9. �

Corollary 2.11. Let K be a number field of degree n and let α be in OK .
Then

N′K/Q(αOK) = |NK/Q(α)|.

Proof. We assume a bit more Galois theory than usual for this proof. Assume
first that K/Q is Galois. Let σ be an element of Gal(K/Q). It is clear that
σ(OK)/σ(α) ∼= OK/α; since σ(OK) = OK , this shows that

N′K/Q(σ(α)OK) = N′K/Q(αOK).

Taking the product over all σ ∈ Gal(K/Q), we have

N′K/Q(NK/Q(α)OK) = N′K/Q(αOK)n.

Since NK/Q(α) is a rational integer and OK is a free Z-module of rank n,

OK/NK/Q(α)OK
will have order NK/Q(α)n; therefore

N′K/Q(NK/Q(α)OK) = NK/Q(α)n,

which completes the proof.
In the general case, let L be the Galois closure of K and set [L : K] = m. The

above argument shows that

N′L/Q(αOL) = NL/Q(α).

By Corollary 2.10 the first term is equal to N′K/Q(αOK)m, and it is easy to see that
the second term is just NK/Q(α)m. This establishes the corollary. �

From now on we will often write NK/Q for both the ideal norm and the element
norm; no confusion should result.

2.3. Relative factorizations. We now extend our earlier factorization re-
sults to arbitrary extensions of number fields. Let L/K be an extension of number
fields of degree n. We first need to extend the notion of a prime of OL lying over
a prime of OK .

Lemma 2.12. Let p a non-zero prime of OK and let P be a non-zero prime of
OL. The following five conditions are equivalent.

(1) P divides pOL;
(2) P ⊇ pOL;
(3) P ⊇ p;
(4) P ∩ OK = p;
(5) P ∩K = p.

Furthermore, if any of the above are satisfied, then p ∩ Z = P ∩ Z.
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Proof. See Exercise 3.7. �

If p and P satisfy any of the equivalent conditions of Lemma 2.12, we say that
P lies over p and that p lies under P. Exercise 3.8 shows that every prime of OL
lies over a unique prime of OK , and that every prime of OK lies under at least one
prime of OL. Note also that by Lemma II.3.8 the primes lying over p are precisely
the primes occurring in the ideal factorization of pOL.

Now, let p and P be as above and suppose that P lies over p. We denote by
e(P/p) the exact power of P dividing pOL; it is called the ramification index of
P/p. Thus we can write

pOL =
∏

P∩OK=p

Pe(P/p).

Next, let p be the unique positive rational prime contained in p and P. Then
OK/p and OL/P are finite fields of characteristic p. Furthermore, the natural
injection OK ↪→ OL induces an injection

OK/p ↪→ OL/P,
since P ∩ OK = p by Lemma 2.12. Thus OL/P is an extension field of OK/p. We
define the inertial degree f(P/p) to be the degree [OL/P : OK/p] of this extension.
Note that

NL/K(P) = NK/Q(p)f(P/p).

We can now state and prove our fundamental result.
Theorem 2.13. Let L/K be an extension of number fields of degree n and let

p be a prime of OK . Let
pOL = Pe1

1 · · ·Per
r

be the factorization of pOL into primes of OL. Set fi = f(Pi/p). Then
r∑
i=1

eifi = n.

Proof. Taking ideal norms of both sides of the factorization of pOL, we find
that

NL/Q(pOL) = NL/Q(P1)e1 · · ·NL/Q(Pr)er

= NK/Q(p)f1e1 · · ·NK/Q(p)frer

by the definition of the fi. By Corollary 2.10 we know that NL/Q(pOL) = NK/Q(p)n,
from which the theorem now follows immediately. �

Let us finish this section with some additional facts and terminology. First of
all, let M/L/K be number fields, let pK be a prime of OK , let pL be a prime of
OL lying over pK , and let pM be a prime of OM lying over pL. Then clearly pM
lies over pK , and it follows immediately from the definitions that we have

e(pM/pK) = e(pM/pL)e(pL/pK)

and
f(pM/pK) = f(pM/pL)f(pL/pK).

Next return to the case of an extension L/K of degree n and let p be a prime
of OK . Let

pOL = Pe1
1 · · ·Per

r
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be the factorization of pOL into primes of OL. Set fi = f(Pi/p). If any of the ei
are not equal to 1, then we say that p ramifies in L/K. (It is an important fact
that only finitely many primes ramify in an extension, and which primes these are
and how badly they ramify is an essential invariant of the extension.) If r = 1 and
e1 = n (so that f1 = 1), then p is said to be totally ramified in L/K:

pOL = Pn.

If r = 1 and e1 = 1 (so that f1 = n), we say that p is inert or remains primes in
L/K; this is the case where pOL is still prime. Lastly, if ei = fi = 1 for all i, we
say that p splits completely in L/K:

pOL = P1 · · ·Pn.

2.4. Factorization in Galois extensions. Let L/K be a Galois extension.
The presence of automorphisms of K causes factorizations to behave much more
regularly than in arbitrary extensions, for the simple reason that if two primes
are mapped to each other by an element of Gal(L/K), then the primes must have
isomorphic residue fields. The key fact is the following.

Lemma 2.14. Let L/K be a Galois extension and let p be a prime of OK . Let
P1, . . . ,Pr be the primes of L lying over p. Then Gal(L/K) acts transitively on
this set of primes; that is, for any i and j, there exists σ ∈ Gal(L/K) such that
σ(Pi) = Pj.

Proof. Fix distinct primes P and P′ lying over p. Suppose that

σ(P) 6= P′

for all σ ∈ Gal(L/K). Using this hypothesis, by the Chinese remainder theorem
(see Exercise 3.6), we can find α ∈ OL such that

α ≡ 0 (mod P′)

and
α ≡ 1 (mod σ(P))

for all σ ∈ Gal(L/K). Consider

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α) ∈ OK .

Since α ∈ P′, this norm must lie in P′ ∩ OK = p.
On the other hand, since α ≡ 1 (mod σ(P)) for all σ, we also have α /∈ σ(P);

thus
σ−1(α) /∈ P

for any σ ∈ Gal(L/K). Since as σ runs through Gal(L/K), σ−1 also runs through
Gal(L/K), we find that

NL/K(α) =
∏

σ∈Gal(L/K)

σ−1(α).

Since none of the factors lie in P and P is prime, this implies that NL/K(α) /∈ P.
Thus NL/K(α) /∈ P ∩ OK = p. But thus is a contradiction, which proves the
lemma. �
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Corollary 2.15. Let L/K be a Galois extension of degree n and let p be a
prime of OK . Let

pOL = Pe1
1 · · ·Per

r

be the factorization of p in OL, and set fi = f(Pi/p). Then

f1 = f2 = · · · = fr

and

e1 = e2 = · · · = er.

In particular, reifi = n for all i.

Proof. If r = 1 then the corollary is trivial, so we assume that r ≥ 2. We will
prove that e1 = e2 and f1 = f2; the general case is the same. By Lemma 2.14 we
can find σ ∈ Gal(L/K) such that σ(P1) = P2. Applying σ to our factorization,
and using the fact that σ(p) = p since σ fixes K, we find that

pOL = σ(P1)e1σ(P2)e2 · · ·σ(Pr)er

= Pe1
2 σ(P2)e2 · · ·σ(Pr)er .

Furthermore, if σ(Pi) = P2, then Pi = σ−1(P2) = P1; thus σ(Pi) 6= P2 for i 6= 1.
Therefore Pe1

2 is the only factor of P2 occurring in this factorization of pOK ; by
unique factorization of ideals we now see that e1 must equal e2.

The fact that f1 = f2 is immediate from the fact that σ induces an isomorphism

OL/P1
∼= OL/P2.

�

3. Explicit factorization of ideals

3.1. Factorization of primes. Let K be a number field of degree n. For this
section we make the additional hypothesis that OK = Z[α] for some α ∈ OK , with
minimal polynomial f(x) ∈ Z[x]. (We have in mind the case K = Q(ζm), in which
case this hypothesis is satisfied.) The general case is somewhat more complicated
and we will not treat it here. Let p be a prime of Z. We wish to explicitly determine
the factorization of the ideal pOK of OK .

We will mimic the method we used in the quadratic case. Let

f̄(x) = ḡ1(x)e1 · · · ḡr(x)er

be the factorization of f̄(x) into irreducibles in Fp[x]. (As usual we will write gi(x)
for any lift of ḡi(x) to Z[x].) Let fi be the degree of ḡi(x); we have

∑
eifi = n.

We claim that each ideal

pi =
(
p, gi(α)

)
of OK is prime, and that

pOK = pe11 · · · perr
We further claim that

f(pi/p) = fi.
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Some of these assertions are immediate. First of all,

OK/pi = Z[α]/(p, gi(α))
∼= Z[x]/(f(x), p, gi(x))
∼= Fp[x]/(f̄(x), ḡi(x))
∼= Fp[x]/(ḡi(x))

since ḡi(x) divides f̄(x) in Fp[x]. Since ḡi(x) is an irreducible polynomial of degree
fi, Fp[x]/(ḡi(x)) is a field of order pfi , which shows both that pi is prime and that
f(pi/p) = fi. Note also that it follows from Exercise 3.3 that the pi are relatively
prime.

Let us now relate these to the factorization of pOK . We will determine the
kernel of the quotient map

OK → OK/pOK ,
which of course is just pOK , in a different way. Note that

OK/pOK = Z[α]/pZ[α] ∼= Z[x]/(p, f(x)) ∼= Fp[x]/(f̄(x)).

The Chinese remainder theorem shows that

Fp[x]/(f̄(x)) ∼= Fp[x]/(ḡ1(x)e1)× · · · × Fp[x]/(ḡr(x)er );

thus we can consider the map OK → OK/pOK as the map

OK → Fp[x]/(ḡ1(x)e1)× · · · × Fp[x]/(ḡr(x)er

sending α to (x, . . . , x). The kernel into each factor is just
(
p, gi(α)

)
, so the kernel

of the map (which is just pOK) is(
p, g1(α)e1

)
∩ · · · ∩

(
p, gr(α)er

)
.

Furthermore, Exercise 3.3 shows that all of these ideals are pairwise relatively prime,
so that by Exercise 3.4 the kernel is just the product(

p, g1(α)e1
)
· · ·
(
p, gr(α)er

)
.

This shows that
pOK =

(
p, g1(α)e1

)
· · ·
(
p, gr(α)er

)
.

However, these factors are not yet primes for any i such that ei > 1.
It remains to “pull out” the ei. First, (p, gi(α)ei) divides peii . To see this, note

that every generator of
peii =

(
p, gi(α)

)ei
is divisible by p except for gi(α)ei . This shows that every generator of peii lies in(
p, gi(α)ei

)
, so peii itself is contained in

(
p, gi(α)ei

)
. Lemma II.3.8 now gives the

asserted division.
Since the ideals (p, gi(α)ei) are all relatively prime, we now know that pOK

divides pe11 · · · perr divides pOK . The norm of the second term is

pf1e1 · · · pfrer = pn;

this is also the norm of pOK . This implies that the two ideals must be equal, since
if one ideal contains another and has the same norm they must be equal. This
completes the proof of the explicit factorization of pOK .



3. EXPLICIT FACTORIZATION OF IDEALS 69

Example 3.1. Let α be a root of the polynomial f(x) = x3 + 2x + 1 and let
K = Q(α). Exercise 3.18 shows that OK = Z[α], so we may apply the methods
of this section. Let us factor some small rational primes. Note that factoring f(x)
modulo primes is easy, since if f(x) has any factors then it will have roots; this is
no longer true for degree 4 and higher.

When p = 2, we find that

x3 + 2x+ 1 ≡ (x+ 1)(x2 + x+ 1) (mod 2),

so
2OK =

(
2, α+ 1

)(
2, α2 + α+ 1

)
.

Here the first factor has inertial degree 1 and the second factor has inertial degree
2. For p = 3, f(x) is irreducible in F3[x], so 3OK factors as

(
3, f(α)

)
= (3); that is,

3OK remains prime. The reader can easily check that 5OK and 7OK also remain
prime. For p = 11, we find that

x3 + 2x+ 1 ≡ (x+ 2)(x2 − 2x+ 6) (mod 11),

so
11OK =

(
11, α+ 2

)(
11, α2 − 2α+ 6

)
.

13OK also remains prime, while

x3 + 2x+ 1 ≡ (x− 3)(x− 5)(x− 9) (mod 17),

so 17OK splits completely as

17OK =
(
17, α− 3

)(
17, α− 5

)(
17, α− 9

)
.

Since K has discriminant −59, Exercise 3.16 shows that 59 will be the only
prime which ramifies. One finds that

x3 + 2x+ 1 ≡ (x− 14)2(x− 31) (mod 59),

so
59OK =

(
59, α− 14

)2(59, α− 31
)
.

3.2. Factoring cyclotomic polynomials. The methods of the previous sec-
tion give us a computational procedure for determining prime splitting in many
number fields, but it becomes difficult to carry out in practice as soon as the degree
of the number field becomes large. Luckily, in the important case of cyclotomic
fields we can give a good description of the factorization of cyclotomic polynomi-
als, even if it is difficult to write down the actual factors. The key result is the
following lemma, which says that the mth cyclotomic polynomial is the “universal”
polynomial for testing if an element of a field is a primitive mth root of unity.

Lemma 3.2. Let m be a positive integer and let K be a field of characteristic
not dividing m. Let α be an element of K. Then Φm(α) = 0 if and only if α is a
primitive mth root of unity.

Proof. Recall that
xm − 1 =

∏
d|m

Φd(x).

Since this factorization is in Z[x], it also makes sense in K[x]. Note also that xm−1
has no multiple roots in K, as follows immediately from the derivative test. (This
is the only place where we will use the assumption on the characteristic of K.)
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Suppose first that α is a primitive mth root of unity. Then α is a root of xm−1,
so it must be a root of some Φd(x) with d dividing m. Suppose that α is a root of
Φd(x) with d < m. Then, since Φd(x) divides xd − 1, αd = 1. This contradicts the
fact that α is a primitive mth root of unity, so α must be a root of Φm(x).

Conversely, suppose that Φm(α) = 0. Since Φm(x) divides xm− 1, this implies
that αm = 1; that is, α is an mth root of unity. Suppose that α is actually a
primitive dth root of unity for some divisor d of m with d < m. Then the argument
in the first half of the proof shows that Φd(α) = 0. But then α would be a double
root of xm − 1, which is a contradiction since xm − 1 does not have multiple roots.
Thus α is a primitive mth root of unity. �

Let K = Q(ζm) be a cyclotomic field and let p be a rational prime. Let p
be any prime of OK = Z[ζm] lying over p. We wish to determine e = e(p/p) and
f = f(p/p). Note that by Corollary 2.15 these numbers are independent of the
choice of prime p. Put differently, in Fp[x] Φm(x) factors as

Φm(x) =
(
g1(x) · · · gr(x)

)e
where deg gi = f for all i and efr = ϕ(m).

We begin with the case that p does not divide m. Since xm−1 has no repeated
factors in Fp[x], Φm(x) doesn’t either; in particular, we must have e = 1. Thus we
are left to determine f and r. Before we do the general case, we examine the case
f = 1 to illustrate the idea. If f = 1, then Φm(x) splits into linear factors in Fp[x];
thus Φm(x) has roots in Fp. By Lemma 3.2, this implies that Fp has primitive mth

roots of unity. But F∗p is a cyclic group of order p − 1, so it has elements of exact
order m if and only if m divides p− 1; that is, if and only if

p ≡ 1 (mod m).

The above argument is reversible, so we have shown that a rational prime p splits
completely in Q(ζm) if and only if p does not divide m and p ≡ 1 (mod m).

In the general case we must go to an extension of Fp to find a primitive mth

root of unity. Let g(x) be one of the irreducible factors of Φm(x) in Fp[x]; g(x)
has degree f . Let α be a root of g(x) and set F = Fp(α) ∼= Fp[x]/(g(x)); this is
an extension of Fp of degree f . Note that α is a primitive mth root of unity since
it satisfies g(x) and thus Φm(x). Furthermore, F is clearly the smallest extension
of Fp containing a primitive mth root of unity (since it is just Fp adjoined a mth

root of unity), so we have shown that f is the degree of the smallest extension of
Fp containing a primitive mth root of unity.

Let us now determine this extension in another way. Let Fi be the unique
extension of Fp of degree i. Then F ∗i is cyclic of order pi − 1, so it contains a
primitive mth root of unity if and only if m divides pi − 1. Thus the smallest
extension of Fp containing a primitive mth root of unity will be Fi, where i is the
smallest positive integer such that

pi ≡ 1 (mod m);

that is, i is the order of p in (Z/mZ)∗. Combining this with our earlier arguments,
we obtain the following result.

Proposition 3.3. Let p be a rational prime not dividing m and let p be a prime
of Z[ζm] lying over p. Then e(p/p) = 1, f(p/p) is the order of p in (Z/mZ)∗, and
there are exactly ϕ(m)/f(p/p) primes of Z[ζm] lying over p.
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Example 3.4. Let K = Q(ζ5). The behavior of a rational prime p in OK is
determined entirely by the residue class of p in (Z/5Z)∗. If p ≡ 1 (mod 5) (for
example, p = 11), then p splits completely in OK . If p ≡ 4 (mod 5), then p splits
into 2 prime factors, each with inertial degree 2. If p ≡ 2, 3 (mod 5), then p remains
prime in OK .

For some explicit examples, we consider the primes 3, 7, 11, 19. For p = 3, 7 the
above argument shows that Φ5(x) = x4 + x3 + x2 + x+ 1 is irreducible modulo p,
so 3OK and 7OK are both prime ideals of OK . For p = 19, we find that

x4 + x3 + x2 + x+ 1 ≡ (x2 + 5x+ 1)(x2 + 15x+ 1) (mod 19),

so (
19
)

=
(
19, ζ2

5 + 5ζ5 + 1
)(

19, ζ2
5 + 15ζ5 + 1

)
.

Lastly, modulo 11 we have

x4 + x3 + x2 + x+ 1 = (x+ 2)(x+ 6)(x+ 7)(x+ 8) (mod 11),

so (
11
)

=
(
11, ζ5 + 2

)(
11, ζ5 + 6

)(
11, ζ5 + 7

)(
11, ζ5 + 8

)
.

The ramified case works out somewhat differently. We will only consider the
case of the splitting of pOK in Q(ζp), which is by far the most important.

We must determine the factorization of

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + · · ·+ 1

in Fp[x]. By Exercise I.1.15, we see that

xp − 1 ≡ (x− 1)p (mod p),

so
Φp(x) = (x− 1)p−1

in Fp[x]. Thus
pOK =

(
p, ζp − 1

)p−1
.

Furthermore,
OK/

(
p, ζp − 1

)
= Z[ζp]/(p, ζp − 1) ∼= Z/pZ,

so
(
p, ζp − 1

)
is prime with inertial degree 1. Thus pOK is totally ramified. Note

that we actually already had a better form of this result; see Exercise 2.13.

3.3. Applications to quadratic fields. There are some very interesting ap-
plications of the arithmetic of cyclotomic fields to quadratic fields. Consider the
field Q(ζp) for some odd prime p. Recall that this is a Galois extension of Q with
Galois group isomorphic to (Z/pZ)∗, where the automorphism corresponding to
a ∈ (Z/pZ)∗ is σa characterized by

σa(ζp) = ζap .

Since (Z/pZ)∗ is cyclic of order p − 1, it contains a unique subgroup of index 2,
consisting of all of the squares in (Z/pZ)∗. Denote by S the corresponding subgroup
of Gal(Q(ζp)/Q). Let K be the fixed field of S; that is, K is the subfield of Q(ζp)
of elements fixed by all of S. Galois theory tells us that [K : Q] = 2; thus K is a
quadratic field. It remains to determine which quadratic field it is.

We can do this by considering ramification. Recall that p is totally ramified in
Q(ζp); that is, there is a unique prime P of Q(ζp) lying over p, and (p) = Pp−1.
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Let p be any prime of K lying over p. Then P lies over p (since P is the only prime
of K lying over p) and

e(P/p) = e(P/p)e(p/p);

since e(P/p) = p − 1 and ramification indices are bounded by the degrees of the
extensions, this implies that e(P/p) = p−1

2 and e(p/p) = 2. In particular, p is the
only prime of K lying over p, and it is totally ramified.

Let Q be any other prime of Q(ζp), let q be the prime of K which it lies over,
and let q be the prime of Z which it lies over. A similar argument, using the fact
that e(Q/q) = 1, shows that e(q/q) = 1, so that q is not ramified in K. We conclude
that p is the only prime of Z which ramifies in K.

Now, we have already determined the ramification in every quadratic field, and
the only quadratic field in which only p ramifies is Q(

√
εp), where ε = ±1 is such

that
εp ≡ 1 (mod 4).

(See Corollary 1.3.) We can take ε = (−1)(p−1)/2. We have therefore established
the following distinctly non-obvious fact.

Proposition 3.5. The field Q(ζp) contains the quadratic field Q(
√
εp), where

ε = (−1)(p−1)/2. In particular,
√
εp can be written as a rational linear combination

of pth roots of unity.
We are now in a position to prove the celebrated quadratic reciprocity law.
Theorem 3.6 (Quadratic Reciprocity). Let p and q be distinct, positive odd

primes. Then (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. We showed above that
√
εp ∈ Q(ζp). Denote this element by τ . Con-

sider the automorphism σq ∈ Gal(Q(ζp)/Q); it is defined by σq(ζp) = ζqp . Since the
conjugates of τ are simply ±τ , we must have

σq(τ) = ±τ.

Furthermore, letting S be the subgroup of Gal(Q(ζp)/Q) defined above, σq(τ) = τ if
and only if σq ∈ S. (This is because Q(τ) is the fixed field of S by definition.) Under
the identification of Gal(Q(ζp)/Q) and (Z/pZ)∗, S corresponds to the subgroup of
squares; combining all of this, we see that σq(τ) = τ if and only if q is a square in
(Z/pZ)∗; that is,

σq(τ) =
(
q

p

)
τ.

Now let q be a prime of OK lying over q. Write τ = a0 + a1ζp + · · ·+ ap−2ζ
p−2
p

with ai ∈ Z. (Note that τ is visibly an algebraic integer.) Using that σq(ζp) = ζqp
and aq = a for all a ∈ Fq, we find that

σq(τ) = a0 + a1ζ
q
p + a2ζ

2q
p + · · ·+ ap−2ζ

(p−2)q
p

≡ aq0 + aq1ζ
q
p + aq2ζ

2q
p + · · ·+ aqp−2ζ

(p−2)q
p (mod q)

≡ (a0 + a1ζp + a2ζ
2
p + · · ·+ ap−2ζ

p−2
p )q (mod q)

≡ τ q (mod q).
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Combining this with our other expression for σq(τ) yields(
q

p

)
τ ≡ τ q (mod q).

Since q is prime and we clearly have τ /∈ q, we can cancel τ modulo q; we conclude
that (

q

p

)
≡ τ q−1 ≡ (εp)(q−1)/2 (mod q).

By Exercise 3.9, this shows that(
q

p

)
≡
(
εp

q

)
(mod q).

By definition, this means that (
q

p

)
−
(
εp

q

)
∈ q;

since
(
q
p

)
and

(
εp
q

)
are integers, this difference is actually contained in q∩Z = qZ.

In fact,
(
q
p

)
and

(
εp
q

)
are just ±1, so the difference is certainly smaller than ±q.

It follows that we actually have an equality(
q

p

)
=
(
εp

q

)
.

The fact that (
ε

q

)
=
(

(−1)(p−1)/2

q

)
= (−1)

p−1
2

q−1
2

completes the proof. �
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4. Exercises

4.1. Relatively prime ideals. Recall that two ideals I, J of a ring R are
said to be relatively prime if I + J = R. This is the same as there existing i ∈ I
and j ∈ J such that i+ j = 1.

Exercise 3.1. Show that if I and J are relatively prime, then Im and Jn are
relatively prime for every m,n ≥ 1.

Exercise 3.2. Let R be a Dedekind domain and let I and J be ideals of R.
Show that I and J are relatively prime if and only if they have no common prime
ideal factors.

Exercise 3.3. Let K be a number field, let α be an algebraic integer in OK
and let p be a rational prime. Let f(x), g(x) ∈ Z[x] be two polynomials such that
f̄(x), ḡ(x) ∈ Fp[x] are relatively prime. Show that the ideals

(
p, f(α)

)
and

(
p, g(α)

)
of OK are relatively prime.

Exercise 3.4. Let I and J be relatively prime ideals. Show that I ∩ J = IJ .
Generalize to pairwise relatively prime ideals I1, . . . , In.

Exercise 3.5 (Chinese remainder theorem). Let I and J be relatively prime
ideals. Show that the natural map sending x to (x, x) induces an isomorphism

R/IJ ∼= R/I ×R/J.

Generalize to pairwise relatively prime ideals I1, . . . , In.

Exercise 3.6 (Chinese remainder theorem, classical form). Reinterpret Exer-
cise 3.5 to show that given pairwise relatively prime ideals I1, . . . , In and elements
xi ∈ R/Ii, there exist x ∈ R such that

x ≡ xi (mod Ii)

for all i.

Exercise 3.7. Prove Lemma 2.12.

Exercise 3.8. Let L/K be an extension of number fields. Show that every
prime P of OL lies over a unique prime of OK (what does it have to be?) and show
that every prime p of OK lies under at least one prime of OL. (Consider pOL and
use Exercise 3.7.)

4.2. The Legendre symbol. Let p be an odd prime. Recall that for any
a ∈ Z we have defined the Legendre symbol

(
a
p

)
by

(
a

p

)
=


1 a is a non-zero square modulo p;
0 a ≡ 0 (mod p);
−1 a is not a square modulo p.

Exercise 3.9. Show that(
a

p

)
≡ a

p−1
2 (mod p).

Exercise 3.10. Show that
(
ab
p

)
=
(
a
p

)(
b
p

)
for all a, b ∈ Z.
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Exercise 3.11. Let d be a positive integer and let p be a positive prime such
that p ≡ 1 (mod d). Show that a ∈ (Z/pZ)∗ is a perfect dth power modulo p if and
only if

a(p−1)/d ≡ 1 (mod p).
Exercise 3.12. Use cyclotomic fields to show that(

2
p

)
= (−1)

p2−1
8 =

{
1 p ≡ ±1 (mod 8);
−1 p ≡ ±3 (mod 8).

(Hint: look at the field Q(ζ8).)
Exercise 3.13. Determine how 2 factors in quadratic fields.

4.3. Ramification and the discriminant.
Exercise 3.14. Let K be a number field of degree n and let α be a primitive

element for K, with minimal polynomial f(x). Show that

∆(1, α, α2, . . . , αn−1) = ±NK/Q(f ′(α)).

Exercise 3.15. Let K = Q(ζp) be a cyclotomic field. Compute the discrimi-
nant ∆K (up to sign).

Exercise 3.16. Let K be a number field such that OK = Z[α] for some alge-
braic integer α. Show that a rational prime p ramifies in K if and only if p divides
∆(1, α, α2, . . . , αn−1).

Exercise 3.17. Let K be a number field of degree n and let α1, . . . , αn and
β1, . . . , βn be algebraic integers of OK . Suppose that

Zα1 + · · ·+ Zαn ⊇ Zβ1 + · · ·+ Zβn
and that both are free of rank n. Show that

∆(β1, . . . , βn)
∆(α1, . . . , αn)

is a square in Z.
Exercise 3.18. Let K = Q[x]/(x3 + 2x+ 1) and let α be the image of x in K.

Show that ∆(1, α, α2) = −59, and use Exercise 3.17 to conclude that OK = Z[α].

4.4. Some explicit factorizations.
Exercise 3.19. Let p be any prime of Z and let p be a prime of Q(ζ7) lying

over p. Determine the inertial degree of p (in terms of p, of course).
Exercise 3.20. Determine the factorization of 3 and 5 in Q(ζ15).
Exercise 3.21. Factor 2, 3, 5, 7, 11 in OK , where K = Q( 3

√
2). Can you find a

prime which splits completely in this field?

4.5. Primes which split completely.
Exercise 3.22. Let f(x) ∈ Z[x] be a non-constant polynomial. Show that

there are infinitely many primes p for which f(x) has a root modulo p.
Exercise 3.23. Let K be a number field such that OK = Z[α] for some α.

Prove that there are infinitely many primes p of OK such that f(p/p) = 1, where
(p) = p ∩ Z.

Exercise 3.24. Use cyclotomic fields and Exercise 3.23 to show that there are
infinitely many primes congruent to 1 modulo m, for any m.





CHAPTER 4

The Ideal Class Group

1. Definitions

1.1. Fractional ideals. In order to keep the algebra somewhat more pleas-
ant, it will be useful to introduce the notion of fractional ideals. Specifically, the
ideals of the ring of integers of a number field do not form a group, as there are
no inverses. Fractional ideals, on the other hand, form a group; the relationship
between fractional ideals and ideals is quite similar to the relationship between a
number field and its ring of integers.

Let K be a number field with ring of integers OK . Let r be a non-zero subset
of K which is an OK-module; that is, r is closed under addition and under multi-
plication by elements of OK . Such an r is said to be a fractional ideal if there exist
γ1, . . . , γm ∈ r such that

r = {α1γ1 + · · ·+ αmγm | αi ∈ OK};

that is, r is generated over OK by the γi. (The relevant thing here is that r is
finitely generated over OK . Not every OK-submodule of K has this property; see
Exercise 4.1.)

There are two fundamental examples of fractional ideals. First of all, every
non-zero ideal a of OK is also a fractional ideal: a is an OK-module by definition
and it has a finite generating set since OK is noetherian. To avoid confusion, we
shall refer to ideals of OK as integral ideals from now on.

The second sort of example are fractional ideals of the form γOK for some
γ ∈ K∗. (One checks easily that γOK is an OK-module, and it has the single
generator γ.) Such a fractional ideal is called a principal fractional ideal. Note that
the principal ideals of OK are precisely the integral principal fractional ideals.

More generally, let a be any ideal of OK and let γ be any element of K∗. Then
γa is a fractional ideal. (γa has a finite generating set since if α1, . . . , αm generate
a, then γα1, . . . , γαm generate γa.) The converse of this statement is also true.

Lemma 1.1. Let r be an OK-submodule of K. Then r is a fractional ideal if
and only if there exists γ ∈ K∗ such that γr is an integral ideal. (In fact, one can
actually take γ to be a rational integer.)

Proof. We saw above that if a is an integral ideal and γ ∈ K∗, then γa is a
fractional ideal. Conversely, if r is a fractional ideal, then we can write

r = {α1γ1 + . . .+ αmγm | αi ∈ OK}

for some γ1, . . . , γm ∈ r. By Lemma II.2.10 there exist a1, . . . , am ∈ Z such that
aiγi ∈ OK . One now easily checks that a1 · · · amr is an integral ideal, which proves
the lemma with γ = a1 · · · am. �

77
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We will denote by IK the set of all fractional ideals of K. If r, s ∈ IK , then
we define the product rs to be the OK-module generated by all products of pairs
of elements of r and s. Note that if r is generated by γ1, . . . , γm and s is generated
by δ1, . . . , δk, then rs is generated by the products γiδj . In particular, rs is also a
fractional ideal.

Corollary 1.2. The set IK is an abelian group under multiplication of frac-
tional ideals.

Proof. We saw above that IK is closed under multiplication. That this mul-
tiplication is commutative and associative is clear. The identity element is easily
checked to be the unit ideal OK . It remains to find inverses. So let r be a fractional
ideal and choose γ ∈ K∗ such that γr is an integral ideal. By Proposition II.3.6
there is an integral ideal b such that γrb is principal, say generated by α ∈ O∗K .
Take s = γ

αb. Then s is a fractional ideal, and we have

rs =
γrb

α
= OK .

Thus s is an inverse for r in IK . �

Note that it is clear from the proof of Proposition II.3.6 that if r is a fractional
ideal, then its inverse is given by

r−1 = {γ ∈ K | γr ⊆ OK}.

We can also characterize fractional ideals in terms of unique factorization of
ideals.

Proposition 1.3. Every fractional ideal r can be written as

r = pe11 · · · perr
where the pi are distinct primes of OK and the ei are integers. (Note that we allow
the ei to be negative.) This expression is unique up to reordering of the factors.
Thus IK is the free abelian group on the set

{p | p a prime of OK}.

Finally, r is an integral ideal if and only if each ei is non-negative.

Proof. Let r be a fractional ideal and choose a non-zero rational integer a ∈ Z
such that that ar is an integral ideal. Then we can write (uniquely up to reordering
and adding factors with zero exponent)

aOK = p
e′1
1 · · · p

e′r
r

ar = p
e′′1
1 · · · p

e′′r
r ;

here we allow some e′i and e′′i to be zero. Thus, since IK is a group,

r = p
e′′1−e

′
1

1 · · · pe
′′
r−e

′
r

r .

This shows that r has such an expression; the fact that it is unique follows from
the fact that the factorizations of aOK and ar were unique. The fact that r is an
integral ideal if and only if each ei is positive is clear from unique factorization of
ideals. �
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Notice that this decomposition of fractional ideals in terms of prime ideals is
completely analogous to the decomposition of rational numbers in terms of rational
primes; see Section 1.1 of Chapter 2.

1.2. The ideal class group. Let K be a number field with ring of integers
OK . We have seen that OK may not be a unique factorization domain, although
it will have unique factorization of ideals. We have also seen (see Exercise II.2.10)
that OK is a UFD if and only if it is a PID; that is, if and only if every ideal is
principal. Furthermore, even when OK is not a PID it is often useful to know when
ideals are principal; see, for example, Proposition III.1.7.

These facts suggest that it would be useful to have some way to determine if an
ideal is principal. Although in practice this is often quite difficult, we can proceed
abstractly fairly well. Define PK to be the subgroup of IK of principal fractional
ideals. Note that the integral ideals in PK are precisely the principal ideals of OK .
We define the ideal class group CK of K to be the quotient

CK = IK/PK .

CK naturally relates to the issues raised above. First of all, CK is the trivial group
if and only if IK = PK ; that is, if and only if every fractional ideal of K is actually
principal. Since the integral ideals in PK are precisely the principal ideals, this is
equivalent to OK being a PID, which in turn is equivalent to OK being a UFD.
That is, CK is trivial if and only if OK is a UFD. Secondly, note that a fractional
ideal r is principal if and only if it maps to 0 in CK . Thus, if one could obtain a
good description of CK , one would have a method to determine if an arbitrary ideal
is principal.

We will call the elements of CK ideal classes; thus an ideal class A is simply a
coset of PK . By definition of CK , two fractional ideals a and b lie in the same ideal
class if and only if there is some γ ∈ K∗ with

γa = b.

We will write this relation as a ∼ b. The following reinterpretation of Lemma 1.1
shows that fractional ideals are not really essential to the definition of the ideal
class group.

Lemma 1.4. Let A be an ideal class. Then there exists an integral ideal a in
the coset A.

Proof. Let r be any fractional ideal in A. Then by Lemma 1.1 there exists
γ ∈ K∗ such that γr is an integral ideal. Since γOK ∈ PK , we have γr ∈ A, which
proves the lemma. �

Example 1.5. Take K = Q(
√
−5) and consider the two ideals(

2, 1−
√
−5
)
,
(
3, 1 +

√
−5
)
.

Note that (
2, 1−

√
−5
)

= γ
(
3, 1 +

√
−5
)

where

γ = −
√
−5
3

+
1
3
.

Thus (
2, 1−

√
−5
)
∼
(
3, 1 +

√
−5
)
.



80 4. THE IDEAL CLASS GROUP

As we saw in Section 4 of Chapter 2, the presence of non-principal ideals is
closely related to the production of counterexamples to unique factorization. Thus
the ideal class group is some sort of measure of how far OK is from being a UFD.

The determination of the ideal class group of a number field is a central problem
in algebraic number theory; it is also an extremely difficult problem in most cases.
We will prove in the next section that it is finite, and often it is slightly easier to
determine the class number hK = #CK . Later we will explain how to compute it
in the case of quadratic imaginary fields and give an idea of the state of knowledge
concerning ideal class groups of cyclotomic fields.

1.3. The unit group and the class number formula. We will never ac-
tually need the results of this section, but we state them for completeness. The
second fundamental invariant of a number field K is the group of units O∗K . The
importance of O∗K stems from the fact that the units are precisely the ambiguity in
moving from factorizations into principal ideals to factorizations of elements. This
group is essentially as difficult to compute as the ideal class group, and they are
closely related. We will try in this section to describe some of those relations.

To see the first relation, note that there is a natural surjection

K∗ � PK

sending γ ∈ K∗ to the principal fractional ideal γOK . The kernel of this map is
just the set of γ ∈ K∗ for which γOK = OK ; these γ are easily seen to be precisely
the units O∗K .

We also have a natural injection PK ↪→ IK . The cokernel of this map is the
ideal class group CK , by definition. In particular, if we consider the composite map

K∗ � PK ↪→ IK ,

we see that it has kernel O∗K and cokernel CK . Thus we have exhibited a single
map which connects these two fundamental invariants.

From here we omit all proofs. In order to state the second (much deeper)
connection we need to know a bit more about the unit group. The fundamental
theorem is due to Dirichlet. We first need to analyze the complex embeddings a
bit. We will say that a complex embedding σ : K ↪→ C is real if it has image
in R; otherwise it is imaginary. If σ is imaginary, then its complex conjugate σ̄
is a different imaginary complex embedding of K. We let r be the number of
real embeddings of K and s the number of complex conjugate pairs of imaginary
embeddings of K. Thus r + 2s = n, where n is the degree of K over Q.

Example 1.6. If K = Q(
√
d) is quadratic with d > 0, then r = 2 and s = 0.

Such a K is called a real quadratic field. If K = Q(
√
d) with d < 0, then r = 0

and s = 1; K is called a imaginary quadratic field. If K = Q(ζm) with m > 2, then
every embedding is imaginary (since R contains no roots of unity of order > 2), so
r = 0 and s = ϕ(m)/2. Note that in all of these cases we have one of r and s equal
to 0; this is because the fields are Galois, and thus all embeddings have the same
image. For a non-Galois example, take K = Q( 3

√
2): then r = 1 and s = 1.

Theorem 1.7 (Dirichlet Unit Theorem). Let K be a number field with r real
embeddings and s complex conjugate pairs of imaginary embeddings. Let W be the
subgroup of O∗K of roots of unity. Then

O∗K ∼= W × Zr+s−1.
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Note that this theorem implies that O∗K is finite if and only if r + s = 1; this
occurs if and only if K is Q or an imaginary quadratic field. It is not a coincidence
that these are the number fields of which we have the greatest understanding.

The proof of Theorem 1.7 rests upon the logarithmic embedding of K∗. This is
a map

K∗ → R
r+s

defined as follows: let σ1, . . . , σr be the real embeddings of K and let σr+1, . . . , σr+s
be a set of imaginary embeddings of K containing one of each complex conjugate
pair. (Thus σ1, . . . , σr, σr+1, . . . , σr+s, σ̄r+1, . . . , σ̄r+s are the n complex embed-
dings of K.) The logarithmic embedding is defined by sending α ∈ K∗ to the
(r + s)-tuple(

log |σ1(α)|, . . . , log |σr(α)|, 2 log |σr+1(α)|, . . . , 2 log |σr+s(α)|
)
.

One shows (using the fact that the norm of a unit is ±1) that the image of O∗K lies
entirely within the hyperplane

x1 + · · ·+ xr+s = 0.

Furthermore, by Exercise 2.16 one sees that the kernel of the logarithmic embedding
is precisely the group of roots of unityW . The remainder of the proof of the theorem
involves showing that the image of K∗ is a lattice of maximal rank in the r+ s− 1
dimensional hyperplane x1 + · · ·+ xr+s = 0.

We need the logarithmic embedding to define an important invariant of K. Let
ε1, . . . , εr+s−1 be a basis for the free part of O∗K ; thus every element of O∗K can be
written uniquely as

ζεn1
1 · · · ε

nr+s−1
r+s−1

with ζ ∈W and each ni ∈ Z. We define the regulator RK ofK to be the determinant
of the matrix (

σi(εj)
)r+s−1

i,j=1
.

(It in fact doesn’t matter which embedding σi one omits from the matrix, as each
row can be written in terms of the other r+s−1 rows.) The Dirichlet class number
formula states that, if K/Q is Galois with abelian Galois group (for example, a
quadratic field or a cyclotomic field), then

hK =
w|∆K |

2r+sπsRK
lim
s→1

(s− 1)ζK(1).

Here w is the number of roots of unity in K, ∆K is the discriminant of OK , r and
s are the number of real and pairs of complex conjugate imaginary embeddings
respectively, and ζK is the Dedekind zeta function, defined for Re(s) > 1 by

ζK(s) =
∑

a an ideal of OK

NK/Q(a)−s,

which is a meromorphic function with an analytic continuation to the entire complex
plane, with a simple pole at s = 1.

All of these terms turn out to be reasonably easy to compute except for the
regulator and the class number. One sees, therefore, that determination of the
regulator is essentially the same as determination of the class number. Since to
compute the regulator one virtually needs to know precisely what the units are,
this means that computing the ideal class group and the unit group are almost the
same problem.
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2. Finiteness of the ideal class group

2.1. Norm bounds. The fact that the ideal class group is finite indicates
that unique factorization never fails too spectacularly in rings of integers of number
fields, and is perhaps the most important single fact in algebraic number theory.
In this section we will give a surprisingly simple proof.

Theorem 2.1. Let K be a number field. There exists a number λK , depending
only on K, such that every ideal non-zero a of OK contains a non-zero element α
with

|NK/Q(α)| ≤ λK NK/Q(a).

Proof. Let α1, . . . , αn be an integral basis for OK and let σ1, . . . , σn be the
complex embeddings of K. We will show that one can take

λK =
n∏
i=1

 n∑
j=1

|σi(αj)|

 .

Let a be a non-zero ideal of OK and let m be the unique positive integer such
that

mn ≤ NK/Q(a) < (m+ 1)n.
Consider the (m+ 1)n elements

n∑
j=1

mjαj | 0 ≤ mj ≤ m,mj ∈ Z

 .

Since OK/a has order less than (m+ 1)n, two of these elements must be congruent
modulo a. Taking their difference we find an element

α =
n∑
j=1

m′jαj ∈ a

with |m′j | ≤ m. We compute

|NK/Q(α)| =
n∏
i=1

|σi(α)|

=
n∏
i=1

∣∣∣∣∣∣σi
 n∑
j=1

m′jαj

∣∣∣∣∣∣
=

n∏
i=1

∣∣∣∣∣∣
n∑
j=1

m′jσi(αj)

∣∣∣∣∣∣
≤

n∏
i=1

n∑
j=1

|m′j ||σi(αj)|

≤
n∏
i=1

n∑
j=1

m|σi(αj)|

= mnλK

≤ λK NK/Q(a)
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as claimed. �

Corollary 2.2. Let A be an ideal class of CK . Then A contains an integral
ideal of norm ≤ λK .

Proof. Let b be any integral ideal in A−1. By Theorem 2.1 we can find β ∈ b
with |NK/Q(β)| ≤ λK NK/Q(b). The principal ideal βOK is contained in b, so
by Lemma II.3.8 there is an integral ideal a such that ab = βOK . Since βOK is
principal we have a ∈ A, and we compute

NK/Q(a) =
|NK/Q(β)|
NK/Q(b)

≤ λK .

�

Corollary 2.3. The ideal class group CK is finite.

Proof. By Corollary 2.2 every ideal class contains an ideal of norm at most
λK . By Exercise 4.2 there are only finitely many ideals of norm ≤ λK , so this
means that every ideal class contains one of a finite set of ideals. In particular, CK
must be finite. �

The bound given above is not terribly useful in actually computing the ideal
class group, both because it is difficult to compute and because it gets large fairly
fast. A much better bound can be obtained using Minkowski’s theorem in the
geometry of numbers; we state it here and will use it in the next section to compute
ideal class groups of imaginary quadratic fields.

Theorem 2.4 (Minkowski bound). Let K be a number field of degree n. Then
every ideal class of OK contains an ideal a satisfying

NK/Q(a) ≤ µK =
n!
nn

(
4
π

)s√
|∆K |.

Here s is the number of conjugate pairs of imaginary embeddings of K.

2.2. Computations of ideal class groups of cyclotomic fields. There
are some immediate applications of the Minkowski bound. For example, take K =
Q(ζ5). This field has discriminant ∆K = 53 and s = 2, so the Minkowski bound
shows that every ideal class contains an ideal of norm at most

µK =
4!
44

(
4
π

)2√
125 ≈ 1.6992079064.

Thus every ideal class contains an ideal of norm 1. But the only ideal of norm 1 is
OK , so every ideal class contains OK ; thus there is only one ideal class, and CK is
trivial. It follows immediately that Z[ζ5] is a UFD.

For a slightly more involved example, take K = Q(ζ7). This time we compute
that the Minkowski bound is µK ≈ 4.12952833191. Thus every ideal class contains
an ideal of norm at most 4. Let a be such an ideal, and assume that a 6= OK .
Since the only possible prime factors of NK/Q(a) are 2 and 3, every prime factor of
a must lie over 2 or 3.

Let us now determine these primes. Since 2 has order 3 in (Z/7Z)∗, the primes
lying over 2 will have inertial degree 3. In particular, they will have norm 23 = 8;
thus they can not appear as prime factors of a. Similarly, since 3 has order 6 in
(Z/7Z)∗, it actually remains prime in OK and has norm 36 = 729. It can not occur
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as a factor of a either; thus a must be OK . It follows that CK is trivial and Z[ζ7] is
a UFD.

Even the Minkowski bound becomes somewhat difficult to use past this point;
this again illustrates how difficult it can be to compute ideal class groups.

We will conclude this section with a few comments on the study of ideal class
groups of cyclotomic fields; this remains an important and active area of number
theory. The determination of all cyclotomic fields of class number 1 was completed
in 1971 by Masley, using work of Siegel, Montgomery and Uchida. Recall that if m
is odd then Q(ζm) = Q(ζ2m), so we can restrict our attention to those m which are
not congruent to 2 modulo 4.

Theorem 2.5 (Masley). Let m be an integer which is not congruent to 2 modulo
4. Then Q(ζm) has trivial ideal class group (and thus Z[ζm] is a UFD) if and only
if

m =1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28,
32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

Proof. The proof is quite intricate; see [20, Chapter 11]. �

The first cyclotomic field with non-trivial ideal class group is Q(ζ23), which has
class number 3.

In the general case the first step is to break the ideal class group into smaller
pieces. Let us write hm for the class number of Q(ζm) and h+

m for the class number
of the real subfield Q(ζm)+. One can show that h+

m divides hm (the proof of this
is an easy application of class field theory, but, being an application of class field
theory, is not easy); set h−m = hm/h

+
m. h−m turns out to be easy to compute in

terms of certain Bernoulli numbers; its fine structure is now very well understood
through the efforts of Herbrand, Ribet, Iwasawa, Mazur, Wiles, Thaine, Kolyvagin
and Rubin, although we can not really state their results here.

Much less is known about h+
m. We will return to it in the next chapter.

3. Ideal class groups of imaginary quadratic fields

3.1. Lattices. We turn now to the case of imaginary quadratic fields, where
it is actually possible to give a reasonably straightforward algorithm for computing
the ideal class group. For this section fix an imaginary quadratic field K = Q(

√
d)

with d a negative squarefree integer. We assume as usual that we have fixed an
embedding of K into C. Set

α =

{√
d d ≡ 2, 3 (mod 4);

1+
√
d

2 d ≡ 1 (mod 4);

which has minimal polynomial

f(x) =

{
x2 − d d ≡ 2, 3 (mod 4);
x2 − x+ 1−d

4 d ≡ 1 (mod 4).

Consider an ideal a of OK . Let a be any rational integer lying in a; then

aOK ⊆ a ⊆ OK ,
so a lies between two free Z-modules of rank 2 and thus must itself be a free Z-
module of rank 2. Recall also that two ideals a and b of OK lie in the same ideal
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class if and only if there is some γ ∈ K∗ such that γa = b. Such submodules of
C are called complex lattices; two lattices related by multiplication by a scalar are
said to be homothetic. In this section we shall give the classification of complex
lattices up to homothety; later we will use this to determine when two ideals lie in
the same ideal class.

We omit all proofs; for the details, see [17, Chapter 7, Section 1]. Let Λ ⊆ C
be a free Z-module of rank 2 which contains an R-basis for C. (This last condition
merely says that Λ does not lie entirely in a single line.) Thus we can write

Λ = {aλ1 + bλ2 | a, b ∈ Z}

for some λ1, λ2 ∈ Λ; the condition that Λ is free of rank 2 amounts to the ratio

λ1

λ2

not lying in Q, and the condition that Λ contains a R-basis for C amounts to this
ratio not lying in R. We will call such a Λ a complex lattice. Two lattices Λ1 and
Λ2 are said to be homothetic if there is some α ∈ C∗ such that αΛ1 = Λ2. We wish
to give a method to determine when two complex lattices are homothetic.

We begin by picking a basis: let λ1, λ2 be a Z-basis for Λ as above. We assume
throughout that all bases are ordered so that Im(λ1/λ2) > 0. (As we said above,
we can not have Im(λ1/λ2) = 0, since then Λ would not contain an R-basis for C.
Thus, if Im(λ1/λ2) < 0, we can switch the order of the λi to get the imaginary part
positive.) Let H = {z ∈ C | Im z > 0} be the upper half-plane and define

j(λ1, λ2) =
λ1

λ2
∈ H.

Note that for any α ∈ C∗,

j(αλ1, αλ2) = j(λ1, λ2),

which suggests that j is a decent place to start in the classification of lattices up to
homotopy.

Unfortunately, j(λ1, λ2) depends not only on Λ but also on the choice of basis
λ1, λ2. In order to use j to classify lattices up to homothety we must remove this
basis dependence.

We do this by determining the other possible bases for Λ and seeing how j
depends upon the choice. By standard linear algebra, the bases for Λ are of the
form

λ′1 = aλ1 + bλ2, λ
′
2 = cλ1 + dλ2

where (
a b
c d

)
∈ GL2(Z),

the integer matrices of determinant ±1. However, as above we want to restrict to
only the bases λ′1, λ

′
2 of Λ ordered so that Im(λ′1/λ

′
2) > 0. One checks easily that

the matrices which preserve this condition are precisely those in SL2(Z); that is,
those of determinant 1. We compute for these bases

j(aλ1 + bλ2, cλ1 + dλ2) =
aλ1 + bλ2

cλ1 + dλ2
=
aj(λ1, λ2) + b

cj(λ1, λ2) + d
.
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Figure 1. The fundamental domain Y for the SL2(Z) action on H

These computations suggest the following approach. We define an action of
SL2(Z) on H by (

a b
c d

)
z =

az + b

cz + d
;

we leave it to the reader to check that this really is a group action. Let us denote
by Y the quotient space of H by this action. Recall that this means that Y consists
of the orbits of the SL2(Z) action on H: for any z ∈ H, its orbit is simply the set

{γz | γ ∈ SL2(Z)}.
This action of SL2(Z) is defined in such a way that if λ1, λ2 and λ′1, λ

′
2 are two

correctly ordered bases of a lattice Λ, then j(λ1, λ2) and j(λ′1, λ
′
2) will lie in the same

SL2(Z) orbit of H; that is, they will be equal in Y.
This tells us that if we compose our map

j : ordered bases of lattices→ H

with the quotient map H→ Y, we obtain a map

j : lattices→ Y;

the basis dependence disappears in Y by our argument above. Furthermore, we
saw above that j is invariant under multiplying bases by constants; it follows that
j yields a well-defined map

j : homothety classes of lattices→ Y.
By this we mean that if Λ and Λ′ are homothetic, then j(Λ) = j(Λ′).

This map j is easily seen to be surjective and it can also be shown to be injective.
Thus j establishes a set bijection between homothety classes of lattices and Y. This
means that if we have a good description of Y then we will have a good classification
of lattices up to homothety. This description comes from the following result.

Proposition 3.1. Define

Y =
{
z ∈ C; Im z > 0,

−1
2
< Re(z) <

1
2
, |z| > 1

}
∪{

z ∈ C; |z| = 1, 0 ≤ Re(z) <
1
2

}
∪

{
z ∈ C; Re(z) =

1
2
, Im(z) ≥

√
3

2

}
.

Then Y contains exactly one element of each SL2(Z) orbit of H; that is, Y is in
natural bijection with Y.

Proof. See [17, Chapter 7, Section 1.2] or [18, Proposition 1.5]. �

The last thing we need is a good way to determine which element of Y an
element of H corresponds to.

Proposition 3.2. Set

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
.

Then S and T generate SL2(Z).
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Proof. See [17, Chapter 7, Section 1.2] or [18, Proposition 1.5]. �

Note that S(z) = − 1
z and T (z) = z + 1.

These results give us the following algorithm for determining the homothety
class of a lattice Λ with basis λ1, λ2. First, compute j = j(Λ) = λ1/λ2. We want to
modify j by S and T to get it into Y . If Im j < 0, replace j by 1/j; this corresponds
to swapping the two basis elements. Now, if j is in Y , then we are done. If j is not
in Y , then first add an integer m to j so that

−1
2
< Re(j +m) ≤ 1

2
.

If j + m ∈ Y , then we are done. If not, replace j + m by − 1
j+m and start over.

Proposition 3.2 (or more honestly its proof) guarantees that this will eventually
yield an element of Y .

Example 3.3. Let Λ = 5Z+ (1 + i)Z. We compute

j(Λ) =
5

1 + i
=

5
2
− 5

2
i,

so we replace it by
1

j(Λ)
=

1
5

+
1
5
i ∈ H

This does not yet lie in Y , as it has absolute value < 1. Since its real part is already
between − 1

2 and 1
2 , we replace it by its negative reciprocal, which is

−5
2

+
5
2
i.

Adding 3 to this we obtain the element
1
2

+
5
2
i

of Y .
Suppose that we used the basis 23+3i = 4(5)+3(1+ i), 17+2i = 3(5)+2(1+ i)

of Λ instead. We compute

j(Λ) =
23 + 3i
17 + 2i

=
397
293

+
5

293
i.

Subtracting 1 yields 104
293 + 5

293 i, which has absolute value < 1. Its negative
reciprocal is

−104
37

+
5
37
i;

adding 3 yields
7
37

+
5
37
i,

which still has absolute value < 1. Its negative reciprocal is

−7
2

+
5
2
i;

adding 4 yields
1
2

+
5
2
i ∈ Y,

as before.
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3.2. Ideal generators and lattice generators. In order to take advantage
of our lattice classification of the previous section we need a method to go from ideal
generators to lattice generators. That is, given an ideal a = (a1, a2) we want to find
a Z-basis for a. The general algorithm is little more than Gaussian elimination: we
know that a1, a2 form a set of Z[α]-generators for a, so a1, a1α, a2, a2α form a set of
Z-generators for a. Write all four out in terms of the basis 1, α of OK . Now perform
your favorite Gaussian elimination algorithm on these four vectors to obtain a two
vector basis; one must remember that since we are working only with Z-modules
and not with vector spaces, the only scalars allowed are integers.

Example 3.4. Take K = Q(
√
−5) and a = (10, α+ 5), where α =

√
−5. Then

10, 10α, 5 + α, (5 + α)α = −5 + 5α are Z-generators for a; thus we wish to perform
Gaussian elimination on the matrix[

10 0 5 −5
0 10 1 5

]
.

Adding −5 times the third column to the last column yields[
10 0 5 20
0 10 1 0

]
.

Subtracting twice the first column from the last column now eliminates the last
column. Subtracting 10 times the third column from the second column yields[

10 −50 5
0 0 1

]
.

Finally, adding 5 times the first column to the second column shows that the ideal
generators 10, α+ 5 are also a lattice basis for a.

In fact, it very often (but possibly not always; I haven’t yet found a coun-
terexample, but it seems that there could be one) happens that the “natural”
ideal generators are also a lattice basis. For example, Exercise 4.3 shows that if
p = (p, α+m) is a prime ideal of OK , then p and α+m are a lattice basis for p.

Note also that if a =
(
a
)

is a principal ideal, then a has lattice basis a, aα.

3.3. Computing ideal class groups. We now have all of the tools we will
need to compute ideal class groups of imaginary quadratic fields. Let K = Q(

√
d)

and define α and f(x) as before. The first step is to determine generators for
the ideal class group. To do this, compute the Minkowski bound: for imaginary
quadratic fields, it works out as

µK =

{
4
π

√
−d d ≡ 2, 3 (mod 4)

2
π

√
−d d ≡ 1 (mod 4).

Next, for every positive rational prime p ≤ µK , determine the factorization of p
into primes of OK as in Chapter 3, Section 1.1. If p is inert, then the ideal pOK is
principal, so it is irrelevant in computing the ideal class group. Thus we need only
consider those p which split or ramify. Let P0 be the set of primes of OK lying over
these p.

We claim that P0 contains generators for the ideal class group CK . To see this,
let A be any ideal class. We know that there is some a ∈ A with NK/Q(a) ≤ µK .
By unique factorization of ideals, a factors into prime ideals, and each such prime
must have norm ≤ µK . Thus a can be written as a product of primes of norm
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≤ µK ; this shows that the ideal class A is generated by ideal classes of primes in
P0, and thus that P0 generates CK .

The next step is to determine which of these generators are equal in the ideal
class group. First one computes j(OK) ∈ Y and j(p) ∈ Y for each p ∈ P0. If for
any p, q ∈ P0 one has j(p) = j(q), then we know that p and q are homothetic as
complex lattices. That is, there is an α ∈ C∗ such that p = αq. One shows easily
that α must actually lie in K∗ (see Exercise 4.4) so p ∼ q. Thus p and q are equal
in CK , and one must only include one of p and q as a generator of CK . Similarly, if
j(p) = j(OK), then p is trivial in CK , and thus irrelevant to the computation. Let
P1 be a set containing one element of P0 for each j-value obtained; P1 still generates
CK and its elements are distinct in CK .

From here one needs to compute the full group CK simultaneously with a multi-
plication table. Note first of all that we already know the inverses of every element
of P1, since for each p ∈ P1 there is a p′ ∈ P0 such that pp′ = (p) is principal. If p
and q are two primes of P1 which are not inverses, we compute first ideal generators
of pq, and from these we compute a lattice basis. We then determine j(pq) ∈ Y . If
this equals j(a) for some ideal we have already computed, then we have pq ∼ a in
CK . Otherwise we obtain a new element of CK which we add to the multiplication
table. From here one continues until every possible product has been determined;
often one can use previously determined relations to determine others and thus
simplify the computations. The end result is a multiplication table for the ideal
class group CK , together with the j-invariants of each ideal class.

Note that as a special case of this algorithm we get a simple method to deter-
mine if an ideal is principal: simply compute a lattice basis, from that compute its
j-invariant, and compare it to j(OK); they will be equal if and only if the ideal is
principal. More generally one can determine which element of the ideal class group
a given ideal is equivalent to in the same manner.

3.4. Example : Q(
√
−14). Take K = Q(

√
−14). In this section we will

compute CK . We compute µK ≈ 4.764026148, so the only primes we need consider
are 2 and 3. 2OK factors as

2OK =
(
2,
√
−14

)2
and 3OK factors as

3OK =
(
3,
√
−14 + 1

)(
3,
√
−14 + 2

)
.

Set a1 = OK , a2 =
(
2,
√
−14

)
, a3 =

(
3,
√
−14 + 1

)
, a′3 =

(
3,
√
−14 + 2

)
.

We now compute j of each of these ideals. We have

j(a1) =
√

14i.

By Exercise 4.3 we know that 2 and
√
−14 are a lattice basis for a2, so we find that

j(a2) =
√

14
2
i.

Similar computations for a3 and a′3 yield

j(a3) =
1
3

+
√

14
3
i;

j(a′3) = −1
3

+
√

14
3
i.
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Thus all three generators are distinct in CK .
We now compute products. We already have the multiplication table

a1 a2 a3 a′3
a1 a1 a2 a3 a′3
a2 a2 a1

a3 a3 a1

a′3 a′3 a1

We compute

a2a3 =
(
2, α

)(
3, α+ 1

)
=
(
6, 2α+ 2, 3α, α2 + α

)
=
(
6, 2α+ 2, 3α, α− 14

)
=
(
6, α+ 4

)
.

Call this ideal a. One easily checks that 6 and α+ 4 are a lattice basis of a, so we
compute

j(a) = −1
3

+
√

14
2
i.

Thus a2a3 ∼ a′3 in CK . This also allows us to compute

(a′3)2 ∼ a2a3a
′
3 ∼ a2;

a2a
′
3 ∼ a2

2a3 ∼ a3;

a2
3 ∼ a2a

′
3a3 ∼ a2.

Thus we can fill in our multiplication table:

a1 a2 a3 a′3
a1 a1 a2 a3 a′3
a2 a2 a1 a′3 a3

a3 a3 a′3 a2 a1

a′3 a′3 a3 a1 a2

Since every possible product of generators is now accounted for, we find that CK ∼=
Z/4Z and hK = 4.

3.5. Example : Q(
√
−119). For a second example, take K = Q(

√
−119), so

that α = 1+
√
−119
2 and f(x) = x2 − x + 30. (In particular, α2 = α − 30.) The

Minkowski bound is µK ≈ 6.94470182322, so we must check the rational primes 2,
3 and 5. We find that

(2) =
(
2, α

)(
2, α+ 1

)
;

(3) =
(
3, α

)(
3, α+ 2

)
;

(5) =
(
5, α

)(
5, α+ 4

)
.

Set a1 = OK , a2 =
(
2, α

)
, a′2 =

(
2, α+ 1

)
, a3 =

(
3, α

)
, a′3 =

(
3, α+ 2

)
, a5 =

(
5, α

)
,

a′5 =
(
5, α+4

)
. We compute (since by Exercise 4.3 we know that the ideal generators
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are a lattice basis)

j(a1) =
1
2

+
√

119
2

i;

j(a2) =
1
4

+
√

119
4

i;

j(a′2) = −1
4

+
√

119
4

i;

j(a3) =
1
6

+
√

119
6

i;

j(a′3) = −1
6

+
√

119
6

i;

j(a5) =
1
10

+
√

119
10

i;

j(a′5) = − 1
10

+
√

119
10

i.

Let us begin by determining the powers of a2. We find that

a2
2 =

(
4, 2α, α2

)
=
(
4, 2α, α− 30

)
=
(
4, α+ 2

)
.

Call this ideal a4. One checks easily that it has lattice basis 4, α + 2, so that we
can compute

j(a4) = −3
8

+
√

119
8

i.

Next, we have

a3
2 = a2a4 =

(
2, α

)(
4, α+ 2

)
=
(
8, 4α, 2α+ 4, α2 + 2α

)
=
(
8, 4α, 2α+ 4, 3α− 30

)
=
(
8, α+ 6

)
.

Call this ideal a8. It has lattice basis 8, α+ 6, so we compute

j(a8) =
3
8

+
√

119
8

i.

Next, we have

a4
2 = a2a8 =

(
2, α

)(
8, α+ 6

)
=
(
16, 2α+ 12, 8α, α2 + 6α

)
=
(
16, 2α+ 12, 8α, 7α− 30

)
=
(
16, α− 2

)
.

This ideal has lattice basis 16, α− 2, so we compute that it has j-invariant

−1
4

+
√

119
4

i.

Thus a4
2 ∼ a′2. This also implies that a5

2 ∼ a1, so we have found a subgroup of order
5 in CK .

We next compute the powers of a3. We have

a2
3 =

(
9, 3α, α− 30

)
=
(
9, α+ 6

)
;

this has lattice basis 9, α+ 6, and we compute that it has j-invariant

−3
8

+
√

119
8

i,
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so a2
3 ∼ a4. Thus we immediately know the even powers of a3: a4

3 ∼ a2
4 ∼ a′2

(compute this in the cyclic group generated by a2), a6
3 ∼ a3

4 ∼ a2, a8
3 ∼ a4

4 ∼ a8,
a10

3 ∼ a5
4 ∼ a1. To compute the odd powers of a3 we simply need to multiply each

of these by a3.
We find that

a3
3 ∼ a3a4 =

(
3, α

)(
4, α+ 2

)
=
(
12, 3α+ 6, 4α, α2 + 2α

)
=
(
12, 3α+ 6, 4α, 3α− 30

)
=
(
12, α+ 6

)
.

This has lattice basis 12, α+ 6, and j-invariant

1
10

+
√

119
10

i,

so a3
3 ∼ a5. Since a3 has order 10 and a−1

5 = a′5, this also tells us that a7
3 ∼ a′5.

Since we also have a9
3 = a′3, every generator is a power of a3; thus CK is cyclic of

order 10 with generator a3.
The only remaining power to explicitly compute is a5

3. We find that

a5
3 ∼ a3a

′
2 =

(
3, α

)(
2, α+ 1

)
=
(
6, 2α, 3α+ 3, α2 + α

)
=
(
6, 2α, 3α+ 3, 2α− 30

)
=
(
6, α+ 3

)
.

Call this ideal a6. It has lattice basis 6, α+ 3, and

j(a6) =
5
12

+
√

119
12

i.

This completes the calculation of CK .

3.6. Imaginary quadratic fields of class number 1. We have already seen
a few imaginary quadratic fields with class number 1: Q(i), Q(

√
−2), and Q(

√
−3).

It turns out that there are exactly 6 more imaginary quadratic fields of class number
1. They are Q(

√
−7), Q(

√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67) and Q(

√
−163).

It is quite easy using our techniques to show that these all have class number 1.
We will do the case of K = Q(

√
−163), which is the most interesting.

In this case we find that µK ≈ 8.12781715683, so we must check the primes 2,
3, 5 and 7. Recall that an odd rational prime p is inert in OK if and only if we have(

− 163
p

)
= −1.

We compute (
− 163

3

)
=
(

2
3

)
= −1;(

− 163
5

)
=
(

2
5

)
= −1;(

− 163
7

)
=
(

5
7

)
= −1.

Thus none of these primes split in OK . For p = 2, we need to determine the
factorization of x2−x+ 41 in F2[x]; it is irreducible, so 2 doesn’t split either. Thus
our set of generators of CK is trivial, so CK itself must be trivial.

Continuing the Legendre symbol calculations above, one finds that
(
−163
p

)
=

−1 for all p ≤ 37. This has an amusing consequence. Consider the polynomial
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f(x) = x2 − x + 41. It has been observed that this polynomial yields primes with
remarkable frequency; in fact, it yields a prime for each of x = 1, . . . , 40. Using the
Legendre symbol calculations we can give a quick proof of this.

Let x0 be an integer and suppose that some prime p divides f(x0). Then

x2
0 − x0 + 41 ≡ 0 (mod p).

Thus
(2x0 − 1)2 ≡ −163 (mod p),

so
(
−163
p

)
= 0 or 1. But we have shown that this does not happen for any p ≤ 37.

Thus no p ≤ 37 divides f(x0) for any x0.
Next, note that f(x) is positive and increasing for x > 1/2 and f(40) = 1601 <

412; thus |f(x)| < 412 for all 1 ≤ x ≤ 40. It follows that if f(x) is not prime for
such x, then f(x) is divisible by some prime ≤ 37. Since we showed above that this
does not happen, every value f(x) with 1 ≤ x ≤ 40 must be prime. More generally,
the fact that values f(x) are not divisible by any small primes suggests that they
should be prime unusually often.

It is much harder to show that the above are the only imaginary quadratic
fields with class number 1; this was proved only in 1967 by Stark.

The case of real quadratic fields is quite different; in fact, it is conjectured that
most real quadratic fields have class number 1.

4. Applications to quadratic forms

4.1. Example : Q(
√
−5). Our explicit calculations of ideal class groups of

imaginary quadratic fields can be used to yield some interesting refinements of our
earlier results on quadratic forms. We begin with the caseK = Q(

√
−5) to illustrate

the basic idea. Recall that we related this field to the quadratic form x2 + 5y2; we
showed that an (unramified) positive rational prime p could be represented by this
quadratic form if and only if it split into principal primes in OK . Unfortunately,
we had no good characterization of which primes these were; that

(
−5
p

)
= 1 is a

necessary condition, but it is not sufficient.
We will approach this problem from a different point of view in this section.

Specifically, we will construct a second quadratic form which will represent any
p with

(
−5
p

)
= 1 which x2 + 5y2 does not represent. In other words, we will

show that there is a second quadratic form q′(x, y) such that every positive rational
prime p with

(
−5
p

)
= 1 can be represented by at least one of x2 + 5y2 and q′(x, y).

Furthermore, no primes with
(
−5
p

)
= −1 will be represented by either quadratic

form.
We assume throughout this section that all primes are distinct from 2 and 5,

the two primes which ramify in K/Q.
We first need to compute the ideal class group. One checks easily that hK = 2,

with a2 =
(
2,
√
−5 + 1

)
a representative of the non-trivial element of CK . In

particular, we have the j-invariants

j(OK) =
√

5i;

j(a2) =
1
2

+
1
2

√
5i.
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Now, let p be a prime of Z which splits in OK ; recall that we know that this
occurs if and only if

(
−5
p

)
= 1. Let p =

(
p,
√
−5 + m

)
be one of the primes of

OK lying over p. Recall that to compute j(p) (using Exercise 4.3) we begin by
computing

√
−5 +m

p
=
m

p
+

1
p

√
5i

and then applying appropriate elements of SL2(Z) to get the value into the funda-
mental domain Y .

Suppose first that p is actually principal. This means that p ∼ OK , so j(p) =√
5i in the quotient space Y. By definition of Y this means that there is some

matrix (
a b
y x

)
∈ SL2(Z)

(the reason that we have chosen these strange variable names will become apparent
later) such that (

a b
y x

)(√
5i
)

=
m

p
+

1
p

√
5i.

Expanding out the SL2(Z) action, this tells us that

m

p
+

1
p

√
5i =

a(
√

5i) + b

y(
√

5i) + x

=
(a
√

5i+ b)(−y
√

5i+ x)
(y
√

5i+ x)(−y
√

5i+ x)

=
5ay + bx

x2 + 5y2
+

ax− by
x2 + 5y2

√
5i.

Equating imaginary parts and using the fact that ax− by = 1 now tells us that

x2 + 5y2 = p.

That is, if p is principal then we can find integer solutions to the quadratic form
x2+5y2 = p. Of course, this isn’t terribly surprising; it just duplicates one direction
of Proposition III.1.7.

More interesting is the case where p is not principal. This time we have p ∼ a2,
so j(p) = 1

2 + 1
2

√
5i in Y. Again, this tells us that there is a matrix(

a b
y x

)
∈ SL2(Z)

such that (
a b
y x

)(
1
2

+
1
2

√
5i
)

=
m

p
+

1
p

√
5i.
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Expanding this out we find that

m

p
+

1
p

√
5i =

a
(

1
2 + 1

2

√
5i
)

+ b

y
(

1
2 + 1

2

√
5i
)

+ x

=

(
a
2 + b

)
+ a

2

√
5i(

y
2 + x

)
+ y

2

√
5i

=

[(
a
2 + b

)
+ a

2

√
5i
] [(

y
2 + x

)
− y

2

√
5i
][(

y
2 + x

)
+ y

2

√
5i
] [(

y
2 + x

)
− y

2

√
5i
]

=
·(

y
2 + x

)2 + 5
4y

2
+

(
a
2 + b

) −y
2 + a

2

(
y
2 + x

)(
y
2 + x

)2 + 5
4y

2

√
5i

where the · is some real number which we don’t need to evaluate. Equating imagi-
nary parts gives

1
p

=

(
a
2 + b

) −y
2 + a

2

(
y
2 + x

)(
y
2 + x

)2 + 5
4y

2(y
2

+ x
)2

+
5
4
y2 = p

((a
2

+ b
) −y

2
+
a

2

(y
2

+ x
))

1
4
y2 + xy + x2 +

5
4
y2 = p

(
−ay

4
+
−by

2
+
ay

4
+
ax

2

)
x2 + xy +

3
2
y2 = p

(
ax− by

2

)
x2 + xy +

3
2
y2 =

p

2
.

Thus
2x2 + 2xy + 3y2 = p.

In particular, p can be represented by the quadratic form 2x2 + 2xy + 3y2.
Let us summarize our results to this point. We begin with any positive rational

prime p such that
(
−5
p

)
= 1; it necessarily splits as pp′ for some prime ideal p, p′ of

OK . These ideals must either both be in the ideal class of a1 or in the ideal class
of a2; in the first case we have shown that we can write

p = x2 + 5y2

and in the second case we have shown that we can write

p = 2x2 + 2xy + 3y2.

Thus, if all we know is that
(
−5
p

)
= 1 but not which ideal class p actually belongs

to, we can already say that p can be represented by at least one of these two
quadratic forms.

Let us now show that these are the only p which are represented by these
quadratic forms. That is, we want to show that if p is represented by one of these
quadratic forms, then

(
−5
p

)
= 1. (Remember that we are assuming p 6= 2, 5.) We

already know this for x2 + 5y2, so we just need to show it for 2x2 + 2xy+ 3y2. The
case p = 3 is easy, so we assume p 6= 3. Suppose that we have

2x2 + 2xy + 3y2 = p.
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We can not have x or y divisible by p, for the other would then have to be divisible
by p as well (this is where we use p 6= 3), and then the entire left-hand side would
be divisible by p2. In particular, y must be invertible modulo p, so

0 ≡ 2x2 + 2xy + 3y2 (mod p)

≡ 2
(
x

y

)2

+ 2
(
x

y

)
+ 3.

That is, the quadratic equation 2t2 + 2t + 3 has a root modulo p. On the other
hand, the quadratic formula tells us that the roots of this equation are

−4±
√

4− 24
4

= −1±
√
−5.

Thus 2t2 + 2t + 3 has roots if and only if −5 is a square modulo p; that is, if and
only if

(
−5
p

)
= 1. Combining these two facts shows that if p can be represented by

2x2 + 2xy + 3y2, then
(
−5
p

)
= 1.

To make this result slightly better, let us determine which primes p have(
−5
p

)
= 1. We have (

− 5
p

)
=
(
− 1
p

)(
5
p

)
.

Since 5 ≡ 1 (mod 4), quadratic reciprocity tells us that
(

5
p

)
=
(
p
5

)
; thus(

− 5
p

)
=
(
− 1
p

)(
p

5

)
.

These Legendre symbols evaluate as(
− 1
p

)
=

{
1 p ≡ 1 (mod 4);
−1 p ≡ 3 (mod 4);

and (
p

5

)
=

{
1 p ≡ 1, 4 (mod 5);
−1 p ≡ 2, 3 (mod 5).

Combining these two computations we find that(
− 5
p

)
=

{
1 p ≡ 1, 3, 7, 9 (mod 20);
−1 p ≡ 11, 13, 17, 19 (mod 20).

Put together, our above computations yield the following theorem.
Theorem 4.1. Let p 6= 2, 5 be a positive rational prime. Then p can be repre-

sented by at least one of the quadratic forms

x2 + 5y2, 2x2 + 2xy + 3y2

if and only if
p ≡ 1, 3, 7, 9 (mod 20).

In fact, it turns out that the first form represents those p such that p ≡ 1, 9
(mod 20) and the second those such that p ≡ 3, 7 (mod 20), but the best proof of
this requires class field theory.
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4.2. The general case. The arguments of the previous section generalize
easily. Let K = Q(

√
d) be an imaginary quadratic field; we begin with the case

d ≡ 2, 3 (mod 4). Suppose that a1, . . . , ah are ideal representatives for its ideal
class group. Let p be any positive rational prime such that

(
d
p

)
= 1 and let

p =
(
p,
√
d+m

)
be one of the primes of OK lying over p.

By the definition of the ideal class group we have p ∼ ai for a unique i. Note
that it is clear from our definition of j that j(ai) ∈ K; thus we can write

j(ai) = r + s
√
d

for some r, s ∈ Q. Since p ∼ ai, the definition of j tells us that there is some(
a b
c d

)
∈ SL2(Z)

such that (
a b
y x

)(
r + s

√
d
)

=
m

p
+

1
p

√
d.

Expanding out the SL2(Z) action yields

m

p
+

1
p

√
d =

a(r + s
√
d) + b

y(r + s
√
d) + x

=
(ar + b) + as

√
d

(yr + x) + ys
√
d

=

(
(ar + b) + as

√
d
)(

(yr + x)− ys
√
d
)(

(yr + x) + ys
√
d
)(

(yr + x)− ys
√
d
)

=
·

(yr + x)2 − dy2s2
+

(ar + b)(−ys) + as(yr + x)
(yr + x)2 − dy2s2

√
d

where · is some real number. Equating imaginary parts yields

p =
(yr + x)2 − dy2s2

(ar + b)(−ys) + as(yr + x)
p ((ar + b)(−ys) + as(yr + x)) = (yr + x)2 − dy2s2

p(−arsy − bsy + arsy + asx) = r2y2 + 2rxy + x2 − ds2y2

ps(ax− by) = r2y2 + 2rxy + x2 − ds2y2

p =
1
s
x2 +

2r
s
xy +

r2 − ds2

s
y2,

using the fact that ax − by = 1. Note that the quadratic form depends only on r
and s; that is, only on j(ai). We have therefore shown that if p ∼ ai, then p can be
represented by the quadratic form

1
s
x2 +

2r
s
xy +

r2 − ds2

s
y2.

Since every prime p lying over a rational prime p with
(
d
p

)
= 1 is equivalent to

some aj , we obtain the following theorem. We will say that a prime p is relatively
prime to a rational number q if p does not divide the numerator or denominator of
q (in lowest terms).
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Theorem 4.2. Let d ≡ 2, 3 (mod 4) be a negative integer and let a1, . . . , ah be
representatives for the ideal classes in Q(

√
d). Write

j(ai) = ri + si
√
d.

Then every positive rational prime p such that
(
d
p

)
= 1 can be represented by at

least one of the h quadratic forms

1
si
x2 +

2ri
si
xy +

r2
i − ds2

i

si
y2.

Furthermore, let p be a prime which is relatively prime to all of the coefficients of
all of these quadratic forms and which is not ramified in Q(

√
d). If for such a p we

have
(
d
p

)
= −1, then p can not be represented by any of these quadratic forms.

Proof. The only new information is the last statement. So let p be a positive
rational prime which is relatively prime to all of the coefficients. Suppose that p
can be represented as

1
s
x2 +

2r
s
xy +

r2 − ds2

s
y2 = p

for some x, y ∈ Z, with (r, s) = (ri, si) for some i. We must show that
(
d
p

)
= 1.

Note that under the hypothesis that p is relatively prime to the coefficients
we must have both x and y relatively prime to p; if one were not, then the other
would also be divisible by p and the entire left-hand side of the expression would
be divisible by p2. In particular, we must have that y is invertible modulo p. The
representation above yields a solution to the congruence

0 ≡ 1
s
x2 +

2r
s
xy +

r2 − ds2

s
y2 (mod p)

0 ≡
(
x

y

)2

+ 2r
(
x

y

)
+ r2 − ds2.

(We can cancel the 1
s since by hypothesis p is relatively prime to all of the coefficients

of all of the quadratic forms and the coefficient of x2 is 1
s .) By the quadratic formula,

the roots of this are

−2r ±
√

4r2 − 4(r2 − ds2)
2

= −r ±
√

4ds2

2
= −r ± s

√
d.

In particular, if p can be represented by the quadratic form, then

1
s

(
x

y
+ r

)
will be a square root of d modulo p. Thus,

(
d
p

)
= 1. �

The analysis in the d ≡ 1 (mod 4) case is entirely similar, except that we begin
with the ideal

p =
(
p,m+

1
2

+
1
2

√
d

)
.

The only effect this has is removing an additional factor of 2.
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Theorem 4.3. Let d ≡ 1 (mod 4) be a negative integer and let a1, . . . , ah be
representatives for the ideal classes in Q(

√
d). Write

j(ai) = ri + si
√
d.

Then every positive rational prime p such that
(
d
p

)
= 1 can be represented by at

least one of the h quadratic forms

1
2si

x2 +
ri
si
xy +

r2
i − ds2

i

2si
y2.

Furthermore, let p be a prime which is relatively prime to all of the coefficients of
all of these quadratic forms and which is not ramified in Q(

√
d). If for such a p we

have
(
d
p

)
= −1, then p can not be represented by any of these quadratic forms.

Example 4.4. Take d = −14. We have already computed the ideal class group
of Q(

√
−14); the possible j-invariants are

√
−14,

1
2
√
−14,

1
3

+
1
3
√
−14,−1

3
+

1
3
√
−14.

Plugging into our formula, we find that every p such that
(
−14
p

)
can be represented

by at least one of the quadratic forms

x2 + 14y2

2x2 + 7y2

3x2 + 2xy + 5y2

3x2 − 2xy + 5y2.

In fact, we can do slightly better. Note that if p factors as pp′ and j(p) = 1
3 + 1

3

√
−14,

then we must have j(p′) = − 1
3 + 1

3

√
−14, since p and p′ are inverses in CK . This

tells us that p can be represented by both

3x2 + 2xy + 5y2

and
3x2 − 2xy + 5y2,

so we only need one of those quadratic forms to represent all such p. (Note that
this is obvious on replacing x by −x, as well.)

One can easily use quadratic reciprocity to characterize those p such that(
−14
p

)
= 1; one finds that this occurs if and only if

p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56).

We conclude that for p 6= 2, 3, 5, 7, p can be represented by at least one of

x2 + 14y2, x2 + 7y2, 3x2 + 2xy + 5y2

if and only if

p ≡ 1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45 (mod 56).
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5. Exercises

Exercise 4.1. Let K be a number field with ring of integers OK . Show that
there are OK-submodules of K which are not finitely generated over OK .

Exercise 4.2. Let K be a number field and let N be a positive integer. Show
that there are only finitely many ideals a of OK with NK/Q(a) < N .

Exercise 4.3. Let K = Q(
√
d) be an imaginary quadratic field and set

α =

{√
d d ≡ 2, 3 (mod 4);

1+
√
d

2 d ≡ 1 (mod 4).

Let p be a prime of Z which splits or ramifies in K and let p =
(
p, α +m

)
be one

of the ideals lying over p. Show that p and α+m are a lattice basis for p.
Exercise 4.4. Let a and b be ideals of an imaginary quadratic field K and let

γ ∈ C∗ be such that γa = b. Show that γ ∈ K∗.
Exercise 4.5. Compute the ideal class group of Q(

√
−15) and write down a

set of quadratic forms which represent every positive rational prime p such that(
−15
p

)
= 1.

Exercise 4.6. Compute the ideal class group of Q(
√
−26).

Exercise 4.7. Compute the ideal class group of Q(
√
−41).

Exercise 4.8. Let K = Q(
√
d) be an imaginary quadratic field. Suppose that

OK is a PID. Show that either d = −1,−2,−7 or d ≡ 5 (mod 8). (Hint: Consider
the factorization of 2.)

Exercise 4.9. Show that Q(
√

10) has class number 2.
Exercise 4.10. Reduce the proof that Q(ζ11) is a PID to the assertion that

Z[ζ11] has an element of norm ±23.



CHAPTER 5

Fermat’s Last Theorem for Regular Primes

1. The theorem

Let p be an odd prime and let K = Q(ζp). We will write ζ for ζp for this section.
It was observed early in the 19th century that this field is intimately connected with
Fermat’s last theorem. Specifically, if one has an equality

xp + yp = zp

with x, y, z ∈ Z, one can use the factorization

xp + yp = (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y)

to conclude that

(x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y) = zp.

From here, one shows (with appropriate conditions on x, y, z) that the factors on the
left side are pairwise relatively prime. If OK is a UFD, it follows that each x+ ζiy
is a pth power in OK , since their product is. From here one can easily obtain a
contradiction, which shows that Fermat’s equation has no non-trivial solution in
this case.

This argument was first successfully carried out by Kummer in the mid 19th

century. He realized that his proof applied to not only those p for which Z[ζp] is a
UFD, but also to a much larger class of primes. The key property turned out to be
that p not divide the class number hQ(ζp). Kummer called such primes regular; if a
prime is not regular, then it is said to be irregular.

We will prove Kummer’s theorem with the additional simplifying hypothesis
that p not divide xyz; this is classically referred to as Case I. Case I contains most
of the interesting content of the general case and has the advantage of being far
simpler technically.

Theorem 1.1 (Kummer). Let p ≥ 5 be a regular prime. Then the equation

xp + yp = zp

has no solutions with x, y, z ∈ Z and p not dividing xyz.

Proof. To begin, note that by Exercise 5.1 we can assume that x and y are
not congruent modulo p.

Let K = Q(ζp). Suppose that there is a solution xp + yp = zp. As above we
write

(x+ y)(x+ ζy) · · · (x+ ζp−1y) = zp.

We first show that the principal ideals
(
x + ζiy

)
and

(
x + ζjy

)
have no common

factors for i 6= j.

101
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Lemma 1.2. Suppose xp + yp = zp and p does not divide xyz. Then the ideals(
x+ ζiy

)
are pairwise relatively prime for i = 0, . . . , p− 1.

Proof. Let i and j be distinct integers between 0 and p− 1 and suppose that
there is some prime ideal q of OK which divides both

(
x + ζiy

)
and

(
x + ζjy

)
. q

therefore also divides the principal ideals(
(x+ ζiy)− (x+ ζjy)

)
=
(
(ζi − ζj)y

)
and (

(x+ ζiy)− ζi−j(x+ ζjy)
)

=
(
(1− ζi−j)x

)
.

(See Exercise 5.2. Note that ζi−j(x+ ζjy) generates the same ideal as x+ ζjy since
ζi−j is a unit.) Recall that since i 6= j, ζi− ζj = ζi(1− ζj−i) and 1− ζi−j are both
associate to 1− ζ. We conclude that q divides the ideals

(
1− ζ

)(
x
)

and
(
1− ζ

)(
y
)
.

However, since x and y are relatively prime in Z it follows that they can have no
prime ideal factors in common in OK ; therefore, the only possibility is q =

(
1− ζ

)
.

Suppose, then, that
(
1 − ζ

)
divides

(
x + ζiy

)
and

(
x + ζjy

)
as ideals. This

implies immediately that 1−ζ divides x+ζiy and x+ζjy as elements of OK . Thus

x+ ζiy ≡ 0 (mod 1− ζ).

We also have ζi ≡ 1 (mod 1− ζ), so we conclude that

x+ y ≡ 0 (mod 1− ζ).

However, x + y is a rational integer, so if it is divisible by 1 − ζ, then it must be
divisible by p. (See Lemma II.4.1.)

We have now that p divides x+ y in Z. Since

xp + yp ≡ x+ y (mod p),

it follows that p divides xp + yp, and therefore that p divides z. This contradicts
our assumption that p does not divide xyz (or our assumption that x and y are
relatively prime), so we conclude that

(
x + ζi

)
and

(
x + ζjy

)
are relatively prime

ideals, as claimed. �

Let (
z
)

= qn1
1 · · · qnrr

be the ideal factorization of
(
z
)

in OK . The equality of ideals(
x+ y

)(
x+ ζy

)
· · ·
(
x+ ζp−1y

)
=
(
z
)p
.

shows that (
x+ y

)(
x+ ζy

)
· · ·
(
x+ ζp−1y

)
= qpn1

1 · · · qpnrr .

Since the ideals
(
x + ζiy

)
are pairwise relatively prime, each qi must occur in the

factorization of exactly one of them. As each qi occurs with multiplicity divisible
by p, it follows that every prime factor of each

(
x + ζiy

)
occurs with multiplicity

divisible by p. Put differently, each
(
x + ζiy

)
is the pth power of some ideal ai of

OK : (
x+ ζiy

)
= api .

We now use the hypothesis that p is regular to conclude that the ai are all
principal. Specifically, note that api is trivial in CK , since it is just the principal
ideal

(
x+ ζiy

)
. Since p does not divide the order of CK , this implies that ai itself

must be trivial in CK (since if CK had an element of order p then it would have
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order divisible by p), and thus principal. Therefore we can write ai =
(
αi
)

for some
αi ∈ OK , and we have the equality of principal ideals.

(x+ ζiy) = (αi)p.

This implies that

x+ ζiy = uαpi

for some u ∈ O∗K . The next step is to get a little more information on the unit u.

Lemma 1.3. Let u be a unit of OK . Then u can be written as ζaε with ε a unit
of the maximal real subfield of K.

Proof. By Exercise II.2.17 we know that u/ū = ζb for some b, where ū is
the complex conjugate of u. Now choose a ∈ Z such that 2a ≡ b (mod p) and set
ε = ζ−au. Then u = ζaε, and

ε̄ = ζaū = ζaζ−bu = ζ−au = ε,

so ε is real and thus lies in the maximal real subfield of K. �

We now take i = 1; by our results to this point we can write

x+ ζy = ζaεαp

for some integer a, some real unit ε and some α = α1 ∈ OK . By Exercise 5.3 we
have that αp ≡ b (mod p) for some rational integer b, so we conclude that

x+ ζy ≡ ζaεb (mod p).

Since ε, b and p are all real, taking complex conjugates yields

x+ ζy ≡ ζ−aεb (mod p).

As x+ ζy = x+ ζ−1y, we find that

x+ ζ−1y ≡ ζ−aεb (mod p).

Combining these equations we conclude that

ζ−a(x+ ζy) ≡ ζa(x+ ζ−1y) (mod p)

which simplifies to

x+ ζy − ζ2a−1y − ζ2ax ≡ 0 (mod p).

We can use this congruence to obtain our desired contradiction. Suppose first
that none of the pth roots of unity 1, ζ, ζ2a−1 and ζ2a are equal. Since p ≥ 5 this
implies that these elements are part of an integral basis of OK . Now the fact that

x+ ζy − ζ2a−1y − ζ2ax

is divisible by p in OK implies that x and y must be divisible by p in Z; this
contradicts our assumption that p does not divide xyz, which finishes this case.

This leaves the cases where some of 1, ζ, ζ2a−1, ζ2a are equal. The possibilities
are:
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(1) 1 = ζ2a−1. Then ζ = ζ2a, so we find that

(x− y) + (y − x)ζ ≡ 0 (mod p).

This p divides (x − y)(1 − ζ). As we assumed that x and y were not
congruent modulo p, x − y is relatively prime to p; since also p does not
divide 1−ζ (they aren’t relatively prime, but it doesn’t matter) this implies
that p can not divide (x− y)(1− ζ); this is the desired contradiction.

(2) 1 = ζ2a. Then ζ2a−1 = ζ−1, so the congruence reduces to

ζy − ζ−1y ≡ 0 (mod p).

This implies that p divides y(ζ − ζ−1) = −yζ−1(1 − ζ2); the fact that p
does not divide y now yields a contradiction as in the previous case.

(3) ζ = ζ2a−1. Then ζ2a = ζ2 and the congruence reduces to

(1− ζ2)x ≡ 0 (mod p).

This time p divides x(1− ζ2); the fact that p does not divide x now yields
the contradiction.

This completes the proof. �

We used the fact that p does not divide xyz in an essential way, but Kummer
was able to extend the theorem to the case p|xyz; see [20, Chapter 9] for a proof.

2. Regular primes

We have not yet given any methods for determining whether or not a prime is
regular. In this section we will state some results of Kummer’s which give easily
computable criteria for regularity.

Define the Bernoulli numbers Bn ∈ R by the formula

t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

Exercise 5.4 shows that Bn = 0 if n is odd and > 1. One also has the formula
n−1∑
k=0

(
n

k

)
Bk = 0

of Exercise 5.5, which makes them easy to compute explicitly and also shows that
they are actually in Q. We include a short table; for a more extensive table, see
[20, pp. 407–409].

Kummer’s main results on regular primes are the following theorems. Let hp
be the class number of Q(ζp) and let h+

p be the class number of the maximal real
subfield Q(ζp + ζ−1

p ). Recall that h+
p divides hp, and we set h−p = hp/h

+
p . In

the theorems below, whenever we speak of an integer dividing the numerator of a
rational number, we assume that the rational number is written in lowest terms.

Theorem 2.1 (Kummer). Let p be an odd prime. Then p divides h−p if and
only if p divides the numerator of some Bernoulli number Bj with j = 2, 4, . . . , p−3.

Proof. See [8] for Kummer’s original proof or [20, Theorem 5.16] for a proof
using p-adic L-functions. This theorem has been strengthened by Herbrand, Ri-
bet and Kolyvagin; they have shown that which Bernoulli number p divides gives
information on how the Galois group acts on the ideal class group. �
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n Numerator Denominator
0 1 1
1 −1 2
2 1 6
4 −1 30
6 1 42
8 −1 30

10 5 66
12 −691 2, 730
14 7 6
16 −3, 617 510
18 43, 867 798
20 −174, 611 330
22 854, 513 138
24 −236, 364, 091 2, 730
26 8, 553, 103 6
28 −23, 749, 461, 029 870
30 8, 615, 841, 276, 005 14, 322
32 −7, 709, 321, 041, 217 510
34 2, 577, 687, 858, 367 6

Theorem 2.2 (Kummer). If p divides h+
p , then p divides h−p .

Proof. See [8] for Kummer’s original proof or [20, Theorem 5.34] for a proof
using the p-adic class number formula. Although there are infinitely many primes
for which p divides h−p , there are no known p for which p divides h+

p . It has been
conjectured by Vandiver that this never occurs, although this conjecture is not
universally believed. �

Corollary 2.3 (Kummer). p divides hp if and only if p divides the numerator
of some Bernoulli number Bj with j = 2, 4, . . . , p− 3.

Using these results we find that 37 is the first irregular prime; it divides the
numerator of B32. The next few irregular primes are 59, 67, 101, 103, 131, 149 and
157. For a longer list see [20, pp. 410–411].

We can give a heuristic argument for the percentage of primes which are irreg-
ular. Define the index of irregularity i(p) to be the number of Bernoulli numbers Bj
with j = 2, 4, . . . , p−3 for which p divides the numerator of Bj ; thus i(p) = 0 if and
only if p is regular. Assuming that the Bernoulli numbers are randomly distributed
modulo p (meaning that p divides Bj with probability 1/p), the probability that
i(p) = k for some k is (

(p− 3)/2
k

)(
1− 1

p

) p−3
2 −k (1

p

)k
.

As p grows this approaches the Poisson distribution(
1
2

)k
e−1/2

k!
.
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Taking k = 0 we find that the proportion of regular primes should be e−1/2, which
is approximately 60.65%. This result agrees very closely with numerical evidence.

Strangely, even though no one has been able to prove that there are infinitely
many regular primes, Kummer did succeed in proving that there are infinitely many
irregular primes. His proof is based on the following theorems.

Theorem 2.4 (von Staudt-Clausen). Let n be even and positive. Then

Bn +
∑

(p−1)|n

1
p

is an integer.

Proof. See [20, Theorem 5.10]. �

Theorem 2.5 (Kummer). Let p be a prime and let m and n be even positive
integers, not divisible by p− 1, with

m ≡ n (mod p− 1).

Then neither Bm
m nor Bn

n has any factors of p in the denominator, and

Bm
m
≡ Bn

n
(mod p).

Proof. See [20, Corollary 5.14]. �

Corollary 2.6 (Kummer). There are infinitely many irregular primes.

Proof. We will suppose that there are only finitely many irregular primes
p1, p2, . . . , pr and obtain a contradiction. Set

m = (p1 − 1)(p2 − 1) · · · (pr − 1).

By Exercise 5.9, |B2n/n| goes to infinity as n goes to infinity, so there must be some
multiple M of m such that

|BM/M | > 1.
Thus there exists some prime p dividing the numerator of |BM/M |. Since pi − 1
divides M for all i, Theorem 2.4 shows that each pi is in the denominator of BM ;
this means that there is no way that pi could be in the numerator of BM/M , and
thus that p 6= pi for any i. Similarly, if p− 1 were to divide M , then Theorem 2.4
would imply that p was in the denominator of BM , which can not occur since p is
in the numerator of BM/M . Thus p− 1 does not divide M .

We can now apply Theorem 2.5. Specifically, choose M ′ with 2 ≤ M ′ ≤ p− 3
which is congruent to M modulo p−1. Since p−1 does not divide M we can apply
Theorem 2.5 to conclude that

BM ′

M ′
≡ BM

M
≡ 0 (mod p),

since p divides the numerator of BM/M by assumption. Thus p divides the numer-
ator of BM ′ , so by Corollary 2.3 it is irregular. This contradicts our assumption
that there were finitely many irregular primes, and thus proves the corollary. �
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3. Exercises

Exercise 5.1. Let p ≥ 5 be a prime and let x, y, z be rational integers, rela-
tively prime to p, such that

xp + yp = zp.

Show that through reordering and negation, if necessary, one can obtain integers
x′, y′, z′, relatively prime to p, such that

(x′)p + (y′)p = (z′)p

and x′ and y′ are not congruent modulo p.
Exercise 5.2. Let K be a number field. Let α and β be elements of OK and

let a be an ideal of OK . Show that if a divides the principal ideals (α) and (β),
then a divides the principal ideal (α+ β).

Exercise 5.3. Let K = Q(ζp). Show that for any α ∈ OK , αp is congruent to
a rational integer modulo p.

3.1. Problems on Bernoulli numbers. Recall that the Bernoulli numbers
are defined by

t

et − 1
=
∞∑
n=0

Bn
tn

n!
.

Exercise 5.4. Show that Bn = 0 for n odd and > 1. (Hint: Write t
et−1 as an

even function plus a linear function.)

Exercise 5.5. Use the known power series for et−1
t to prove that

n−1∑
k=0

(
n

k

)
Bk = 0

for n > 1. Conclude that the Bn are all rational.
Exercise 5.6. Prove that

t cot t =
∞∑
n=0

(−1)n
22nB2n

(2n)!
t2n.

(Hint: Rewrite the even function of Exercise 5.4 in a way in which you can use the
expressions for sin t and cos t in terms of complex exponentials.)

Another useful expression is

sin t
t

=
∞∏
k=1

(
1− t2

(kπ)2

)
;

this ought to proved in any complex analysis book and/or class.
Exercise 5.7. Use the product above to show that

cot t =
1
t

+ 2t
∞∑
k=1

1
t2 − k2π2

.

Recall that the Riemann zeta function is defined (for Re(s) > 1) by

ζ(s) =
∞∑
n=1

n−s.
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Exercise 5.8. Use the previous exercises to write down two different expres-
sions for πt cotπt. Further expand the one from Exercise 5.7 into a power series
and conclude that

ζ(2n) = (−1)n−1 22nB2n

2(2n)!
π2n.

Exercise 5.9. Show that

lim
n→∞

∣∣∣∣22n−1π2n

(2n)!
B2n

∣∣∣∣ = 1.

Conclude that

lim
n→∞

∣∣∣∣B2n

2n

∣∣∣∣ =∞.



APPENDIX A

Field Theory

1. Field extensions and minimal polynomials

Recall that a field L is said to be an extension of a field K if L ⊇ K; it is said
to be a finite extension if L is a finite-dimensional K-vector space, and we write
[L : K] for this dimension; thinking of K as an additive subgroup of L, this agrees
with the usual notation for indexes of subgroups in group theory. In particular,
this interpretation immediately implies the following lemma.

Lemma 1.1. Let M/L and L/K be finite extensions. Then M/K is a finite
extension and

[M : K] = [M : L][L : K].

Proof. This is a standard fact in group theory; for a more explicit proof, one
easily shows that if α1, . . . , αm is a basis for L over K and β1, . . . , βn is a basis for
M over L (so that [L : K] = m and [M : L] = n), then the set of products αiβj is
a basis for M over K. �

Lemma 1.1 is particularly useful in the following two contexts: first, both
[M : L] and [L : K] divide [M : K]. Second, if we have a diagram of fields

M

||||||||

BBBBBBBB

L1

BBBBBBBB L2

||||||||

K

(meaning that M contains L1 and L2 which in turn both contain K) then knowledge
of any three degrees yields the fourth.

Note also that if [L : K] = 1, then L = K. More generally, Lemma 1.1 implies
that if M ⊇ L ⊇ K and [M : K] = [L : K], then M = L.

Let L and L′ be two extensions of K. We say that a map

ϕ : L→ L′

is K-linear if it restricts to the identity map on K. Note that such a map is also
K-linear as a map of vector spaces, but a map L→ L′ as K-vector spaces need not
be K-linear in this sense, since it need not send 1 to 1.

Example 1.2. Let us fix now some examples which we will use for the remain-
der of this appendix. For the moment, let

√
2,
√

3 and
√

6 denote the positive real

109
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square roots of 2, 3 and 6 respectively. Define

L1 = {a+ b
√

2 | a, b ∈ Q} ⊆ R;

L2 = {a+ b
√

3 | a, b ∈ Q} ⊆ R;

L3 = {a+ b
√

6 | a, b ∈ Q} ⊆ R;

M = {a+ b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q} ⊆ R;

that these are fields is a standard fact which can be checked directly; we will also
give proofs later. All four fields are extensions of Q, and M is an extension of L1,
L2 and L3. One checks easily (using the fact that

√
2,
√

3 and
√

6 are irrational)
that {1,

√
2}, {1,

√
3} and {1,

√
6} are Q-bases for L1, L2 and L3 respectively; thus

[L1 : Q] = [L2 : Q] = [L3 : Q] = 2.
It is clear that [M : Q] ≤ 4, since {1,

√
2,
√

3,
√

6} spans M over Q by definition.
To show that [M : Q] actually equals 4 we use Lemma 1.1. Specifically, M contains
L1, and M does not equal L1 since

√
3 /∈ L1. (We leave it to the reader to check

this.) Thus [M : L1] ≥ 2, so

[M : Q] = [M : L1][L1 : Q] ≥ 4.

Thus [M : Q] = 4, as claimed, and {1,
√

2,
√

3,
√

6} is a Q-basis. Note that both
{1,
√

3} and {1,
√

6} are bases for M over L1, which is entirely consistent with the
proof of Lemma 1.1. (Of course, there are similar statements for L2 and L3.)

M
2

||||||||
2

BBBBBBBB

2

L1

2 AAAAAAAA L2

2

L3

2
}}}}}}}}

Q

Let L/K be a (not necessarily finite) extension of fields and let α be an element
of L. If there is some polynomial f(x) ∈ K[x] such that f(α) = 0, then α is said
to be algebraic over K; otherwise α is said to be transcendental over K. Suppose
now that α is algebraic over K. Let d be the smallest positive integer such that α
satisfies a polynomial of degree d in K[x]; d is said to be the degree of α over K.
One shows easily that there is a unique monic polynomial of degree d in K[x] which
α satisfies, and this polynomial is called the minimal polynomial of α over K.

Note that every α ∈ K is algebraic over K, with minimal polynomial x− α ∈
K[x].

Example 1.3. Let L = C and K = Q. The elements ±
√

2 ∈ C are algebraic
over Q, with minimal polynomial x2 − 2. On the other hand, π is transcendental
over Q, although this is a non-trivial fact. Note that the minimal polynomial of

√
2

in the field L1 of Example 1.2 is x−
√

2; in general the minimal polynomial of an
element is very dependent on the base field.

Lemma 1.4. Let L/K be a field extension and let α ∈ L be algebraic over K with
minimal polynomial f(x) ∈ K[x]. Then f(x) is irreducible in K[x]. Furthermore,
if g(x) ∈ K[x] is such that g(α) = 0, then f(x) divides g(x) in K[x].
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Proof. We first show that f(x) is irreducible over K. So suppose that f(x)
factors as g(x)h(x) with g(x), h(x) ∈ K[x] both of degree less than deg f . Then

f(x) = g(x)h(x)

f(α) = g(α)h(α)

0 = g(α)h(α).

Thus either g(α) = 0 or h(α) = 0. But then we have found a polynomial in K[x] of
smaller degree than f(x) which α satisfies. This contradicts the definition of f(x),
and thus shows that f(x) is irreducible.

Now, suppose that g(x) ∈ K[x] is such that g(α) = 0. By the division algo-
rithm, we can write

g(x) = q(x)f(x) + r(x)
with q(x), r(x) ∈ K[x] and deg r(x) < deg f(x). Substituting α for x, we find that

r(α) = 0.

But, since deg r(x) < deg f(x) and f(x) is minimal, this implies that r(x) is the
zero polynomial. Thus f(x) divides g(x), as claimed. �

Let us also state a fact which will be extremely useful to us: let L1 and L2 be
two extensions of K, and suppose that there is a K-linear map

ϕ : L1 → L2.

Let α be an element of L1 which is algebraic over K, and let f(x) ∈ K[x] be
its minimal polynomial. Then ϕ(α) is algebraic over K, with minimal polynomial
f(x). To see this, note that

f(ϕ(α)) = ϕ(f(α)) = ϕ(0) = 0

since ϕ is the identity on the coefficients of f (which are in K); thus ϕ(α) satisfies
f . By Lemma 1.4 f(x) is irreducible in K[x], and Lemma 1.4 now also shows that
f(x) must be the only monic irreducible polynomial which ϕ(α) satisfies; thus it is
the minimal polynomial of ϕ(α).

Example 1.5. Let L1 and M be as in Example 1.2. Then there is a natural
injection

L1 ↪→M

and the minimal polynomial x2−2 of
√

2 over Q does not depend on which extension
of Q we compute it in.

The next result gives a fundamental property of finite extensions.
Lemma 1.6. Let L/K be a finite extension. Then every α ∈ L is algebraic over

K.

Proof. Let α be an element of L. Consider the powers of α

1, α, α2, α3, . . . ∈ L.
Since L is a finite dimensional vector space over K, there must be some n such that

1, α, α2, α3, . . . , αn

are linearly dependent over K. (Specifically, one can take n to be the degree
[L : K].) That is, there exist ai ∈ K such that

a0 · 1 + a1α+ a2α
2 + · · ·+ anα

n = 0.
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Put in other terms, α satisfies the polynomial

a0 + a1x+ a2x
2 + · · ·+ anx

n ∈ K[x],

so α is algebraic over K. �

Example 1.7. Continue with the notation of Example 1.2. Consider the real
number √

2 +
√

3 ∈M.

Lemma 1.6 implies that this is algebraic over Q, since M is finite over Q, although
it is not immediately obvious what polynomials it satisfies.

The converse of Lemma 1.6 is false; there do exist infinite field extensions L/K
in which every element of L is algebraic over K.

2. Primitive elements

Given any extension L/K and any α ∈ L, we define K(α) to be the smallest
subfield of L containing K and α. (This is somewhat misleading notation, as K(α)
is defined only as a subfield of L, but L does not appear in the notation. Hopefully it
will always be clear from context what is meant.) Since K(α) is to be closed under
addition, subtraction, multiplication and division, one easily sees that it simply
consists of all expressions

a0 + a1α+ a2α
2 + · · ·+ amα

m

b0 + b1α+ b2α2 + · · ·+ bnαn
,

with ai, bi ∈ K and the denominator non-zero. Of course, some of these expressions
may equal others.

We have the following abstract description of K(α). (Recall that the field K(x)
of rational functions in an indeterminate x is defined to be the field of all expressions

a0 + a1x+ a2x
2 + · · ·+ amx

m

b0 + b1x+ b2x2 + · · ·+ bnxn

with ai, bi ∈ K.)
Lemma 2.1. Let L/K be a field extension and let α be an element of L. If

α is transcendental over K, then K(α) is isomorphic to the field K(x) of rational
functions in x. If α is algebraic over K with minimal polynomial f(x) ∈ K[x]
of degree d, then K(α) is an extension of K of degree d, and it is isomorphic to
K[x]/(f(x)). In particular, when α is algebraic K(α) can be expressed simply as
the set of all polynomials in α, rather than as rational functions.

Proof. Suppose first that α is transcendental over K. Then we can define a
homomorphism

K(x)→ K(α)

by sending x to α; this is well-defined since α satisfies no non-zero polynomials, and
thus it can be substituted into any rational function without causing the denomi-
nator to vanish. (This is definitely not true for algebraic α.) This map is injective
since every map of fields is injective, and it must be surjective since its image is a
subfield of L containing K and α and K(α) is the smallest such field. Thus it is an
isomorphism.
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Suppose now that α is algebraic over K with minimal polynomial f(x) ∈ K[x].
We define a ring homomorphism

ψ : K[x]/(f(x))→ K(α)

to be the identity on K and to send x to α; this is well-defined since f(α) = 0. It is
injective since f(x) is the polynomial of minimal degree satisfied by α. Furthermore,
since K[x] is a principal ideal domain the ideal generated by f(x) is maximal, so
K[x]/(f(x)) is a field. The image of ψ is therefore a subfield of K(α) containing
K and α; since K(α) is the smallest subfield of L containing α, it follows that the
image of ψ is all of K(α), and thus that ψ is an isomorphism. Now, 1, x, . . . , xd−1 is
clearly a basis for K[x]/(f(x)) over K, and thus 1, α, . . . , αd−1 is a basis for K(α).
The remainder of the lemma is now clear. �

A particular consequence of the lemma is that if L/K is a finite extension and
α is an element of L, then the degree of α over K divides [L : K].

Example 2.2. Let L1, L2, L3 be as in Example 1.2. Then we have

L1
∼= Q[x]/(x2 − 2), L2

∼= Q[x]/(x2 − 3), L3
∼= Q[x]/(x2 − 6).

There are many other possible expressions for these fields as quotients of Q[x]. For
example, considering L1 as generated by

√
2 + 1 rather than

√
2, we find that

L1
∼= Q[x]/(x2 − 2x− 1).

We can write M in many obvious ways; for example, any of

L1[x]/(x2 − 3), L1[x]/(x2 − 6), L2[x]/(x2 − 2)

work. It is less clear how M can be written as a quotient of Q[x]. To do this, we
must find a primitive element for M over Q.

If L/K is a field extension and if there exists an α ∈ L with K(α) = L, then
α is said to be a primitive element for L/K. In fact, in the situation which we
will primarily be studying, every finite extension has a primitive element. Recall
that a field extension L/K is said to be separable if every irreducible polynomial
f(x) ∈ K[x] has no multiple roots in L. In particular, by Exercise 1.12 every field
of characteristic 0 is separable.

Proposition 2.3 (The Primitive Element Theorem). Let L/K be a finite ex-
tension and suppose that K is separable. Then there exists a primitive element for
L/K; that is, there is an α ∈ L such that L = K(α).

Proof. See [2, Chapter 14, Theorem 4.1]. �

The primitive element theorem should not be considered to be surprising. Es-
sentially, if L/K is a finite extension, then most elements of L are primitive elements;
the proof of the theorem consists in just writing down enough elements so that at
least one is primitive.

Example 2.4. One can show that
√

2+
√

3 has minimal polynomial x4−10x2+
1. (See Exercise 1.10.) Thus

√
2 +
√

3 has degree 4, which means that it must be
a primitive element for the field M of Example 1.2 over Q. This also shows that

M ∼= Q[x]/(x4 − 10x2 + 1).
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In particular, this implies that
√

2,
√

3 and
√

6 can be written in terms of powers
of
√

2 +
√

3. With a little effort one can compute
√

2 =
(
√

2 +
√

3)3 − 9(
√

2 +
√

3)
2

√
3 =

11(
√

2 +
√

3)− (
√

2 +
√

3)3

2
√

6 =
(
√

2 +
√

3)2 − 5
2

.

3. Algebraic extensions

Let M/K be a field extension. Suppose that we are given two subfields L1 and
L2 of M , both containing K. We define the compositum L1L2 of L1 and L2 to be
the smallest subfield of M containing both L1 and L2. (It is easy to see that such
a field exists. We will give a more concrete description of L1L2 in certain cases
in a moment.) We define the intersection L1 ∩ L2 to be the largest subfield of M
contained in both L1 and L2; it is easily seen to be nothing more than the usual
set theoretic intersection of L1 and L2, and it contains K. We have the following
field diagram:

M

L1L2

vvvvvvvvv

HHHHHHHHH

L1

HHHHHHHHH L2

vvvvvvvvv

L1 ∩ L2

K

Lemma 3.1. Let K,L1, L2,M be as above and suppose that [L1 : L1 ∩ L2] is
finite. Then L1L2 consists of finite sums of products of elements of L1 and L2; that
is,

L1L2 =
{∑

αiβi | αi ∈ L1, βi ∈ L2

}
.

Proof. Let R be the set of all sums of products of elements of L1 and L2; R
is clearly a ring, and it is the smallest ring containing L1 and L2. To show that
R = L1L2 we must show that R is actually a field.

Set L1 ∩ L2 = L. We will give the proof in the case where L1 has a primi-
tive element over L; by Proposition 2.3 this covers the case where everything has
characteristic 0, and we leave the general case to the reader.

So, write L1 = L(α) for some α. Reading through all of the relevant definitions,
we find that

L1L2 = L2(α).
But α is certainly algebraic over L2 (since it is algebraic over L ⊆ L2), so we
know that L2(α) consists of polynomials in α with coefficients in L2. Certainly
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this is contained in R; taking into account the minimality properties of everything
involved, one can now conclude that R = L2(α), and thus is a field. �

Example 3.2. If both L1 and L2 are infinite over L1 ∩ L2, then L1L2 is more
complicated. For example, take K = Q, L1 = Q(x), L2 = Q(y) and M = Q(x, y),
where x and y are indeterminates. Then L1L2 = M , but one can not write 1/(x+y)
as a sum of products of elements of L1 and L2.

Lemma 3.3. Let K,L1, L2,M be as above and suppose that [L1L2 : L1 ∩L2] <
∞]. Then

[L1L2 : L1] ≤ [L2 : L1 ∩ L2]

and
[L1L2 : L2] ≤ [L1 : L1 ∩ L2].

Proof. Let α1, . . . , αn be a basis for L2 over L1 ∩ L2. We claim that the
αi span L1L2 over L1, which will prove the lemma (the second inequality being
virtually the same). So let

∑
βjγj be an arbitrary element of L1L2, βj ∈ L1,

γj ∈ L2. By hypothesis we can write

γj =
∑

cijαi

with cij ∈ L1 ∩ L2. Now we have∑
βjγj =

∑
cijβjαi

and cijβj ∈ L1; this shows that the αi span L1L2 over L1, as claimed. �

We will show in Chapter 1 that we have equality in the above lemma in the
case where at least one of L1 and L2 is Galois over L1 ∩ L2.

In the case that L1 = K(α1) and L2 = K(α2) are both primitive, we will
write K(α1, α2) for the compositum L1L2. More generally, we define the field
K(α1, . . . , αm) to be the compositum of the fields K(α1), . . . ,K(αm).

Example 3.4. Continue with the fields of Example 1.2. We have

LiLj =

{
M i 6= j;
Li i = j;

and

Li ∩ Lj =

{
Q i 6= j;
Li i = j.

Now let L/K be any extension of fields. A fundamental (but not immediately
obvious fact) is that the subset of L of elements which are algebraic over K is closed
under sums, products and inverses; that is, it is a field. With the above results we
can give a comparatively simple proof of this fact.

Proposition 3.5. Let L/K be a field extension and let L′ be the subset of L
of elements which are algebraic over K. Then L′ is a field.

Proof. Let α, β ∈ L be algebraic over K. We wish to show that α+β, αβ and
α−1 are all algebraic over K as well. Note that all of these elements are contained
in K(α, β).
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Now, by Lemma 2.1 K(α) and K(β) are finite extensions of K. From this,
Lemma 1.1 and Lemma 3.3, we find that

[K(α, β) : K] = [K(α, β) : K(α)][K(α) : K]

≤ [K(β) : K(α) ∩K(β)][K(α) : K]

≤ [K(β) : K][K(α) : K]
≤ ∞.

Thus K(α, β) is a finite extension of K, so by Lemma 1.6 every element of K(α, β)
is algebraic over K. As we observed above, this is what we needed to prove. �

4. Characteristic polynomials

We recall briefly the definition of the characteristic polynomial of a linear trans-
formation. Let K be a field and let V be a finite dimensional K-vector space, say
of dimension n. Let T : V → V be a K-linear transformation of V . Choosing any
basis for V over K, let A be the n×n matrix with entries in K representing T with
respect to this basis. We define the characteristic polynomial of T to be

det(xI −A) ∈ K[x]

where I is the n× n identity matrix. It is a standard fact that this is independent
of the choice of basis of V over K.

Let L/K be a finite extension of degree n and choose α ∈ L. Multiplication by
α defines a map of K-vector spaces

mα : L→ L;

thus mα is a linear transformation from the n-dimensional K-vector space L to
itself. We define the characteristic polynomial of α for L/K to be the characteristic
polynomial of the linear transformation mα.

Lemma 4.1. Let α be an element of L with characteristic polynomial f(x) over
K. Then f(α) = 0.

Proof. Write f(x) = xn + an−1x
n−1 + · · · + a0. By the Cayley-Hamilton

theorem, f(mα) is the zero linear transformation. On the other hand,

f(mα) = mn
α + an−1m

n−1
α + · · ·+ a0I

= mαn + an−1mαn−1 + · · ·+ a0m1

= mαn +man−1αn−1 + · · ·+ma0

= mαn+an−1αn−1+···+a0

= mf(α)

where we have used some easy properties of linear transformations. Thus mf(α) is
the zero linear transformation; in particular, f(α) · 1 = 0, so f(α) = 0. �

Lemma 4.2. Let L/K be a finite extension and let α ∈ L be a primitive element.
Then the characteristic polynomial for α in L/K is equal to the minimal polynomial
of α over K.

Proof. Since α is primitive its minimal polynomial will have degree [L : K];
the characteristic polynomial also has this degree, and since it is a monic polynomial
satisfied by α, it must equal the minimal polynomial. �
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More generally, it is true that the characteristic polynomial is a power of the
minimal polynomial. This will follow from the next proposition.

Proposition 4.3. Let M/L and L/K be finite extensions. Fix γ ∈ L and
let f(x), g(x) ∈ K[x] be the characteristic polynomials for γ in L/K and in M/K
respectively. Then

g(x) = f(x)[M :L].

Proof. Let α1, . . . , αm be a basis for L over K and let β1, . . . , βn be a basis
for M over L, so that α1β1, α2β1, . . . , αmβ1, α1β2, . . . , αmβ2, . . . , αmβn is basis for
M over K. Let A = (aij) be the matrix for γ acting on L with respect to this basis,
so that

γαj = a1jα1 + a2jα2 + · · ·+ amjαm,

with aij ∈ K. Then

γαjβi = a1jα1βi + a2jα2βi + · · ·+ amjαmβi.

This is an expression for γαjβi in terms of our basis for M/K, with coefficients in
K, so we can use it to form the matrix for α acting on M . This matrix has the
form 

A 0 0 0
0 A 0 · · · 0
0 0 A 0

...
...

0 0 0 · · · A


where the first A acts on the αjβ1, the second on the αjβ2, and so on. From this
matrix it is easy to see that the characteristic polynomial for α in M/K is just the
characteristic polynomial of A taken to the power of the number of copies of A in the
above matrix. This number is just n = [M : L], which proves the proposition. �

Corollary 4.4. Let L/K be a finite extension. Fix α ∈ L with minimal
polynomial f(x) and characteristic polynomial g(x). Then

g(x) = f(x)[L:K(α)].

Proof. This is simply the special case of Proposition 4.3 for the tower of
extensions L/K(α)/K, using Lemma 4.2 to identify the characteristic polynomial
of α in K(α)/K with f(x). �

Let the characteristic polynomial of α be given by

xn + an−1x
n−1 + · · ·+ a0 ∈ K[x].

We define the trace relative to L/K of α by

TrL/K α = −an−1 = Tr(mα) ∈ K

(where Tr(mα) is the trace of the linear transformation mα) and the norm relative
to L/K of α by

NL/K α = (−1)na0 = det(mα) ∈ K.
(The other coefficients of the characteristic polynomial are also invariants of α
(relative to the extension L/K), but they tend to be much less useful in practice.)
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Lemma 4.5. Let L/K be a finite extension of degree n. For any α, β ∈ L,

TrL/K(α+ β) = TrL/K(α) + TrL/K(β)

and
NL/K(αβ) = NL/K(α) NL/K(β).

If c ∈ K, then
TrL/K(cα) = cTrL/K(α)

and
NL/K(cα) = cn NL/K(α).

Proof. All of these properties are clear from the description of TrL/K and
NL/K as traces and determinants of matrices. �

Note that the norm and trace of α ∈ L depend on considering α as an element
of L. The next lemma shows how norms and traces depend on the fields being
considered.

Lemma 4.6. Let M/L and L/K be finite extensions. Then for any α ∈M ,

TrM/K(α) = TrL/K
(
TrM/L(α)

)
and

NM/K(α) = NL/K

(
NM/L(α)

)
.

Proof. The general proof requires some ugly linear algebra. For an easier
proof in the case of number fields see [14, Chapter 2, Theorem 5]; this proof makes
use of some of the machinery developed in Chapter 1. �

Example 4.7. With the notation of Example 1.2, consider the element
√

2 ∈
M . This has minimal polynomial x2 − 2 over Q. On the other hand, choosing the
Q-basis 1,

√
2,
√

3,
√

6 for M , m√2 is given by the matrix
0 2 0 0
1 0 0 0
0 0 0 2
0 0 1 0

 ,
which has characteristic polynomial x4−4x2+4. Note that this is the square of x2−
2, as claimed above. Note also that TrL1/Q(

√
2) = TrM/Q(

√
2) = 0, NL1/Q(

√
2) = 2

and NM/Q(
√

2) = 4, which is consistent with Lemma 4.6.



APPENDIX B

Mobius Inversion

1. Theory over rings

Let N denote the natural numbers.
Definition 1.1. Let R be a commutative ring. An R-arithmetical function is

a function
ψ : N→ R.

We will denote by Ar(R) the set of R-arithmetical functions.
Note that if f : R → S is a map of rings, then for any ψ ∈ Ar(R), f ◦ ψ is an

S-arithmetical function. Thus f induces a map Ar(R) → Ar(S). (If one wants to
be fancy, this means that Ar is a covariant functor from rings to sets.) In particular,
the canonical map Z → R (sending 1 to 1) induces a map Ar(Z) → Ar(R). (All
that this really means is that you interpret the values f(n) in R rather then in Z.)

Example 1.2. There are many arithmetical functions of importance in number
theory. Among the simpler examples are

τ(n) =
∑
d|n

1 (the number of divisors of n)

σ(n) =
∑
d|n

d (the sum of the divisors of n)

(here
∑
d|n means that the sum is done over the positive divisors of n) and the

Euler totient function ϕ(n), defined to be the number of positive integers less than
or equal to n and relatively prime to n. These are all Z-arithmetical functions, and
thus by the above discussion can be considered in Ar(R) for any R. We also define
two less interesting Z-arithmetical functions which will nevertheless be useful later
on:

I(n) =

{
1, if n = 1;
0, otherwise.

u(n) = 1 for all n.

A somewhat more complicated example is the Mobius function.
Definition 1.3. Define the Mobius function µ ∈ Ar(Z) by

µ(n) =


1, if n = 1;
(−1)k, if n = p1 · · · pk where the pi are distinct primes;
0, if p2|n for any prime p.

For example, µ(2) = −1, µ(4) = 0, and µ(6) = 1.
We now prove a fundamental property of µ.

119
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Lemma 1.4. ∑
d|n

µ(d) = I(n).

Proof. Note that if n = pm1
1 · · · pmkk then∑
d|n

µ(d) =
∑

d|p1···pk

µ(d)

since the additional terms are all 0. It is thus enough to prove the formula for the
case where n is squarefree.

The formula is clear for n = 1. By the definition of I(n) it remains to prove
that ∑

d|p1···pk

µ(d) = 0.

For each i ≤ k and each divisor d of n consisting of exactly i prime factors, we will
have µ(d) = (−1)i. There are exactly

(
k
i

)
such d, (we must choose i primes from a

set of k) so ∑
d|n

µ(d) =
k∑
i=0

(−1)i
(
k

i

)
.

But by the binomial theorem the second sum is just (1− 1)k = 0. This completes
the proof. �

We have already seen divisor sums
∑
d|n come up several times. This helps to

motivate the following definition.

Definition 1.5. If f and g are two R-arithmetical functions, we define their
Dirichlet product f ∗ g ∈ Ar(R) to be the arithmetical function given by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

Lemma 1.4 then says precisely that µ ∗ u = I.
This product operation turns out to have many interesting properties. We will

confine ourselves to proving what we need for the Mobius inversion formula; for
more information see [1, Chapter 2].

Proposition 1.6. The Dirichlet product on Ar(R) is associative and commuta-
tive and has I ∈ Ar(R) as an identity element. That is, if f, g, h are R-arithmetical
functions, then f ∗ (g ∗ h) = (f ∗ g) ∗ h, f ∗ g = g ∗ f and f ∗ I = I ∗ f = f .

Proof. We calculate

f ∗ I(n) =
∑
d|n

f(d)I
(n
d

)
= f(n)I(1)

= f(n).

The case of I ∗ f is virtually identical.
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Now, for associativity,

f ∗ (g ∗ h)(n) =
∑
d|n

f(d)(g ∗ h)
(n
d

)
=
∑
de=n

f(d)(g ∗ h)(e)

=
∑
de=n

f(d)
∑
a|e

g(a)h
( e
a

)
=
∑
de=n

f(d)
∑
ab=e

g(a)h(b)

=
∑
dab=n

f(d)g(a)h(b).

Similarly, we find that

(f ∗ g) ∗ h(n) =
∑
dab=n

f(d)g(a)h(b).

Thus f ∗ (g ∗ h) = (f ∗ g) ∗ h.
The commutativity is clear. �

Now, often in number theory one has a formula of the form

f(n) =
∑
d|n

g(d)

and wishes to determine g in terms of f . Using Dirichlet multiplication this is quite
easy.

Theorem 1.7 (The Mobius inversion formula). Suppose that f and g are R-
arithmetical functions such that

f(n) =
∑
d|n

g(d).

Then

g(n) =
∑
d|n

f(d)µ
(n
d

)
.

Proof. We have f = g ∗ u. Thus

f ∗ µ = (g ∗ u) ∗ µ
= g ∗ (u ∗ µ)

= g ∗ (µ ∗ u)
= g ∗ I
= g

which is exactly the desired formula. �
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2. Theory over groups

Definition 2.1. Let G be an abelian group written additively. We define a
G-arithmetical function to be a map

ψ : N→ G.

We denote by Ar(G) the set of G-arithmetical functions.
Of course, if R is a ring then the two definitions of Ar(R) are the same, where

in the second we regard R as its additive group. Ar is again a covariant functor,
this time from abelian groups to sets.

We would like to get a Mobius inversion formula for G-arithmetical functions.
This is complicated by the fact that we can not define a Dirichlet product on Ar(G),
as there is no “multiplication”. Nevertheless, we can still define it in the cases we
will need.

Definition 2.2. Let f ∈ Ar(G) and let g ∈ Ar(Z). We define f ∗ g ∈ Ar(G)
by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
where f(d)g(n/d) means f(d) added to itself g(n/d) ∈ Z times.

Proposition 2.3. For any f ∈ Ar(G), f ∗ I = f . If g, h ∈ Ar(Z), then
f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Proof. The proof is exactly the same as the proof in the classical case; one
must merely note that all of the expressions make sense, which they do. �

The above proposition means that the monoid Ar(Z) acts on Ar(G) on the
right.

We can now prove a Mobius inversion formula.
Theorem 2.4 (Generalized Mobius inversion). Let f, g be G-arithmetical func-

tions such that
f(n) =

∑
d|n

g(d).

Then
g(n) =

∑
d|n

f(d)µ
(n
d

)
.

Proof. We have f = g ∗ u, and the proof proceeds as before. �

Example 2.5. Let G = C(x)∗. (Note that we will now be writing everything
multiplicatively despite our above notation.) Consider the G-arithmetical functions
f and g given by

f(n) = Φn(x)
g(n) = xn − 1,

where Φn(x) is the nth cyclotomic polynomial. (See Chapter 1, Section 4.) Then

g(n) =
∏
d|n

f(d),

so by Mobius inversion
f(n) =

∏
d|n

g(d)µ(n/d).



APPENDIX C

Factorization

1. Definitions

Let R be a commutative integral domain. (While one can consider factoriza-
tions in any ring, the case of an integral domain is somewhat simpler; since it is
the only case we will need, we will make this simplifying hypothesis. We will also
assume without further comment that all rings under discussion are commutative.)
We recall some standard definitions. Given a, b ∈ R, we say that a divides b, written
a|b, if there exists c ∈ R such that b = ac. An element u ∈ A is said to be a unit
in R if u divides 1; equivalently, u is a unit if there exists v ∈ R with uv = 1. One
easily shows that v is unique, and we will write it as u−1. We denote by R∗ the
subset of R of units; R∗ is an abelian group with multiplication in R as the group
law. Two elements a, b ∈ R are said to be associates if there is some unit u ∈ R∗
with a = bu; this is clearly an equivalence relation.

Note that fields are always integral domains, and that if R is an integral domain,
then so is R[x].

Primes in Z have two essential properties, one involving factorizations and one
involving divisibilities. In more general situations it is important to separate these
two notions. An element π ∈ R is said to be irreducible if it is not a unit and if
it can not be written as a product π = ab with neither a nor b a unit. π is said
to be prime if it is not a unit and if it has the property that whenever π divides a
product ab, then either π divides a or π divides b.

Example 1.1. Take R = Z[
√
−5]. One can easily show that 2 is irreducible in

R. However, 2 divides (1 +
√
−5)(1 −

√
−5) = 6. Since 2 clearly does not divide

either factor, it follows that 2 is not prime in R.

While irreducible and prime are not equivalent, in our situation there is an
implication in one direction.

Lemma 1.2. Let R be an integral domain and let π be a prime in R. Then π
is irreducible in R.

Proof. Suppose that π factors as π = ab. Then π divides ab, so since π is
prime π must divide one factor; we suppose without loss of generality that it is a.
Thus we can write a = πc for some c ∈ R. Now

π = ab = πcb;

since R is an integral domain this implies that cb = 1, and thus that b is a unit.
Therefore any factorization of π involves a unit, so π is irreducible. �
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2. Review of ideals

Let R be a commutative ring. Recall that an ideal I of R is a subset of R which
is closed under addition and which has the property that ri ∈ I for all r ∈ R and
i ∈ I. Given an ideal I, the quotient ring R/I is defined to be the quotient group
R/I as an additive group; one shows that the multiplicative closure of the ideal
implies that R/I inherits a multiplication from R and thus is a ring.

An ideal I is said to be prime if R/I is an integral domain; this is equivalent
to the property that whenever ab ∈ I, then either a ∈ I or b ∈ I. I is said to be
maximal if R/I is a field; this is equivalent to the property that if J is an ideal of
R containing I, then J = R or J = I. Since every field is an integral domain, every
maximal ideal is necessarily prime.

Given a subset S ⊆ R, the ideal (S) generated by S is defined to be the set of
all finite linear combinations of elements of S with coefficients in R; that is,

(S) = {a1s1 + · · ·+ arsr | ai ∈ R, si ∈ S}.
If S = {a} consists of a single element, then the ideal (a) is called a principal ideal.
Properties of principal ideals are closely connected to properties of the correspond-
ing elements. For example, the principal ideal (a) is all of R if and only if a is a
unit, and the principal ideal (a) is prime if and only if a is a prime element. Also,
an element a divides an element b if and only if (a) ⊇ (b). We leave the proofs of
all of these facts to the reader.

Given two ideals I, J of R, we define the product ideal IJ to be the ideal of R
generated by all products of elements ij with i ∈ I and j ∈ J . That is,

IJ = {a1i1j1 + · · ·+ arirjr | ak ∈ R, ik ∈ I, jk ∈ J}.
Note that if I has generators i1, . . . , ir and J has generators j1, . . . , js, then the
products iαjβ generate IJ . In particular, if I = (i) and J = (j) are both principal,
then IJ = (ij) is also principal.

We define the intersection I ∩ J to be the set-theoretic intersection of I and J ;
it is an ideal of R, and it is some sort of least common multiple of I and J . We
define the sum I+J to be the ideal of R consisting of all sums of elements of I and
J :

I + J = {i+ j | i ∈ I, j ∈ J}.
Note that I + J is the smallest ideal of R containing both I and J ; it is to be
thought of as a greatest common divisor of I and J .

3. Unique factorization

We continue to let R denote an integral domain. We say that an element a ∈ R
has an irreducible factorization if a can be written as a finite product

a = π1 · · ·πr
where each πi is irreducible in R.

Example 3.1. While there are example of rings where not every element has
an irreducible factorization, they are somewhat contrived. Here is one: let R be a
polynomial ring over some field K in infinitely many variables xi, i ≥ 0. Let I be
the ideal of R generated by the polynomials xi − x2

i+1 for all i. Set S = R/I and
consider the image x̄0 of x0 in S. We have

x̄0 = x̄2
1 = x̄4

2 = x̄8
3 = · · ·
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and so on, and none of the x̄i are units. With a little more effort one can show that
this is the only way to factor x̄0; since none of the x̄i are ever irreducible, it follows
that x̄0 has no irreducible factorization.

There is one standard condition that insures the existence of irreducible factor-
izations. Recall that a ring R is said to be noetherian if every increasing sequence
of ideals is eventually constant; that is, if given a chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ · · · ,
there must be some n such that

Im = Im′

for all m,m′ ≥ n. There are many equivalent formulations of this condition; see
Exercise 2.7.

Example 3.2. Z is noetherian and any field K is noetherian. If R is noetherian,
then R[x] is noetherian (the Hilbert basis theorem; see [2, Chapter 12, Theorem
5.18, p. 469]), and any quotient of R is also noetherian. From these examples one
can show that almost any ring that ever comes up is noetherian. Of course, the
rings R and S of Example 3.1 are not noetherian.

The relevance of the noetherian hypothesis to us comes from the following fact.
Proposition 3.3. Let R be a noetherian integral domain. Then every non-zero

element of R has an irreducible factorization.

Proof. Let S denote the set of ideals I of R such that one can write I = (a)
for some a ∈ R such that a 6= 0 and a does not have an irreducible factorization.
We will show that S is empty, which is the statement of the proposition. Suppose
that S is non-empty. Then by Exercise 2.7 S has at least one maximal element;
choose one, say I = (a) where a does not have an irreducible factorization. a can
not be irreducible itself, since it has no irreducible factorization, so we can write
a = bc for some b, c ∈ R with neither b nor c a unit. This clearly implies that the
ideal (a) is contained in the ideals (b) and (c). Furthermore, (a) can not equal (b)
or (c) since if it did equal one, say (b), then c would be a unit. Thus (a) is strictly
contained in both (b) and (c); since (a) is a maximal element of S, it follows that
(b), (c) /∈ S. Thus b and c have irreducible factorizations; combining them yields an
irreducible factorization of a. This is a contradiction, so S must have been empty,
as desired. �

The above proof is really nothing more than a fairly slick way to say “start
factoring a and eventually you end up with irreducibles.”

Now, let R be an integral domain in which every element has an irreducible
factorization; by Proposition 3.3 it would suffice for R to be noetherian. We will
say that R is a unique factorization domain (or a UFD) if every element of R can
be written uniquely as a product of irreducibles. By “uniquely” here we mean the
following: let a be in R, and suppose that a has two expressions

a = π1 · · ·πr = π′1 · · ·π′s
as products of irreducibles of R. We will consider these two factorizations to be
equivalent if r = s and if there is a permutation σ : [1, r]→ [1, r] such that πi and
π′σ(i) are associates for all i. (By [1, r] we mean the set of integers {1, 2, . . . , r}.)
We say that a can be written uniquely as a product of irreducibles if any two
factorizations of a are equivalent in the above sense. Note in particular that one
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can use units of R to develop many different factorizations of a, but none of these
are to be considered to be inequivalent.

This definition is in fact fundamentally related to the notions of irreducible and
prime elements. Before we prove this we give a useful lemma.

Lemma 3.4. Let R be a unique factorization domain and let a and π be elements
of R with π irreducible. Suppose that π divides a. Then some associate of π appears
in every irreducible factorization of a.

Proof. Let b = a/π. Then we can form an irreducible factorization of a by
taking π and an irreducible factorization of b; since π appears in this factoriza-
tion, by unique factorization some associate of π must appear in every irreducible
factorization of a. This proves the lemma. �

Proposition 3.5. Let R be an integral domain in which every element has an
irreducible factorization. Then R is a unique factorization domain if and only if
every irreducible element in R is prime.

Proof. Suppose first that R is a unique factorization domain. Let π ∈ R be
irreducible. We must show that π is prime. So suppose that π divides a product
ab in R. Then by Lemma 3.4 some associate of π appears in every irreducible
factorization of ab. It follows that some associate of π must appear in the irreducible
factorization of either a or b, since otherwise we would be able to form an irreducible
factorization of ab without any associate of π. But if π appears in an element’s
irreducible factorization, then it divides that element. This shows that π divides
either a or b, as desired.

Now suppose that every irreducible in R is prime. Let a be an element of R
and let

a = π1 · · ·πr = π′1 · · ·π′s
be two irreducible factorizations of a. We must show that r = s and define a map
σ : [1, r] → [1, s] as above. Now, π1 is prime and divides π′1 · · ·π′s; it follows that
π1 must divide at least one of the π′i; let σ(1) be any one of these values of i. Since
π′σ(1) is irreducible, π1 and π′σ(1) must be associates. Let u ∈ R∗ be the unit such
that uπ1 = π′σ(1). Then canceling π1 from each side we find that

π2 · · ·πr = uπ′1 · · ·π′σ(1)−1π
′
σ(1)+1 · · ·π

′
s.

Continuing in this way we can cancel off each πi, so r ≤ s. But the same argument
applied to the π′i shows that s ≤ r, so r = s. Now the above argument does indeed
construct the desired permutation σ of [1, r]; the units are irrelevant because we
are only trying to prove that things are associates. �

4. Principal ideal domains and Euclidean domains

There are several ways to obtain UFDs. The first shows that polynomial rings
over UFDs are still UFDs.

Proposition 4.1. Let R be a UFD. Then R[x] is a UFD.

Proof. The proof is exactly the same as the proof given in Problem Set,
Exercises 1-4, with Z replaced by R and Q replaced by the fraction field of R. �
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Example 4.2. Since any field K is a UFD trivially, the rings K[x] are all
UFDs. More generally, K[x1, . . . , xn] is a UFD for any n. Similarly, Z[x1, . . . , xn]
is a UFD for any n since Z is.

In preparation for the next results, let us recall a standard method for proving
that a ring R is a UFD. Suppose that R has the property that for every two irre-
ducibles π, π′ of R which are not associates, the ideal (π, π′) is all of R; equivalently,
there exist a, b ∈ R such that

aπ + bπ′ = 1.

(We will call this the Diophantine property.) We claim that R is then a UFD.
Proposition 4.3. Let R be an integral domain in which every element has an

irreducible factorization, and suppose that R has the Diophantine property. Then
R is a UFD.

Proof. Let π be an irreducible of R. By Proposition 3.5 it will suffice to show
that π is prime. In fact, it will suffice to prove the following: suppose that π divides
π′a, where π′ is an irreducible which is not an associate of π. Then π divides a.
We leave the reduction of the general case to this case to the reader.

So suppose that π divides π′a and π and π′ are not associates. Write π′a = πb.
By the Diophantine property there exist c, d ∈ R such that cπ + dπ′ = 1. Now,

dπ′a = dπb

(1− cπ)a = dπb

a = dπb+ cπa

a = π(db+ ca).

Thus π divides a, as desired. �

Example 4.4. The converse of Proposition 4.3 is false. For example, take
R = Z[x], which is a UFD. One sees easily that R does not have the Diophantine
property using the two irreducibles 2 and x.

The next step is to find ways to prove that rings have the Diophantine property.
The standard way to do this is to show that R is a principal ideal domain. Recall
that R is a principal ideal domain (or a PID) if every ideal of R is principal; that
is, if for every ideal I of R, there is some a ∈ I such that I = (a).

Proposition 4.5. Let R be a noetherian principal ideal domain. Then R is a
UFD.

Proof. Let π and π′ be two irreducibles of R which are not associates. Since
R is a UFD the ideal I = (π, π′) is principal, say generated by a. Since π ∈ I
we must have that a divides π. Similarly, a divides π′. But the only elements of
R dividing both π and π′ are units, since otherwise π and π′ would be associates.
Thus a is a unit, so I = R, and the Diophantine property is now immediate by
Proposition 4.3. �

Lastly, then, we need a way to show that rings are PIDs. Algebraic number
theory will give one method; we give here another one.

Let R be a noetherian integral domain. Let

N : R− {0} → N
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be some function from the non-zero elements of R to the natural numbers. We also
set N(0) = −1. Suppose that for any a, b ∈ R with b 6= 0 there exist q, r ∈ R such
that

a = bq + r

and
N(r) < N(a).

Then R is said to be a Euclidean domain. (This is not exactly the standard defini-
tion, but it will suffice for our purposes.)

Example 4.6. Z is a Euclidean domain with N(a) = |a| for a 6= 0 and N(0) =
−1. A polynomial ring over a field is a Euclidean domain with N the degree function,
where we take the zero polynomial to have degree −1.

Proposition 4.7. Let R be a Euclidean domain. Then R is a PID, and thus
a UFD.

Proof. Let a, b ∈ R and let I = (a, b). We will show that I is principal. This
will suffice to show that R is a PID, since every ideal of R has a finite generating set,
and repeated application of the above fact will show that every ideal is principal.

We prove that I is principal by induction on N(a). If N(a) = −1, then a = 0,
so I = (b), which is principal. Suppose then that we know that (a′, b′) is principal
for all a′ with N(a′) < n and all b′. Let a be an element with N(a) ≤ n, let b be
any element, and let I = (a, b). Since R is Euclidean we can find q, r ∈ R with
a = bq + r and N(r) < N(a). Note that a− bq, b generate the same ideal as a, b, so

I = (a, b) = (a− bq, b) = (r, b).

But now by the induction hypothesis I is principal, since N(r) < n. This completes
the induction. �

It is not true that every PID is Euclidean, although counterexamples are fairly
hard to give.

5. Finitely generated modules

We give in this section a quick review of finitely generated modules over rings.
Let R be a commutative ring; an R-module M is an abelian group with an action
of R; that is, for every r ∈ R and m ∈M we have defined an element rm ∈M such
that 1m = m, (rs)m = r(sm) and (r+ s)m = rm+ sm for all r, s ∈ R and m ∈M .
In the case that R is a field, an R-module is nothing more than an R-vector space.

Let M be an R-module and let S be some subset of M . The R-module generated
by S is the set of linear combinations of elements of S with coefficients in R. If the
R-module generated by S is all of M , then S is said to generate M . If there is some
finite set S ⊆ M such that S generates M , then M is said to be finitely-generated
over R. That is, M is said to be finitely generated over R if there are elements
m1, . . . ,mn ∈M such that

M = {r1m1 + · · ·+ rnmn | ri ∈ R}.

Let n be a positive integer and let Rn denote the R-module of n-tuples of
elements of R, with all operations done componentwise. Rn is called a free R-
module of rank n; more generally, any module isomorphic to Rn is said to be free
of rank n.
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Now let R be a principal ideal domain and let M be a finitely-generated R-
module. Let M ′ be the sub-module of m ∈ M of elements for which there exists
r ∈ R, r 6= 0, such that rm = 0; M ′ is called the torsion sub-module of M . It is a
basic fact that

M ∼= M ′ ⊕Rn

for some (unique) integer n. (The integer n is called the rank of M .) In particular,
if M is torsion-free (meaning that M ′ = 0) and finitely-generated, then it is free.
See [13, Chapter 3, Theorem 7, p. 147] for details.

Continue to let R be a principal ideal domain and let M and N be two finitely-
generated R-modules such that M ⊆ N . One shows easily that the rank of M is
less then or equal to the rank of N . In particular, if M ⊆ N ⊆ P and M and P
both have rank n, then N also has rank n. If P is also torsion-free, then N is as
well, so it must be free of rank n.





APPENDIX D

Solutions to Exercises

1. Chapter 1

Solution 1.1. Write

f(x) =
an
bn
xn + · · ·+ a0

b0

where each fraction ai/bi is in lowest terms. Let a be the greatest common divisor
of the ai and let b be the least common multiple of the bi. We claim that c = b

a is
the unique rational number such that cf(x) is primitive. In fact, this is quite easy
to see, as multiplying by b has the effect of clearing all denominators, and dividing
by a has the effect of removing any common factors from the numerators.

Solution 1.2. Let f(x) and g(x) be primitive polynomials and suppose that
there is some prime p which divides every coefficient of f(x)g(x). Then

f(x)g(x) ≡ 0 (mod p);

since Fp[x] is an integral domain this implies that either

f(x) ≡ 0 (mod p)

or
g(x) ≡ 0 (mod p).

This contradicts the assumption that f(x) and g(x) were primitive, so f(x)g(x)
must have been primitive as well.

Solution 1.3. It is clear that if f(x) factors in Z[x], then it factors in Q[x], so
we will prove the converse. Suppose that we can write f(x) = g(x)h(x) with
g(x), h(x) ∈ Q[x]. We must show that we can write f(x) = g′(x)h′(x) with
g′(x), h′(x) ∈ Z[x]. Let a, b, c ∈ Q∗ be the rational numbers such that af(x),
bg(x), ch(x) are all primitive. Since f(x) ∈ Z[x], we must have 1/a ∈ Z.

We claim that af(x) = bg(x)ch(x). To see this, note that af(x) is primitive
by definition and bg(x)ch(x) is primitive by Exercise 1.2. Furthermore, these poly-
nomials are rational multiples of each other since f(x) = g(x)h(x). But any given
polynomial has only one rational multiple which is primitive, so these polynomials
must be equal, as claimed.

We now have

f(x) =
1
a

(bg(x))(ch(x));

1
a ∈ Z and bg(x), ch(x) ∈ Z[x], so this yields a a factorization of f(x) in Z[x].

Solution 1.4. This is a special case of Exercise 1.3, using the fact that we have
b, c ∈ Z (since g(x), h(x) are monic) and a = 1 (since f(x) is monic and integral,
and thus primitive).

131
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Solution 1.5. By the division algorithm in Q[x], we can find polynomials
q(x), r(x) ∈ Q[x] with

f(x) = q(x)(x− α) + r(x)

and deg r(x) < deg(x − α) = 1. Thus r(x) is a constant polynomial. Plugging in
α and using the fact that f(α) = 0, we conclude that r(x) is the zero polynomial.
Thus f(x) = q(x)(x− α), so x− α divides f(x) in Q[x].

Now let f(x) have degree 2 or 3. If f(x) has a rational root, then what we just
proved shows that f(x) is not irreducible. Conversely, if f(x) is not irreducible,
then it has some factor g(x). If g(x) is linear, say g(x) = x− α, then f(x) has the
rational root α. If g(x) is not linear, then f(x) must be cubic and g(x) must be
quadratic; now f(x)/g(x) is a linear polynomial dividing f(x), which in turn yields
a rational root of f(x).

Solution 1.6. We prove the contrapositive. So suppose that f(x) = g(x)h(x)
in Q[x]. Since f(x) is primitive, Exercise 1.3 shows that we can assume g(x), h(x) ∈
Z[x]. Reducing modulo p, we find that f̄(x) factors as ḡ(x)h̄(x), so f(x) is not
irreducible in Fp[x].

Solution 1.7. Suppose that f(x) factors as g(x)h(x) in Q[x]; as usual, we can
assume that g(x), h(x) ∈ Z[x]. Modulo p we have

f(x) ≡ anxn (mod p),

and an is non-zero modulo p. It follows from unique factorization in Fp[x] that
ḡ(x), h̄(x) ∈ Fp[x] are monomials, say

ḡ(x) = bxd, h̄(x) = cxn−d

with bc ≡ an (mod p). Also, we can not have d = 0 or d = n since then either g(x)
or h(x) would have degree n, which would contradict the fact that f(x) factors.

In particular, we find that the constant terms of g(x) and h(x) are divisible by
p. The constant term of f(x) is the product of these two constant terms, so it is
divisible by p2. This contradicts our hypotheses on f(x), so f(x) must have been
irreducible.

Solution 1.8. This is an immediate application of Exercise 1.7.
Solution 1.9. Substituting y + 1 = x, we have

xp − 1
x− 1

=
(y + 1)p − 1

y

=
1
y

(
yp +

(
p

p− 1

)
yp−1 + · · ·+

(
p

1

)
y + 1− 1

)
= yp−1 +

(
p

p− 1

)
yp−2 + · · ·+

(
p

1

)
.

It is well known (and easy to prove) that p divides
(
p
i

)
for all i 6= 0, p. Since

(
p
1

)
= p,

we now see that the above polynomial is an Eisenstein polynomial, so Exercise 1.7
shows that it is irreducible in Q[x]. (Note that any factorization involving y can be
converted into a factorization involving x, so “irreducible with respect to y” and
“irreducible with respect to x” are the same thing.)

Solution 1.10. Note that if f(x) = x4 − 10x2 + 1 factors, then it has either
a linear factor or a quadratic factor. We show first that it has no linear factor. So
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suppose that it does; by Exercise 1.5 it then has a rational root a
b with a, b relatively

prime. Thus (a
b

)4

− 10
(a
b

)2

+ 1 = 0

a4 − 10a2b2 + b4 = 0.

Now, if any prime p divides b, then this implies that it also divides a. Since we
assumed a and b were relatively prime, we must have b = 1. The same argument
shows that we must have a = 1, and now we check immediately that a

b = 1 is not
a root of f(x). Thus f(x) has no linear (and therefore no cubic) factors.

It remains to check that f(x) has no quadratic factors. So suppose that f(x) =
g(x)h(x) with g(x), h(x) quadratic; by Exercise 1.3 and Exercise 1.4 we can assume
that g(x), h(x) are monic with integer coefficients. Thus

x4 − 10x2 + 1 = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd.

We conclude that a = −c, ac+ b+ d = −10 and b = d = ±1. If b = d = 1, then

−10 = ac+ b+ d = −a2 + 2,

so a2 = 12, which doesn’t work. If b = d = −1, then

−10 = ac+ b+ d = −a2 − 2,

so a2 = 8, which also doesn’t work. Thus f(x) has no quadratic factors, and thus
is irreducible.

Solution 1.11. Linearity is immediate. To check the product rule, we first
check it for products of monomials:(

(xm)(xn)
)′ =

(
xm+n

)′
= (m+ n)xm+n−1

= (mxm−1)(xn) + (xm)(nxn−1)

= (xm)′(xn) + (xm)(xn)′.

Next, we use linearity to show that if f(x) and g(x) both satisfy the product rule
with h(x), then f(x) + g(x) also satisfies the product rule with h(x):(

(f(x) + g(x))h(x)
)′ = (f(x)h(x))′ + (g(x)h(x))′

= f ′(x)h(x) + f(x)h′(x) + g′(x)h(x) + g(x)h′(x)

= (f ′(x) + g′(x))h(x) + (f(x) + g(x))h′(x)

= (f(x) + g(x))′h(x) + (f(x) + g(x))h′(x).

These two calculations and an easy induction prove the product rule in general.
For the chain rule, a similar linearity calculation reduces us to checking that

for any polynomial f(x), (
f(x)n

)′ = nf(x)n−1f ′(x).

We prove this formula by induction on n, the case n = 1 being obvious. So,
suppose that we know that the above formula holds. Then, using the product rule,
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we compute that (
f(x)n+1

)
=
(
f(x)nf(x)

)
=
(
f(x)n

)′
f(x) + f(x)nf ′(x)

= nf(x)n−1f ′(x)f(x) + f(x)nf ′(x)

= (n+ 1)f(x)nf ′(x)

which completes the induction.
Now, suppose that g(x)2 divides f(x). Write f(x) = g(x)2h(x) for some h(x) ∈

K[x]. Then by the product rule and the chain rule

f ′(x) =
(
g(x)2

)′
h(x) + g(x)2h′(x)

= 2g(x)g′(x)h(x) + g(x)2h′(x)

= g(x)
(
2g′(x)h(x) + g(x)h′(x)

)
which shows that g(x) divides f ′(x).

Solution 1.12. First, note that f(x) and f ′(x) are relatively prime in K[x],
since f(x) is irreducible in K[x] and f ′(x) is non-zero of smaller degree than
deg f(x). (This requires the assumption thatK is of characteristic 0, since otherwise
it is possible for f ′(x) to be zero.) This implies that there exist r(x), s(x) ∈ K[x]
such that

f(x)r(x) + f ′(x)s(x) = 1.

This equality continues to hold in L[x], so f(x) and f ′(x) must be relatively prime
in L[x] as well.

Now, suppose that f(x) = g(x)2h(x) in L[x]. Then by Exercise 1.11 g(x)
divides f ′(x). In particular, f(x) and f ′(x) are not relatively prime. This is a
contradiction, so f(x) can not have any repeated factors in L[x].

Solution 1.13. We apply Lemma I.5.9 with L1 = K(α) and L2 = L; our
hypothesis is that L1∩L2 = K. Note that L1L2 = L(α), so the lemma tells us that
[L(α) : L] = [K(α) : K]. In particular, the minimal polynomial of α over L has the
same degree as the minimal polynomial of α over K; since f(x) is a polynomial of
this degree which α satisfies, it must be the minimal polynomial.

Solution 1.14. Let n be the degree [L : K] and let γ1, . . . , γn be a basis for
L over K. Let mα and mβ be the matrices for the linear transformations on L
defined by multiplication by α and β respectively. Then

mα +mβ = mα+β ;
mαmβ = mαβ ;

m−1
α = mα−1 .

Thus, if we can determine the matrices for α and β we can also determine the
matrices for α+ β, αβ and α−1. The Cayley-Hamilton theorem tells us that these
matrices satisfy their characteristic polynomials (which again we can compute),
and one concludes that α+β, αβ and α−1 satisfy the characteristic polynomials of
mα +mβ , mαmβ and m−1

α respectively.
For a silly example where this does not yield a minimal polynomial, takeK = Q,

L = Q(
√

2), α = β = 1. One computes that the characteristic polynomial of
mα +mβ is (x− 2)2, which is the square of the minimal polynomial of α+ β.
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Now take L = Q(
√

2,
√

3). We take as our basis 1,
√

2,
√

3,
√

6. The matrix of√
2 +
√

3 is now 
0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0


This has characteristic polynomial

x4 − 10x2 + 1.

Furthermore, by Exercise 1.10 we know that this polynomial is irreducible over Q,
so it must be the minimal polynomial of

√
2 +
√

3.
Solution 1.15. Note that in Fp[x]

(x+ y)p = xp +
(

p

p− 1

)
xp−1y +

(
p

p− 2

)
xp−2y2 + · · ·+

(
p

1

)
xyp−1 + yp

= xp + yp

since p divides
(
p
i

)
for i 6= 0, p. Using this, if f(x) = anx

n + · · ·+ a0, we find that

f(x)p =
(
anx

n + · · ·+ a0

)p
=(anxn)p +

(
an−1x

n−1 + · · ·+ a0

)p
=(anxn)p + (an−1x

n−1)p +
(
an−2x

n−2 + · · ·+ a0

)p
...

=(anxn)p + (an−1x
n−1)p + · · ·+ (a0)p.

The fact that apn = an for an ∈ Fp shows that this is just

anx
np + an−1x

(n−1)p + · · ·+ a0 = f(xp).

Solution 1.16. We begin with some trace computations. Let Tr be the trace
from Q( 4

√
2) to Q. 4

√
2 has minimal polynomial x4 − 2 by Exercise 1.8, so we have

Tr( 4
√

2) = 0 by definition of the trace.
√

2 has characteristic polynomial (x2 − 2)2

by Corollary A.4.4, so we again find that Tr(
√

2) = 0. Next, 4
√

8 has minimal
polynomial x4 − 8 (we can not apply Exercise 1.8 here, but we can see that this
polynomial is irreducible since 4

√
8 and 4

√
2 = 2/ 4

√
8 generate the same extension of

Q and thus have the same degree), so also Tr( 4
√

8) = 0.
Assuming that

√
3 ∈ Q( 4

√
2), it will have characteristic polynomial (x2 − 3)2

and thus by Corollary A.4.4 also Tr(
√

3) = 0. Writing
√

3 = a+ b
4
√

2 + c
√

2 + d
4
√

8

and using the linearity of the trace and our trace computations, we find that 4a = 0,
so a = 0. Thus √

3
4
√

2
= b+ c

4
√

2 + d
√

2.
√

3/ 4
√

2 has minimal polynomial x4− 9
2 (it is easy to check that this is irreducible),

so it has trace 0. As before we conclude that 4b = 0, so b = 0. Dividing again we
find that √

3
2

= c+ d
4
√

2.
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3
2 has minimal polynomial x2 − 3

2 , and characteristic polynomial (x2 − 3
2 )2; thus

it has trace 0. Once again we conclude that c = 0, so we find that
√

3
4
√

8

is rational, which is absurd. Thus
√

3 /∈ Q( 4
√

2).
Solution 1.17. We will prove by induction on n that Q(

√
d1, . . . ,

√
dn) has

Q-basis {√
d1

ε1 · · ·
√
dn

εn | εi = 0, 1
}
.

This will prove the result since this basis has 2n elements.
The case n = 1 is clear. For the general case, we assume that

K = Q(
√
d1, . . . ,

√
dn−1)

has degree 2n−1 with the asserted basis and we wish to show that

L = K(
√
dn)

has degree 2n with the asserted basis. To do this it will suffice to show that
[L : K] = 2; the fact that the basis is as claimed will follow immediately from the
methods of the proof of Lemma A.1.1, using the basis 1,

√
dn for L/K. To prove

that [L : K] = 2, it will suffice to show that√
dn /∈ K.

So suppose that
√
dn ∈ K. Then we can write√
dn =

∑
aε1···εn−1

√
d1

ε1 · · ·
√
dn−1

εn−1

with aε1···εn−1 ∈ Q and εi = 0, 1. Let
√
m be one of the basis elements other than

1. Then m is not a perfect square (since the di are relatively prime), so
√
m will

have characteristic polynomial (x2 − m)2n−2
in K. In particular, it has trace 0.

Since
√
dn also has trace 0, taking traces of the above equality shows that

a0,...,0 = 0;

that is, the coefficient of 1 is 0.
One can now divide through by

√
d1 and repeat the above argument. Once

again every element but one will have trace 0 (we use the fact that the di are
relatively prime to insure that we only get the one such basis element), and we
conclude that

a1,0,...,0 = 0.

Similarly, dividing through by
√
d1d2 will show that

a1,1,0,...,0 = 0;

Continuing in this way one finds that every coefficient is 0, which is a contradiction.
Thus

√
dn /∈ K, which proves the result.

This result allows us to prove the following: let d1,. . . ,dn be any rational num-
bers which are not squares. Then the only rational number of the form

a1

√
d1 + · · ·+ an

√
dn

with ai ∈ Q is 0.
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To prove this, let p1, . . . , pm be the prime factors of the numerators and de-
nominators of the di. We have just shown that the numbers{√

pε11 · · · p
εm
m | εi = 0, 1

}
are linearly independent over Q. Each

√
di is a rational multiple of one of these

basis elements, and since none of the di are squares, none of them are rational
multiples of 1. The result now follows from the fact that these numbers (including
1) are all linearly independent over Q.

Solution 1.18. Since 5 · 72◦ = 360◦, we wish to find a formula for cos(5x) in
terms of cos(x). To do this, we use the fact that

eix = cos(x) + i sin(x).

We find that

cos(5x) + i sin(5x) = ei5x

=
(
eix
)5

= (cos(x) + i sin(x))5

= cos5(x) + 5i cos4(x) sin(x)− 10 cos3(x) sin2(x)+

− 10i cos2(x) sin3(x) + 5 cos(x) sin4(x) + i sin5(x).

Equating real parts we find that

cos(5x) = cos5(x)− 10 cos3(x) sin2(x) + 5 cos(x) sin4(x)

= cos5(x)− 10 cos3(x)(1− cos2(x)) + 5 cos(x)(1− cos2(x))2

= 16 cos5(x)− 20 cos3(x) + 5 cos(x).

Plugging in x = 72◦, we find that cos(72◦) satisfies

f(x) = 16x5 − 20x3 + 5x− 1.

Next, (
√

5− 1)/4 has conjugate (−
√

5− 1)/4 and thus minimal polynomial

g(x) =

(
x−
√

5− 1
4

)(
x− −

√
5− 1
4

)
= x2 +

1
2
x− 1

4
.

We find that g(x) does indeed divide f(x), with quotient

16x3 − 8x2 − 12x+ 4.

In fact, g(x) divides this as well, with quotient

16x− 16.

Thus cos(72◦) satisfies

f(x) = 16
(
x2 +

1
2
x− 1

4

)2

(x− 1).

Since certainly cos(72◦) does not equal 1, this implies that cos(72◦) is a root of
g(x). Any sort of approximation now determine which root it is and completes the
proof.
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Solution 1.19. The trace is easy to compute. Recall that Q(ζ5) has Q-basis
1, ζ5, ζ2

5 , ζ
3
5 , and each of the primitive 5th roots of unity has minimal polynomial

x4 + x3 + x2 + x+ 1

and thus trace −1. Linearity of the trace now shows that

TrQ(ζ5)/Q(a+ bζ5 + cζ2
5 + dζ3

5 ) = 4a− b− c− d.
One can attempt to compute the norm directly, but it gets quite ugly. It is

more efficient to use Exercise 1.18. Recall that

ζ5 = cos(72◦) + i sin(72◦).

We know from Exercise 1.18 that

cos(72◦) =
√

5− 1
4

,

so

ζ5 + ζ4
5 = ζ5 + ζ5 = 2 cos(72◦) =

√
5− 1
2

.

Thus
√

5 ∈ Q(ζ5). This means that we can consider Q(ζ5) as a sequence of two
quadratic extensions; we can now use Lemma A.4.6 to cut down on our work.

We will first compute

N
Q(ζ5)/Q(

√
5)(a+ bζ5 + cζ2

5 + dζ3
5 )

using Corollary I.5.4. We first need to know the conjugates of ζ5 over Q(
√

5). There
are many ways to see that the conjugates of ζ5 are ζ5 and ζ4

5 ; for example, one can
use the fact that ζ5+ζ4

5 is in Q(
√

5) and thus fixed by Gal(Q(ζ5)/Q(
√

5)). Similarly,
ζ2
5 and ζ3

5 are conjugates. We now have

N
Q(ζ5)/Q(

√
5)(a+ bζ5 + cζ2

5 + dζ3
5 ) = (a+ bζ5 + cζ2

5 + dζ3
5 )(a+ bζ4

5 + cζ3
5 + dζ2

5 ).

Multiplying this out (which is quite easy) we get

(a2 + b2 + c2 + d2) + (ab+ bc+ cd)(ζ5 + ζ4
5 ) + (ac+ ad+ bd)(ζ2

5 + ζ3
5 ).

Since ζ4
5 = −1− ζ5 − ζ2

5 − ζ3
5 this equals

(a2 + b2 + c2 + d2 − ab− bc− cd) + (ac+ ad+ bd− ab− bc− cd)(ζ2
5 + ζ3

5 ).

We now need to compute the norm from Q(
√

5) to Q of this expression. We
have

ζ2
5 + ζ3

5 = 2 cos(144◦);
using the double angle formula we find that this is

−1−
√

5
2

.

Our expression therefore equals (after some simplification)(
a2 + b2 + c2 + d2 − 1

2
(ab+ ac+ ad+ bc+ bd+ cd)

)
−

1
2

(ac+ ad+ bd− ab− bc− cd)
√

5.

Using the formula for norms from Q(
√

5), we finally find that

NQ(ζ5)/Q(a+ bζ5 + cζ2
5 + dζ3

5 ) =
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a2 + b2 + c2 + d2 − 1

2
(ab+ ac+ ad+ bc+ bd+ cd)

)2

−

5
4

(ac+ ad+ bd− ab− bc− cd)2
.

Solution 1.20. The fact that ϕ(mn) = ϕ(m)ϕ(n) is immediate from the fact
that

Z/mnZ ∼= Z/mZ× Z/nZ.
This isomorphism is given by sending a to the ordered pair (a, a): it is easily seen
to be a homomorphism; it is injective since its kernel consists of those integers
divisible by both m and n, and thus by mn since m and n are relatively prime; and
it then must be surjective since each ring has the same size. This isomorphism of
rings implies immediately that

(Z/mnZ)∗ ∼= (Z/mZ)∗ × (Z/nZ)∗;

since the left-hand side has size ϕ(mn) and the right-hand side has size ϕ(m)ϕ(n),
this proves the formula.

We compute ϕ(pk) directly. Specifically, an integer is relatively prime to pk if
and only if it is not divisible by p. The integers in

1, 2, · · · , pk

which are divisible by p are precisely

p, 2p, · · · , pk.
There are pk−1 of these integers, and subtracting this from the pk total yields the
formula.
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2. Chapter 2

Solution 2.1. We wish to solve the Diophantine equation

x2 + 212 = z2.

Factoring this equation, we are interested in

(z + x)(z − x) = 212.

As in Example 1.1 solving this equation amounts to determining all complimentary
pairs (d, e) of factors of 212 such that d ≡ e (mod 2). These pairs (up to negation
and reordering) are

(d, e) = (441, 1), (147, 3), (63, 7), (49, 9), (21, 21).

These give rise to the solutions

(x, z) = (220, 221), (72, 75), (28, 35), (20, 29), (0, 21).

Of course, the last solution doesn’t really count.

Solution 2.2. The case p = 2 is obvious, so we can assume that p is odd.
Choose a generator g of the cyclic group (Z/pZ)∗. The polynomial x2 − 1 has at
most 2 roots in Z/pZ, so −1 and 1 are the only elements of (Z/pZ)∗ of square 1.
Since p is odd this implies that

g(p−1)/2 = −1,

since both elements have square 1. Since (Z/pZ)∗ is cyclic of even order, g(p−1)/2

will be a square if and only if (p− 1)/2 is even; that is, if and only if

p ≡ 1 (mod 4).

For an explicit square root when p ≡ 1 (mod 4), we will show that

s = 1 · 2 · 3 · · · p− 3
2
· p− 1

2
∈ Z/pZ

has square −1. To see this, recall first that

(p− 1)! ≡ −1 (mod p);

this is proven by pairing up inverses and observing that only ±1 are left. If we set

s′ =
p+ 1

2
· p+ 3

2
· · · (p− 2) · (p− 1) ∈ Z/pZ,

this tells us that ss′ = −1 in Z/pZ. However, there are (p − 1)/2 terms in the
product for s′; (p−1)/2 is even, so we can put in (p−1)/2 minus signs and we find
that

s′ ≡ −p+ 1
2
· −p+ 3

2
· · · − (p− 2) · −(p− 1) (mod p)

≡ p− 1
2
· p− 3

2
· · · 2 · 1

≡ s.

Thus s2 = −1 in Z/pZ.
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Solution 2.3. Recall that we have a prime π of Z[i] which divides some positive
prime p ∈ Z such that p ≡ 1 (mod 4). We know that p is not prime in Z[i], so p
and π are not associates. Setting π′ = p/π, we have

p2 = N(p) = N(π)N(π′);

the fact π and π′ are not units implies that they both have norm p; in particular,
π′ is prime as well. Furthermore, the fact that ππ′ is real implies that π′ is a real
multiple of π̄; since π̄ and π′ have the same norm, this implies that π′ = π̄.

It remains to show that π and π̄ are not associate and that every prime π′′

of norm p is associate to one of them. The second fact is easy; such a π′′ divides
p = ππ̄ in Z[i], so the fact that Z[i] is a UFD implies that it divides (and thus is
associate to) one of π and π̄. To see that π and π̄ are not associate one simply has
to check that if x + yi ∈ Z[i] and x 6= y and x, y 6= 0 (as is easily seen to be the
case here, since p is not even), then none of ±(x+ yi) and ±i(x+ yi) are equal to
x+ yi = x− yi. This is easy.

Solution 2.4. Note that for α = a+ b
√
−2 ∈ Z[

√
−2] we have

N(α) = a2 + 2b2 = αᾱ

where ᾱ denotes the complex conjugate of α. Given this, the proof of Lemma 1.2
carries over exactly to this situation; the only difference is the bound on the re-
mainder. More precisely, we can again write

α = βq + r

where r = r1 + r2

√
−2 and |ri| ≤ 1

2 N(β). Thus

β̄r = r1 + r2

√
−2

N(β̄)N(r) = N(r1 + r2

√
−2)

N(r) =
N(r1 + r2

√
−2)

N(β)

=
r2
1 + 2r2

2

N(β)

≤ N(β)2 + 2N(β)2

N(β)

=
3
4
N(β).

In particular, N(r) < N(β), which is enough to show that Z[
√
−2] is Euclidean and

thus is a UFD.
The analysis of primes in Z[

√
−2] is very similar to that in Z[i]. The analogues

of Lemma 1.3 and Lemma 1.4 continue to hold, so we are again reduced to factoring
primes of Z in Z[

√
−2]. 2 once again behaves strangely; it factors as

2 = −(
√
−2)2,

and
√
−2 is prime since it has norm 2.

For the other primes, suppose first that p factors in Z[
√
−2]. Then as in Z[i]

we conclude that there is an element α = a+ b
√
−2 ∈ Z[

√
−2] with

a2 + 2b2 = N(α) = p.
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Clearly we can not have a or b divisible by p, so we find that

a2 + 2b2 ≡ 0 (mod p)

a2 ≡ −2b2(a
b

)2

≡ −2.

Thus if p factors, then −2 is a square modulo p.
Conversely, if −2 is a square modulo p, then we can find a ∈ Z with

a2 ≡ −2 (mod p);

Thus p divides a2 + 2 = (a +
√
−2)(a−

√
−2) in Z[

√
−2]. If p were prime, then p

would divide one of a ±
√
−2, which can not happen since p does not divide the

coefficient of
√
−2. We conclude that p factors in Z[

√
−2] if and only if −2 is a

square modulo p. Using quadratic reciprocity one can show that this occurs if and
only p ≡ 1, 7 (mod 8).

As with Z[i] and x2 + y2, the study of the quadratic form x2 + 2y2 is closely
connected with primes in Z[

√
−2]. Specifically, one proves exactly as with Propo-

sition 1.7 that a positive prime p can be written in the form x2 + 2y2 if and only if
p factors in Z[

√
−2]. Our above results show that this occurs if and only p = 2 or

p ≡ 1, 7 (mod 8).
Solution 2.5. The proof that Z[ζ3] is Euclidean is virtually identical to that

for Z[i] and Z[
√
−2]. The only difference is the the norm form is slightly more

complicated, as

NQ(ζ3)/Q(a+ bζ3) = (a+ bζ3)(a+ bζ2
3 )

= a2 + b2 + ab(ζ3 + ζ2
3 )

= a2 − ab+ b2.

This only affects the proof in the computation of the bound on the remainder; one
finds that

N(r) ≤ 3
4

N(β),

which is good enough to show that Z[ζ3] is Euclidean.
In this case p = 3 is the exceptional prime; we can factor 3 as

3 = −ζ2
3 (1− ζ3)2;

here −ζ2
3 is a unit and 1− ζ3 is prime.

So, let p 6= 3 be a prime of Z and suppose that p factors in Z[ζ3]. As usual,
this implies that there are x, y ∈ Z, relatively prime to p, such that

x2 − xy + y2 ≡ 0 (mod p)(
x

y

)2

− x

y
+ 1 ≡ 0 (mod p).

Set α ≡ −x/y ∈ Fp. Then

α2 + α+ 1 ≡ 0 (mod p);

multiplying by α− 1, we find that

α3 ≡ 1 (mod p).
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Clearly α 6= 1, since p 6= 3, so we conclude that p factors only if there is a non-trivial
third root of unity modulo p. In fact, the above argument is reversible, so p 6= 3
factors if and only if F∗p has a non-trivial third root of unity. Since F∗p is cyclic of
order p− 1, this will happen if and only if 3 divides p− 1; that is, if and only

p ≡ 1 (mod 3).

The naturally related quadratic form in this case is just x2−xy+y2. The usual
arguments show that p factors if and only if p can be written as x2 − xy+ y2; thus
p can be written in this form if and only if p = 3 or p ≡ 1 (mod 3).

Solution 2.6. Let R be a finite integral domain and let a be any non-zero
element of R. We need to show that a has an inverse in R. Consider the map from
R→ R given by multiplication by a. The kernel is

{r ∈ R|ar = 0} = {0};

thus this map is injective. Since R is finite, injective maps are also surjective; in
particular, 1 is in the image and we conclude that there is b ∈ R such that ab = 1.
Thus a has an inverse in R.

Solution 2.7. We first show that (1) implies (2). So suppose that we have an
increasing chain

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
of ideals of R. Let I be the union of the In. One shows from the definitions that
I is an ideal of R. For example, if i, j ∈ I, then i ∈ Im, j ∈ In for some m,n, so
i + j ∈ Imax{m,n} ⊆ I. Now, by our assumption (1) I has a finite generating set
a1, . . . , ak. Since I is the union of the In, each aj must lie in some Inj . Taking n to
be the maximum of the nj , we find that a1, . . . , ak ∈ In; thus In = I, as it contains
all of the generators of I. We conclude that the chain of ideals becomes constant
at the nth ideal.

Next we show that (2) implies (3). So let S be a non-empty set of ideals of R
and suppose that S has no maximal elements. Let I1 be any element of S. Since
S has no maximal elements, we can choose I2 ∈ S such that

I1 ⊆ I2.

I2 is not maximal either, so we can choose I3 ∈ S such that

I1 ⊆ I2 ⊆ I3.

Continuing in this way we can construct an infinite sequence of ideals of R which
is not constant, which contradicts (2).

Finally we show that (3) implies (1). Let I be an ideal of R and take S to be the
set of ideals J of R such that J ⊆ I and J is finitely generated. S is certainly non-
empty (for example, it contains the zero ideal), so by (3) S has a maximal element,
say J0. Suppose that J0 6= I. Then we can choose i ∈ I − J0; set J1 = J0 + iR.
J1 is generated by the generators of J0 together with i, so it is finitely generated;
since it is also in I, we conclude that J1 ∈ S. But J1 is strictly larger than J0,
which contradicts the maximality of J0. It follows that J0 = I, so I ∈ S and thus
is finitely generated by the definition of S.

Solution 2.8. Let ϕ : R→ R/I be the quotient map and let J be any ideal of
R/I . We will show that J is finitely generated, which will prove that R is noetherian
by Exercise 2.7. Let J ′ be the ideal ϕ−1(J); one checks that it is an ideal directly
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from the definition. Since R is noetherian, J ′ has a finite generating set a1, . . . , am.
We claim that ϕ(a1), . . . , ϕ(am) generate J .

Note first that since ai ∈ J ′, ϕ(ai) ∈ J . Thus the ideal generated by the ϕ(ai)
lies in J . It remains to show that it is all of J . To see this, let j be any element of
J , and let j′ ∈ R be such that ϕ(j′) = j. Then j′ ∈ J ′, so we can write

j′ = r1a1 + · · ·+ rmam

for some ri ∈ R. Now,

j = ϕ(j′) = ϕ(r1)ϕ(a1) + · · ·+ ϕ(rm)ϕ(am),

so j is a linear combination of the ϕ(ai), as claimed.

Solution 2.9. Suppose that p does not contain any of the Ii. Then for each i
we can find πi ∈ Ii such that πi /∈ p. Thus the product π1 · · ·πn is not in p either,
since p is prime. This contradicts the fact that p contains I1 · · · In, so p must have
contained one of the Ii.

Solution 2.10. We know that PID implies UFD, so we must show the converse.
So let R be a Dedekind domain and suppose that R is a UFD. Let a be any non-zero
ideal of R; we must show that it is principal. Let α be any non-zero element of a.
Let

α = π1 · · ·πn

be a factorization of α into irreducibles; since we are assuming that R is a UFD,
each of the πi is actually a prime element. This implies that each ideal

(
πi
)

is
prime, so the ideal equation (

α
)

=
(
π1

)
· · ·
(
πn
)

gives a factorization of
(
α
)

into prime ideals. Now,
(
α
)
⊆ a, so a divides

(
α
)
. In

particular, this implies (using unique factorization of ideals) that all of the prime
ideal factors of a are among the

(
πi
)
. In particular, all of the prime ideal factors

of a are principal, so a is a product of principal ideals and thus principal. This
completes the proof.

Solution 2.11. Let L be any one of the fields Q(
√

2), Q(
√

3), Q(
√

6). We
show first that α ∈ K is an algebraic integer if and only if TrK/L(α) and NK/L(α)
are algebraic integers. One implication is clear: if α is an algebraic integer, then
all of the conjugates of α are also algebraic integers, so any trace or norm of α
is an algebraic integer. For the other implication, note that α satisfies its K/L
characteristic polynomial

x2 − TrK/L(α)x+ NK/L(α).

If TrK/L(α) and NK/L(α) are both algebraic integers, then they both lie in OL and
thus in OK ; since OK is integrally closed in K, this implies that α ∈ OK . This
completes the proof of the claim.

Now, let

α = a+ b
√

2 + c
√

3 + d
√

6,
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a, b, c, d ∈ Q, be any element of K. By the above argument, if α ∈ OK , then

TrK/Q(
√

2)(α) = (a+ b
√

2 + c
√

3 + d
√

6) + (a+ b
√

2− c
√

3− d
√

6)

= 2a+ 2b
√

2 ∈ O
Q(
√

2)

TrK/Q(
√

3)(α) = 2a+ 2c
√

3 ∈ O
Q(
√

3)

TrK/Q(
√

6)(α) = 2a+ 2d
√

6 ∈ O
Q(
√

6).

Using our knowledge of these rings of integers, we see that the trace conditions
amount to

2a, 2b, 2c, 2d ∈ Z.
This leaves us with the norm conditions. Here we have

NK/Q(
√

2)(α) = (a+ b
√

2 + c
√

3 + d
√

6)(a+ b
√

2− c
√

3− d
√

6)

= (a+ b
√

2)2 − (c
√

3 + d
√

6)2

= (a2 + 2b2 − 3c2 − 6d2) + (2ab− 6cd)
√

2 ∈ O
Q(
√

2)

NK/Q(
√

3)(α) = (a2 − 2b2 + 3c2 − 6d2) + (2ac− 4bd)
√

3 ∈ O
Q(
√

3)

NK/Q(
√

6)(α) = (a2 − 2b2 − 3c2 + 6d2) + (2ad− 2bc)
√

6 ∈ O
Q(
√

6).

Combining the rational parts of the first and third norm conditions, we find that

2a2 − 6c2 ∈ Z.

In particular, this implies (using the fact that 4 does not divide 2 or 6) that either
both a, c ∈ Z or both a, c /∈ Z. Note also that by the second norm condition we have
2ac− 4bd ∈ Z; since 4bd is necessarily in Z, this implies that 2ac ∈ Z. Combining
all of this we see that we must have a, c ∈ Z, since otherwise 2ac /∈ Z.

Since a, c ∈ Z, the first norm condition now tells us that

2b2 − 6d2 ∈ Z;

as before this implies that either b, d ∈ Z or b, d /∈ Z. Combining all of this, we
have found that either

a, b, c, d ∈ Z
or

a, c ∈ Z; 2b, 2d ∈ Z− 2Z.

One checks easily that all such α are indeed algebraic integers (just by checking the
norm conditions), and it is now easy to see that

1,
√

2,
√

3,
√

2 +
√

6
2

is an integral basis.
Solution 2.12. Set ζ = ζp. We first consider the case i = 1. By the usual

formula for a geometric series,

1− ζj

1− ζ
= 1 + ζ + ζ2 + · · ·+ ζj−1 ∈ Z[ζ].

On the other hand, there exists some k such that

(ζj)k = ζ;
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specifically, one can take for k an inverse of j modulo p. Thus

1− ζ
1− ζj

=
1− (ζj)k

1− ζj
= 1 + (ζj) + (ζj)2 + · · ·+ (ζj)k−1 ∈ Z[ζ].

Since both (1 − ζ)/(1 − ζj) and its inverse lie in Z[ζ], it is a unit; thus 1 − ζ and
1− ζj are associates.

For the general case, one can modify the argument above; alternatively, one
can note that, if k is an inverse for i modulo p, then

σk(1− ζi) = 1− ζ

and
σk(1− ζj) = 1− ζjk

are associates by the above special case. Since σk is an automorphism, this implies
that 1− ζi and 1− ζj are associates as well.

Solution 2.13. Recall that

Z[ζp] ∼= Z[x]/(Φp(x)).

Thus
Z[ζp]/

(
1− ζp

) ∼= Z[x]/(Φp(x), 1− x) ∼= (Z[x]/(1− x))/I

where I is the ideal of Z[x]/(1 − x) generated by Φp(x). The map sending x to 1
yields an isomorphism Z[x]/(1− x) ∼= Z, and under this isomorphism the image of
I is the ideal generated by Φp(1) = p. Thus

Z[ζp]/
(
1− ζp

) ∼= Z/pZ;

this is an integral domain, so the ideal
(
1− ζp

)
is prime by definition.

To factor
(
p
)
, we begin with the expression

p = Φp(1) = (1− ζp) · · · (1− ζp−1
p ).

By Exercise 2.12, we know that all of the factors on the right-hand side are asso-
ciates. Thus, as ideals,(

p
)

=
(
1− ζp

)
· · ·
(
1− ζp−1

p

)
=
(
1− ζp

)p−1
.

Since
(
1− ζp

)
is prime, this must be the prime factorization of p.

Solution 2.14. Set ζ = ζpn . The proofs are quite similar to the n = 1 case.
Specifically, the argument that 1− ζ and 1− ζj are associate is exactly the same,
using the fact that p does not divide j to find the inverse k. (This is why, for
example, 1 − ζp and 1 − ζp2 are not associate.) The general case can again be
deduced from this case using appropriate automorphisms.

The proof that
Z[ζ]/(1− ζ) ∼= Z/pZ

is exactly the same as in the n = 1 case; it does require the additional piece of
information that Φpn(1) = p, which is proven in the solution to Exercise 2.15. The
factorization of p proceeds as before.

Solution 2.15. We first prove that

Φm(1) =

{
p m = pn is a prime power;
±1 otherwise.
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We prove the prime power case by induction on n. The case n = 1 is clear.
Suppose, then, that we know that Φpk(1) = p for k < n. Consider the expression

xp
n

− 1 =
n∏
k=0

Φpk(x).

Dividing both sides by x− 1 = Φ1(x), we have

xp
n−1 + xp

n−2 + · · ·+ 1 =
n∏
k=1

Φpk(x).

Plugging in 1, we find that

pn =
n∏
k=1

Φpk(1);

the induction hypothesis implies that the right-hand side is pn−1Φpn(1), so Φpn(1) =
p, as claimed.

For the case of m with more than 1 prime factor, we again consider the product

xm−1 + xm−2 + · · ·+ 1 =
∏

d|m,d6=1

Φd(x).

Plugging in 1, we have

m =
∏

d|m,d6=1

Φd(1).

Write m = pn1
1 · · · p

nj
j . Note that the terms for which d is a power of pi contribute

ni∏
k=1

Φpnii (1) = pnii

by the prime power case. Canceling all of these, we find that

1 =
∏

d|m,d has multiple prime factors

Φd(1).

Since each Φd(1) is an integer, this implies that they are all ±1; in particular,
Φm(1) = ±1, as claimed.

Given this, the exercise is easy. Specifically, if m is a prime power then the
fact that 1 − ζm generates a prime ideal (see Exercise 2.14) shows that it can not
possibly be a unit. If m is composite, then we use the expression

Φm(x) =
∏

1≤k<m
(k,m)=1

(x− ζkm).

Plugging in 1, we find that

±1 =
∏

1≤k<m
(k,m)=1

(1− ζkm).

This expresses 1− ζm as part of a product of elements of Z[ζm] which multiply to
1, so it must be a unit.
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Solution 2.16. Define S to be the set of all α ∈ OK such that σi(α) has abso-
lute value 1 for each i. Observe first that S is actually a group under multiplication;
this is because, if α, β ∈ S, then

|σi(αβ)| = |σi(α)| · |σi(β)| = 1,

so αβ ∈ S. That S is closed under inverses is proven in the same way. We will
show that S is finite; this will imply that everything in S has finite order under
multiplication, and thus is a root of unity.

Let f(x) ∈ Z[x] be the characteristic polynomial of any β ∈ S. (f(x) has
integer coefficients since β is an algebraic integer.) We have

f(x) =
(
x− σ1(β)

)
· · ·
(
x− σn(β)

)
.

Consider the coefficient an−1 of xn−1 in f(x). It is an integer, since f(x) ∈ Z[x]. It
also has the expression

an−1 = −
(
σ1(β) + · · ·+ σn(β)

)
.

Since each σi(β) has absolute value 1, this implies that

|an−1| ≤ n.

In the same way, one shows that for any k,

|ak| ≤
(
n

k

)
.

Thus there are only finitely many possibilities for each ak, since each is an integer
in a bounded range.

In particular, this means that there are only finitely many possible choices for
f(x), since there are only finitely many choices for each coefficient of f(x). (Note
also that the degree of f(x) is fixed at n.) Each such f(x) has at most n roots, so
all together there can only be a finite number of roots of polynomials which could
possibly be characteristic polynomials of elements of S. In particular, S itself must
be finite, as claimed.

Solution 2.17. Set ζ = ζp and let σ1, . . . , σp−1 be the complex embeddings of
Q(ζ), ordered in the usual way. It is easy to check that for any α ∈ Q(ζ),

σi(ᾱ) = σi(α).

(One way to check this is to observe that σ−1(α) = ᾱ and to use the commutativity
of the Galois group.) In particular, every conjugate of α/ᾱ will have absolute value
1, since a complex number and its complex conjugate have the same absolute value.

In the case of u/ū, where u is a unit, u/ū is also an algebraic integer, since ū
is a unit. We can now apply Exercise 2.16 to conclude that u/ū is a root of unity.
By Corollary I.3.7, this implies that

u

ū
= ±ζk

for some k. We must show that the sign is actually +.
So suppose that u/ū = −ζk for some k. Write

u = a0 + a1ζ + · · ·+ ap−2ζ
p−2.

Then
u ≡ a0 + a1 + · · ·+ ap−2 (mod 1− ζ).
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Similarly, since 1− ζ and 1− ζ̄ = 1− ζp−1 are associates,

ū ≡ a0 + a1 + · · ·+ ap−2 (mod 1− ζ).

Thus,
ū ≡ u ≡ −ζkū ≡ −ū (mod 1− ζ).

Therefore 2ū ∈
(
1− ζ

)
; since

(
1− ζ

)
is prime and 2 is not in this ideal, this implies

that ū ∈
(
1− ζ

)
. But this is absurd, since ū is a unit and this is a non-unit ideal.

This yields the desired contradiction.
Solution 2.18. By the definition of the Galois correspondence, Q(ζm)+ is

given by
Q(ζm)+ = {α ∈ Q(ζm) | σ−1(α) = α}.

Here σ−1 is the automorphism of Q(ζm) sending ζm to ζ−1
m . Since

σ−1(ζm + ζ−1
m ) = ζ−1

m + ζm,

it is clear that Q(ζm + ζ−1
m ) ⊆ Q(ζm)+. To show that the two fields are equal it

will suffice to show that

[Q(ζm) : Q(ζm + ζ−1
m )] ≤ 2;

since we already know that

[Q(ζm) : Q(ζm + ζ−1
m )] ≥ [Q(ζm) : Q(ζm)+] = 2,

this will complete the proof. But to show the first inequality is easy; ζm satisfies
the polynomial

x2 − (ζm + ζ−1
m )x+ 1 ∈ Q(ζm + ζ−1

m )[x],
so ζm has degree at most 2 over Q(ζm + ζ−1

m ).
Since every complex embedding of Q(ζm)+ is the restriction of some complex

embedding of Q(ζm), to show that every complex embedding of Q(ζm)+ has image
in R we just need to show that

σi
(
Q(ζm)+

)
⊆ R

for every complex embedding σi of Q(ζm). Since Q(ζm)+ is generated over Q by
ζm + ζ−1

m , it will suffice to show that

σi(ζm + ζ−1
m ) ∈ R

for every i. For this, we simply compute

σi(ζm + ζ−1
m ) = ζim + ζ−im = 2 cos

(
2π
m

)
∈ R.

Solution 2.19. Since ζm + ζ−1
m is an algebraic integer, it is clear that Z[ζm +

ζ−1
m ] ⊆ OQ(ζm)+ ; we need to show the other inclusion. Let α be an algebraic integer

of Q(ζm)+ and write

α = a0 + a1(ζm + ζ−1
m ) + · · ·+ ak(ζm + ζ−1

m )k

where k ≤ ϕ(m)/2 = [Q(ζm)+ : Q], ai ∈ Q and ak 6= 0. We are to show that each
ai is an integer; so suppose that this is not the case. If ak is an integer, then we
can replace α by α−ak(ζm+ ζm)k and still have an algebraic integer; continuing in
this way and reducing k if necessary, we can assume that ak is not an integer. Now
consider ζkmα. Writing this in terms of 1, ζm, . . . , ζ2k

m , we see that the coefficients
of 1 and ζ2k

m will both be ak. Now, ζkmα is an algebraic integer of Q(ζm), so it lies
in Z[ζm]. Since 1, ζm, . . . , ζ2k

m is a subset of an integral basis for Z[ζm], this implies
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that the coefficients of 1, ζm, . . . , ζ2k
m in ζkmα must all be integers. In particular, ak

must be an integer, which is a contradiction. This completes the proof.
Solution 2.20. Suppose first that the αi are linearly independent over Q.

This yields a linear dependence among the columns of the matrix
(
σi(αj)

)
, and

thus shows that ∆(α1, . . . , αn) = 0.
Conversely, suppose that ∆(α1, . . . , αn) = 0. We must show that α1, . . . , αn

is not a basis for K, so assume the opposite. Now, note that ∆ = 0 implies that
the rows of the matrix

(
Tr(αiαj)

)
are linearly dependent; since the entries of this

matrix are all in Q, there must be such a linear dependence with coefficients in
Q. Fix one such; letting Ri be the ith row, this means we choose rational numbers
a1, . . . , an, not all zero, such that

a1R1 + · · ·+ anRn = 0.

Set α = a1α1 + · · · + anαn; α 6= 0 since we assumed that the αi are a basis.
We compute that

Tr(ααj) = Tr(a1α1αj) + · · ·+ Tr(anαnαj) = 0

since this is just the jth entry in the vector a1R1 + · · · + anRn. Observe also
that αα1, . . . , ααn is a basis for K/Q since the αi are (think of α as a linear
transformation on K). This implies that Tr(β) = 0 for every β ∈ K, since every
such β can be written in terms of the ααi with rational coefficients. But this is
clearly absurd; for example, Tr(1) = n 6= 0. This yields the desired contradiction.

Solution 2.21. By standard linear algebra (over free Z-modules), the fact that
α1, . . . , αn and α′1, . . . , α

′
n are both bases for the same Z-module implies that there

is some n× n matrix A with integer coefficients and determinant ±1 such that α1

...
αn

 = A

 α′1
...
α′n


Applying each σi to this matrix equation (this doesn’t do anything to A, since A
has integer entries) and combining them all into one big matrix equation, we find
that (

σi(αj)
)

= A ·
(
σi(α′j)

)
.

The discriminants are just the squares of the determinants of the matrices, so the
fact that detA = ±1 shows that it will have no effect on the discriminants.

Solution 2.22. First assume d ≡ 2, 3 (mod 4), so that OK has integral basis
1,
√
d. Then

∆K = ∆(1,
√
d) = det

(
1
√
d

1 −
√
d

)2

= (−
√
d−
√
d)2 = 4d.

Now, suppose that d ≡ 1 (mod 4), so that OK has integral basis 1, 1+
√
d

2 . We
compute

∆K = det

(
1 1+

√
d

2

1 1−
√
d

2

)2

=

(
1−
√
d

2
− 1 +

√
d

2

)2

= (−
√
d)2 = d.
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3. Chapter 3

Solution 3.1. Let i ∈ I and j ∈ J be such that i+ j = 1. Then

1 = (i+ j)m+n

= im+n +
(

m+ n

m+ n− 1

)
im+n−1j + · · ·+

(
m+ n

1

)
ijm+n−1 + jm+n

Every term in this sum is a multiple of either im or jn and therefore lies in Im or
Jn. Thus 1 ∈ Im + Jn, so Im and Jn are relatively prime.

Solution 3.2. Suppose first that I and J have a common prime factor, say p.
Then we can write I = pI ′, J = pJ ′ for ideals I ′ and J ′. Now,

I + J = p(I ′ + J ′) ⊆ p.

Therefore I + J 6= R, so I and J are not relatively prime.
For the other direction, suppose that I + J 6= R. Since R is noetherian, this

implies that I + J is contained in some maximal ideal p of R. Since I ⊆ I + J , this
in turn implies that I ⊆ p. Similarly, J ⊆ p. p is therefore a common prime divisor
of I and J , which completes the proof.

Solution 3.3. Since f̄(x) and ḡ(x) are relatively prime in Fp[x] and Fp[x] is a
PID, we can find ā(x), b̄(x) ∈ Fp[x] such that

ā(x)f̄(x) + b̄(x)ḡ(x) = 1.

Lifting this back to Z[x], this says that

a(x)f(x) + b(x)g(x) = 1 + pc(x)

for some c(x) ∈ Z[x], where a(x), b(x) ∈ Z[x] are any lifts of ā(x), b̄(x). Plugging in
α, we find that

a(α)f(α) + b(α)g(α) = 1 + pc(α).

Now, consider the ideal (
p, f(α)

)
+
(
p, g(α)

)
.

a(α)f(α) is contained in the first, b(α)g(α) is contained in the second, and pc(α)
is contained in either of them; this and the expression above implies that 1 is
contained in this ideal sum. Thus

(
p, f(α)

)
and

(
p, g(α)

)
are relatively prime.

Solution 3.4. It follows from the definition of an ideal that IJ ⊆ I and
IJ ⊆ J ; thus IJ ⊆ I ∩ J . We must prove the other inclusion. Let i ∈ I and j ∈ J
be such that i + j = 1 and let x be any element of I ∩ J . Since x ∈ I, xj ∈ IJ ;
since x ∈ J , xi ∈ IJ . Therefore,

x = x(i+ j) = xi+ xj ∈ IJ

which completes the proof.
Before we prove the general case, we show that if I1, I2, J are ideals such that

I1 + J = R and I2 + J = R, then I1I2 + J = R. To prove this, let i1 ∈ I1, i2 ∈ I2,
j1, j2 ∈ J be such that i1 + j1 = 1 and i2 + j2 = 1. Then

1 = (i1 + j1)(i2 + j2) = i1i2 + j1i2 + i1j2 + j1j2.

The last three summand all lie in J and the first lies in I1I2, so this shows that the
ideals are indeed relatively prime.
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For the general case we are to show that for any n pairwise relatively prime
ideals I1, I2, . . . , In, we have

I1 ∩ I2 ∩ · · · ∩ In = I1I2 · · · In.

We prove this by induction on n, the case n = 2 having been done above. So
suppose that we know the result for any collection of n−1 pairwise relatively prime
ideals. Our result above shows that I1I2 is relatively prime to I3, . . . , In, so by the
induction hypothesis we know that

I1I2 ∩ I3 · · · ∩ In = (I1I2)I3 · · · In.

By the n = 2 case we also know that I1I2 = I1∩I2, which gives the desired equality
and completes the induction.

Solution 3.5. Consider the map

R→ R/I ×R/J

sending x ∈ R to (x, x) ∈ R/I ×R/J . The kernel of this map consists precisely of
those x mapping to 0 in each factor; this is just I ∩ J . By Exercise 3.4 I ∩ J = IJ ,
so we obtain an injective map

R/IJ → R/I ×R/J.

It remains to show that this map is surjective. For this, first pick i ∈ I and
j ∈ J such that i + j = 1. Now let (x̄, ȳ) be any element of R/I × R/J and
choose any lifts x, y of x̄, ȳ to R; that is x ≡ x̄ (mod I) and y ≡ ȳ (mod J). Let
z = jx+ iy. We claim that z maps to (x̄, ȳ). To see this, note that modulo I,

z = jx+ iy ≡ jx = (1− i)x = x− ix ≡ x (mod I).

Similarly,
z ≡ y (mod J).

These congruences mean precisely that z maps to (x̄, ȳ), as claimed.
The case of n ideals follows from this case by an easy induction.
Solution 3.6. This is precisely the surjectivity statement of Exercise 3.5.
Solution 3.7. We prove that each statement is equivalent to the next. The

equivalence of (1) and (2) is Lemma II.3.8. The equivalence of (2) and (3) is just
the definition of the ideal pOL generated by p. That (4) implies (3) is clear; for the
other direction, suppose that P ⊇ p. P∩OK is an ideal of OK , and we are assuming
that it contains p. Since p is maximal this implies that either P ∩ OK = OK or
P∩OK = p. However, we can not have P∩OK = OK since then P would contain 1
and would be the unit ideal. This shows that (3) implies (4). Lastly, the equivalence
of (4) and (5) follows from Lemma 2.15.

Solution 3.8. Let P be a prime ideal of OL. Then P ∩ OK is a non-zero
prime ideal of OK (that it is prime follows from the definitions; that it is non-zero
follows, for example, from the fact that P contains non-zero rational integers), and
by Lemma 2.12 it must be the unique prime of OK which P lies over.

For the converse, consider the ideal pOL. If we knew that pOL 6= OL, then it
must be contained in some maximal ideal P of OL. Lemma 2.12 then implies that
P lies over p.

It remains to show that pOL 6= OL. We use Lemma II.3.5, which tells us that
we can choose γ ∈ K − OK such that γp ⊆ OK . It follows that γpOL ⊆ OL.
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However, if pOL = OL, then 1 ∈ pOL, so γ ∈ γpOL. Since γ /∈ OL (since it is not
in OK and OL ∩K = OK), this is a contradiction. Thus pOL 6= OL, as claimed.

Solution 3.9. The result is clear for a ≡ 0 (mod p), so we assume a ∈
(Z/pZ)∗. Note that the squaring map

(Z/pZ)∗ → (Z/pZ)∗

has kernel {±1}, as these are the two roots of x2− 1. It follows that the image has
order p−1

2 ; that is, there are exactly p−1
2 squares in (Z/pZ)∗.

Now, recall that every a ∈ (Z/pZ)∗ is a root of

xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1),

so every a ∈ (Z/pZ)∗ is a root of exactly one of x(p−1)/2− 1 and x(p−1)/2 + 1. Note
also that if a = b2 is a square, then

a(p−1)/2 = bp−1 = 1,

so a is a root of x(p−1)/2 − 1. Since we have already seen that there are exactly
p−1

2 squares, this shows that the squares are precisely the roots of x(p−1)/2 − 1. In
general, then, we have that a is a root of

x(p−1)/2 −
(
a

p

)
,

which is the statement of the exercise.
Solution 3.10. By Exercise 3.9,(

ab

p

)
≡ (ab)(p−1)/2 (mod p)

≡ a(p−1)/2b(p−1)/2

≡
(
a

p

)(
b

p

)
.

Since both sides of the congruence lie in {0,±1} and p 6= 2, this implies that they
are actually equal.

Solution 3.11. Recall that (Z/pZ)∗ is cyclic of order p − 1. Fix a generator
g. Since d divides p − 1, one sees that a ∈ (Z/pZ)∗ is a dth power if and only if
a = gk with k divisible by d.

Now, let a = gl be an arbitrary element of (Z/pZ)∗. We have

a(p−1)/d = gl(p−1)/d.

Since g has order p− 1, this will be 1 precisely when d divides l. This is the same
condition as we gave for an element to be a dth power, so this tells us that a is a
dth power if and only if

a(p−1)/d ≡ 1 (mod p).
Solution 3.12. We work in the field Q(ζ8). Note that

ζ8 + ζ−1
8 = 2 cos

(
2π
8

)
=
√

2.

Thus Q(
√

2) is a subfield of Q(ζ8); since

σ7(ζ8 + ζ−1
8 ) = ζ−1

8 + ζ8

we see that it is the fixed field of the subgroup {1, σ7} of Gal(Q(ζ8)/Q).
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Let p be a prime of Z[ζ8] lying over p. We compute

σp(
√

2) = σp(ζ8 + ζ−1
8 )

= ζp8 + ζ−p8

≡ (ζ8 + ζ−1
8 )p (mod p)

≡ (
√

2)p (mod p).

(We are using here that p ∈ p.) Now, the subfield Fp of Z[ζ8]/p is characterized
as the roots of xp − x. (It is well known that every element of Fp is a root of this
polynomial, and since it has at most p roots they must be the only roots.) Thus

(
√

2)p ≡
√

2 (mod p)

if and only if
√

2 ∈ Fp; that is, if and only if
(

2
p

)
= 1. Combining all of this and

using the fact that 2 /∈ p, we find that

σp(
√

2) =
(

2
p

)√
2.

Since Q(
√

2) is the fixed field of {1, σ7}, we know that

σp(
√

2) =

{√
2 p ≡ 1, 7 (mod 8);
−
√

2 p ≡ 3, 5 (mod 8).

Combining these expressions yields the desired formula.

Solution 3.13. Let K = Q(
√
d) be a quadratic field with d a squarefree

integer. Suppose first that d ≡ 1 (mod 4). In this case the factorization of 2
depends on the factorization of the polynomial x2 − x+ 1−d

4 modulo 2. If

1− d
4
≡ 0 (mod 2)

(or equivalently, d ≡ 1 (mod 8)), then this polynomial factors modulo 2 as x(x−1)
and we find that (

2
)

=
(
2,

1 +
√
−d

2
)(

2,
1 +
√
−d

2
− 1
)
.

If
1− d

4
≡ 1 (mod 2)

(equivalently d ≡ 5 (mod 8)), then the polynomial is irreducible, so
(
2
)

remains
prime.

Next take d ≡ 2 (mod 4). In this case the relevant polynomial is x2 − d, and
modulo 2 it is just x2. Thus 2 ramifies as(

2
)

=
(
2,
√
−d
)2
.

When d ≡ 3 (mod 4), the polynomial x2 − d factors as (x + 1)2 modulo 2, so
we get (

2
)

=
(
2,
√
−d+ 1

)2
.
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Solution 3.14. Recall that ∆(1, α, . . . , αn−1) is the square of the determinant
of the matrix 

σ1(1) σ1(α) σ1(α2) · · · σ1(αn−1)
σ2(1) σ2(α) σ2(α2) · · · σ2(αn−1)

...
...

...
...

σn(1) σn(α) σn(α2) · · · σn(αn−1)

 =


σ1(1) σ1(α) σ1(α)2 · · · σ1(α)n−1

σ2(1) σ2(α) σ2(α)2 · · · σ2(α)n−1

...
...

...
...

σn(1) σn(α) σn(α)2 · · · σn(α)n−1


where the σi are the complex embeddings of K. This is just a Vandermonde ma-
trix for σ1(α), σ2(α), . . . , σn(α), and by standard results on Vandermonde matrices
(which are easily proven by induction) it has determinant

±
∏
i<j

(
σi(α)− σj(α)

)
.

The square of this determinant, then, is

±
∏
i 6=j

(
σi(α)− σj(α)

)
.

We wish to show that this equals ±NK/Q(f ′(α)). Using the fact that f ′(x) has
rational coefficients, we have

NK/Q(f ′(α)) =
∏
i

σi(f ′(α))

=
∏
i

f ′(σi(α)).

Writing
f(x) =

∏
j

(
x− σj(α)

)
,

we find that
f ′(x) =

∑
k

∏
j 6=k

(
x− σj(α)

)
.

When we plug in σi(α), every summand but one vanishes, and we have

f ′(σi(α)) =
∏
j 6=i

(
σi(α)− σj(α)

)
.

Multiplying over all i now gives

NK/Q(f ′(α)) = ±
∏
i

∏
j 6=i

(
σi(α)− σj(α)

)
,

which equals our expression for the discriminant, up to sign.
Solution 3.15. We apply Exercise 3.14 with K = Q(ζp), α = ζp and f(x) =

xp−1 + xp−2 + · · ·+ x+ 1. Since OK = Z[ζp] it has integral basis 1, ζp, ζ2
p , . . . , ζ

p−2
p

and we find that

∆K = ∆(1, ζp, . . . , ζp−2
p ) = ±NK/Q(f ′(ζp)).
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We compute f ′(ζp) by using the fact that

xp − 1 = (x− 1)f(x).

Taking the derivative, we find that

pxp−1 = f(x) + (x− 1)f ′(x).

Plugging in ζp yields

pζp−1
p = f(ζp) + (ζp − 1)f ′(ζp) = (ζp − 1)f ′(ζp).

It now follows from Exercise 2.13 that f ′(ζp) is a unit multiple of (ζp−1)p−2. Since
ζp−1 has norm p (we have computed this before in many different forms) and units
have norm ±1, we find that

∆K = ±NK/Q

(
(ζp − 1)p−2

)
= ±pp−2.

Solution 3.16. By Exercise 3.14 we know that

∆K = NK/Q(f ′(α))

where f(x) ∈ Z[x] is the minimal polynomial of α It follows that p divides ∆K if
and only if there is some prime p of K, lying over p, such that f ′(α) ∈ p. (The only
way to get a factor of p in NK/Q(f ′(α)) is to have a prime lying over p in the ideal
factorization of f ′(α).)

So suppose first that p divides ∆K , and let p be the prime over p occurring in
the factorization of f ′(α). Let p =

(
p, g(α)

)
where g(x) ∈ Z[x] is such that ḡ(x) is

an irreducible factor of f(x) modulo p. Since f ′(α) ∈ p, we can write

f ′(α) = pa(α) + g(α)b(α)

for some a(x), b(x) ∈ Z[x]. Since Z[α] = Z[x]/(f(x)), this equation means precisely
that

f ′(x) = pa(x) + g(x)b(x) + f(x)c(x)
in Z[x] for some polynomial c(x) ∈ Z[x]. Since ḡ(x) is a factor of f̄(x) in Fp[x], this
implies that ḡ(x) is also a factor of f̄ ′(x) in Fp[x].

Write f̄(x) = ḡ(x)h̄(x). Then

f̄ ′(x) = ḡ′(x)h̄(x) + ḡ(x)h̄′(x),

so ḡ(x) must divide ḡ′(x)h̄(x). Since ḡ(x) is irreducible in Fp[x], this means that
either ḡ(x) divides h̄(x) or ḡ(x) divides ḡ′(x). In the first case, we see that f̄(x)
has a repeated factor, so p ramifies in K, as claimed. In the second case, we must
have ḡ′(x) = 0, since it has smaller degree than ḡ(x). This means that we can write
ḡ(x) as a polynomial in xp (powers of xp are the only terms which vanish under
differentiation):

ḡ(x) = anx
np + · · ·+ a1x

p + a0 = (anxn + · · ·+ a1x+ a0)p.

But this is ridiculous, since ḡ(x) is irreducible. This shows that the second case can
not occur, and this completes the proof that p ramifies.

For the other direction, under the assumption that p ramifies, we know that
f̄(x) has a repeated factor. It follows that there is some irreducible factor ḡ(x) of
f̄(x) dividing f̄ ′(x). Writing

f ′(x) = pa(x) + g(x)b(x)

in Z[x], we see that
f ′(α) ∈

(
p, g(α)

)
;
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this is a prime lying over p, and therefore p divides NK/Q(f ′(α)), as claimed.
Solution 3.17. Let A be the n× n integer matrix such that

A

 α1

...
αn

 =

 β1

...
βn

 .

(A has integer entries since by assumption the bj can be written as Z-linear combi-
nations of the aj .) Applying the complex embeddings σi and rewriting the n matrix
equations as one big matrix equation, we find that

A
(
σi(αj)

)
=
(
σi(βj)

)
.

Therefore
(detA)2∆(α1, . . . , αn) = ∆(β1, . . . , βn),

which proves the claim.
Solution 3.18. By Lemma 2.18 we have

∆(1, α, α2) = det

 Tr(1) Tr(α) Tr(α2)
Tr(α) Tr(α2) Tr(α3)
Tr(α2) Tr(α3) Tr(α4)


where Tr denotes TrK/Q. It remains to compute these traces. Since α has minimal
polynomial x3 + 2x+ 1, we have

Tr(α) = 0.

To compute Tr(α2) we must find the minimal polynomial of α2. Note that α2

has degree 3 since α does, so we only need to find the characteristic polynomial.
In fact, since all we care about are traces we just need to compute the trace of the
matrix for α2. This matrix (with respect to the basis 1, α, α2) is 0 −1 0

0 −2 −1
1 0 −2


which has trace −4.

For α3 = −2α− 1, we have

Tr(α3) = Tr(−2α− 1) = −2 Tr(α)− Tr(1) = −3.

For α4 = −2α2 − α, we have

Tr(α4) = Tr(−2α2 − α) = −2 Tr(α2)− Tr(α) = 8.

We have now computed the trace matrix; it is 3 0 −4
0 −4 −3
−4 −3 8


This has determinant −59, which completes the calculation.

Now, α is an algebraic integer, so we clearly have

Z[α] ⊆ OK .

Suppose that this was not an equality and let β1, β2, β3 be an integral basis for OK .
By Exercise 3.17, ∆K = ∆(β1, β2, β3) must be the quotient of ∆(1, α, α2) = −59
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by a square. Since ∆K is an integer and −59 is squarefree, this is impossible. Thus
Z[α] = OK , as claimed.

Solution 3.19. We know that the inertial degree of p equals the order of p
modulo 7; therefore,

f(p/p) =


1 p ≡ 1 (mod 7);
2 p ≡ 6 (mod 7);
3 p ≡ 2, 4 (mod 7);
6 p ≡ 3, 5 (mod 7).

There is also the case of p = 7, which is totally ramified; thus the prime lying over
7 has inertial degree 1.

Solution 3.20. First take p = 3. We have

Φ15(x) =
(x15 − 1)(x− 1)
(x5 − 1)(x3 − 1)

= x8 − x7 + x5 − x4 + x3 − x+ 1

and we wish to determine its factorization modulo 3. The easiest way to do this is
to determine the factorization of each xn − 1 for n = 3, 5, 15. First,

x3 − 1 = (x− 1)3.

We have
x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1).

In fact, the second factor is just Φ5(x), and our factorization results on cyclotomic
fields apply in this case to tell us that it is irreducible modulo 3. The last polynomial
is

x15 − 1 = (x5 − 1)3 = (x− 1)3(x4 + x3 + x2 + x+ 1)3.

Combining these factorizations, we find that

Φ15(x) = (x4 + x3 + x2 + x+ 1)2.(
3
)

therefore factors as(
3
)

=
(
3, ζ4

15 + ζ3
15 + ζ2

15 + ζ15 + 1
)2;

in particular, it has inertial degree 4 and ramification index 2.
For p = 5 we use the same method. This time, we have

x3 − 1 = (x− 1)(x2 + x+ 1)

and the second factor is irreducible. We also have

x5 − 1 = (x− 1)5

and
x15 − 1 = (x3 − 1)5 = (x− 1)5(x2 + x+ 1)5.

Thus
Φ15(x) = (x2 + x+ 1)4,

so (
5
)

=
(
5, ζ2

15 + ζ15 + 1
)4
.

We also see that
(
5
)

has inertial degree 2 and ramification index 4.
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Solution 3.21. By Proposition 2.26 we know that OK = Z[ 3
√

2]. We can
therefore factor primes by factoring x3 − 2 modulo p. We find that

x3 − 2 ≡ x3 (mod 2)

x3 − 2 ≡ (x+ 1)3 (mod 3)

x3 − 2 ≡ (x+ 2)(x2 + 3x+ 4) (mod 5)

x3 − 2 ≡ (x+ 4)(x2 + 7x+ 5) (mod 11)

while it is irreducible modulo 7. This yields the ideal factorizations(
2
)

=
(
2, 3
√

2
)3(

3
)

=
(
3, 3
√

2 + 1
)3(

5
)

=
(
5, 3
√

2 + 2
)(

5, 3
√

4 + 3 3
√

2 + 4
)(

11
)

=
(
11, 3
√

2 + 4
)(

11, 3
√

4 + 7 3
√

2 + 5
)

while the ideal
(
7
)

is still prime.
To find a prime which splits completely we should first limit our search as much

as possible. Note that p will split completely if and only if 2 has three distinct cube
roots modulo p. This will occur if and only if 1 has three distinct cube roots and
2 has a cube root modulo p. The first condition is easy; this occurs precisely when
p ≡ 1 (mod 3). The second condition is somewhat harder to give a simple condition
for. The best easy one is to observe that by Exercise 3.11 if p ≡ 1 (mod 3), then 2
is a cube modulo p if and only if

2(p−1)/3 ≡ 1 (mod p).

This at least gives a solid criterion with which to check values of p.
Using these conditions one finds that 31 is the first prime which works. Specif-

ically,
x3 − 2 ≡ (x− 11)(x− 24)(x− 27) (mod 31),

so (
31
)

=
(
31, 3
√

2− 11
)(

31, 3
√

2− 24
)(

31, 3
√

2− 27
)
.

Solution 3.22. We must show that as x runs through all integers, the values
f(x) have infinitely many distinct prime factors. If f(0) = 0, then this value alone
has infinitely many prime factors, so the assertion is clear.

Suppose next that f(x) has constant term 1; that is, f(0) = 1. Consider the
values f(n!). Since f(0) = 1, one sees immediately that f(n!) is not divisible by
any of 2, 3, . . . , n. In particular, f(n!) will only have prime factors larger than n.
Taking n to be large now shows that f(x) can have arbitrarily large prime factors,
and therefore that these values must have infinitely many different prime factors.

For the general case, set a = f(0) and consider instead the polynomial

g(x) =
f(ax)
a
∈ Z[x].

(g(x) is in Z[x] since every coefficient of f(ax) is divisible by a.) g(x) satisfies
f(0) = 1, so the argument above shows that there are infinitely many primes
dividing values of g(x). Since g(x) divides f(ax), this proves the claim.
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Solution 3.23. Let f(x) ∈ Z[x] be the minimal polynomial for α. We know
that there exists p lying over p with f(p/p) = 1 if and only if f(x) has a linear factor
modulo p; that is, if and only if f(x) has a root modulo p. By Exercise 3.22 f(x)
has roots modulo infinitely many different primes, which now proves this exercise
as well.

Solution 3.24. Let p be a prime of Q(ζm), lying over p relatively prime to
m, such that f(p/p) = 1; by Exercise 3.23 there are infinitely many such p and
p. On the other hand, by our characterization of splitting in cyclotomic fields, we
know that f(p/p) equals the order of p modulo m. We see, therefore, that there are
infinitely many primes p of order 1 modulo m. That is, there are infinitely many p
such that

p ≡ 1 (mod m).
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4. Chapter 4

Solution 4.1. There are many ways to do this. The simplest is to take any
γ ∈ K − OK and let r be the OK-module generated by the powers of γ. Note
that r has the property that γr ⊆ r. If r is finitely generated over OK , then
Proposition II.2.9 tells us that γ ∈ OK , which is a contradiction. Thus r is not a
finitely generated OK-module.

Solution 4.2. Let a be an ideal of OK and suppose that NK/Q(a) < N . Let

a = pn1
1 · · · pnrr

be the prime factorization of a and let pi be the rational prime lying under pi, with
inertial degree fi. Then

NK/Q(a) = pf1n1
1 · · · pfrnrr .

In particular, for each pi we have

pi < N

and
ni < logpi(N).

This tells us that there are only a finite number of choices for the pi and for each
pi there are only a finite number of choices for the ni. Furthermore, there are at
most [K : Q] prime ideals of OK lying over each pi, and thus only a finite number
of choices for the pi. Since there are only finitely many choices for the pi and the
ni, it follows that there are only finitely many possibilities for a.

Solution 4.3. The ideal
(
p, α + m

)
has Z[α]-generators p, α + m, and thus

Z-generators p, pα, α+m,α2 +mα. We must show how to express pα and α2 +mα
as Z-linear combinations of p and α+m.

First suppose that d ≡ 2, 3 (mod 4). Then −m is a root of x2 − d modulo p,
so p divides m2 − d. We also have α2 +mα = d+mα, so we can write

pα = −m · (p) + p · (α+m)

d+mα =
d−m2

p
· (p) +m · (α+m).

Now suppose that d ≡ 1 (mod 4). −m is a root of x2 − x+ 1−d
4 , so p divides

m2 +m+
1− d

4
.

We have α2 = α− 1−d
4 , so α2 +mα = (m+ 1)α− 1−d

4 and we can write

pα = −m · (p) + p · (α+m)

−1− d
4

+ (m+ 1)α =
−m2 −m− 1−d

4

p
· (p) + (m+ 1) · (α+m).

Solution 4.4. Let α be any element of a. Then γα is some element of b, say
β. Thus γ = β/α lies in K∗, since both β and α do.

Solution 4.5. We have K = Q(
√
−15), α = 1+

√
−15

2 , f(x) = x2 − x + 4. In
particular, α2 = α− 4. The Minkowski bound is µK ≈ 2.46561777625, so we must
consider only the factorization of

(
2
)
:(

2
)

=
(
2, α

)(
2, α+ 1

)
.
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Let a1 = OK , a2 =
(
2, α

)
, a′2 =

(
2, α+ 1

)
. We compute (using Exercise 4.3) that

j(a1) =
1
2

+
√

15
2
i;

j(a2) =
1
4

+
√

15
4
i;

j(a′2) =
1
4

+
√

15
4
i.

(Note that in the computation of j(a′2) we first get − 1
4 +

√
−15
4 , which lies on the

unit circle but on the wrong side of it. Replacing it with its negative reciprocal
yields the results above.) We conclude that a2 ∼ a′2, and thus that CK is cyclic of
order 2.

Our formula for the appropriate quadratic forms yields the two forms

x2 + xy + 4y2

and
2x2 + xy + 2y2.

We also find that (
− 15
p

)
=
(
− 1
p

)(
3
p

)(
5
p

)
=
(
p

3

)(
p

5

)
,

using quadratic reciprocity. (The
(
−1
p

)
cancels with the sign coming from QR

applied to
(

3
p

)
.) This easily shows that

(
−15
p

)
= 1 if and only if

p ≡ 1, 2, 4, 8 (mod 15).

We conclude that a positive rational prime p 6= 2, 3, 5 can be written as at least one
of

x2 + xy + 4y2, 2x2 + xy + 2y2

if and only if
p ≡ 1, 2, 4, 8 (mod 15).

Solution 4.6. We have K = Q(
√
−26), α =

√
−26, f(x) = x2 + 26 and

µK ≈ 6.49227328409. The relevant factorizations are

(2) =
(
2, α

)2
(3) =

(
3, α+ 1

)(
3, α+ 2

)
;

(5) =
(
5, α+ 2

)(
5, α+ 3

)
.

Set a1 = OK , a2 =
(
2, α

)
, a3 =

(
3, α + 1

)
, α′3 =

(
3, α + 2

)
, α5 =

(
5, α + 2

)
,

α′5 =
(
5, α+ 3

)
. We compute

j(a1) =
√

26i;

j(a2) =
√

26
2
i;

j(a3) =
1
3

+
√

26
3
i;
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j(a′3) = −1
3

+
√

26
3
i;

j(a5) =
2
5

+
√

26
5
i;

j(a′5) = −2
5

+
√

26
5
i.

Let us first compute the powers of a3. We find that

a2
3 =

(
9, 3α+ 3, α2 + 2α+ 1

)
=
(
9, 3α+ 3, 2α− 25

)
=
(
9, α+ 1

)
.

This has j = − 1
3 +

√
26
3 i, so a2

3 ∼ a′3. We conclude that a3 has order 3.
Next we compute the powers of a5. We find that

a2
5 =

(
25, 5α+ 10, α2 + 4α+ 4

)
=
(
25, 5α+ 10, 4α− 22

)
=
(
25, α+ 7

)
.

This has j = − 1
3 +

√
26
3 i, so a2

5 ∼ a′3. In particular, we know that a5 has order 6,
and we know that a4

5 ∼ a3 and a5
5 ∼ a′5. It remains to compute a3

5. We find that

a3
5 ∼ a5a

′
3 =

(
5, α+ 2

)(
3, α+ 2

)
=
(
15, 5α+ 10, 3α+ 6, α2 + 4α+ 4

)
=
(
15, 5α+ 10, 3α+ 6, 4α− 22

)
=
(
15, α+ 2

)
.

This has j =
√

26
2 i, so we conclude that a3

5 ∼ a2. Thus CK is cyclic of order 6 with
generator a5.

Solution 4.7. We have K = Q(
√
−41), α =

√
−41, f(x) = x2 + 41 and

µK ≈ 8.15271098894. The relevant factorizations are

(2) =
(
2, α+ 1

)2
(3) =

(
3, α+ 1

)(
3, α+ 2

)
;

(5) =
(
5, α+ 2

)(
5, α+ 3

)
;

(7) =
(
7, α+ 1

)(
7, α+ 6

)
.

Set a1 = OK , a2 =
(
2, α + 1

)
, a3 =

(
3, α + 1

)
, α′3 =

(
3, α + 2

)
, α5 =

(
5, α + 2

)
,

α′5 =
(
5, α+ 3

)
, α7 =

(
7, α+ 1

)
, α′7 =

(
7, α+ 6

)
. We compute

j(a1) =
√

41i;

j(a2) =
1
2

+
√

41
2
i;

j(a3) =
1
3

+
√

41
3
i;

j(a′3) = −1
3

+
√

41
3
i;

j(a5) =
2
5

+
√

41
5
i;

j(a′5) = −2
5

+
√

41
5
i;

j(a7) = −1
6

+
√

41
6
i;

j(a′7) =
1
6

+
√

41
6
i.
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We begin by computing the powers of a3. We have

a2
3 =

(
9, 3α+ 3, α2 + 2α+ 1

)
=
(
9, 3α+ 3, 2α− 40

)
=
(
9, α+ 7

)
.

This has j = 2
5 +

√
41
5 i, so we find that a2

3 ∼ a5. Next we have

a3
3 ∼ a5a3 =

(
5, α+ 2

)(
3, α+ 1

)
=
(
15, 5α+ 5, 3α+ 6, α2 + 3α+ 2

)
=
(
15, 5α+ 5, 3α+ 6, 3α− 39

)
=
(
15, α+ 7

)
.

This has j = − 1
6 +

√
41
6 i, so a3

3 ∼ a7. Next we compute

a4
3 ∼ a7a3 =

(
7, α+ 1

)(
3, α+ 1

)
=
(
21, 7α+ 7, 3α+ 3, α2 + 2α+ 1

)
=
(
21, 7α+ 7, 3α+ 3, 2α− 40

)
=
(
21, α+ 1

)
.

This has j = 1
2 +

√
41
2 i, so a4

3 ∼ a2. This tells us that a3 has order 8, and we find
that a5

3 ∼ a′7, a6
3 ∼ a′5 and a7

3 ∼ a′3. In particular, CK is cyclic of order 8.
Solution 4.8. We begin with the case that d ≡ 2, 3 (mod 4). In this case

(
2
)

factors as either (
2
)

=
(
2, α

)2
or (

2
)

=
(
2, α+ 1

)2
.

In particular, if K is a PID, then the prime lying over 2 is principal. This ideal has
norm 2, so any generator would also have to have norm 2. But in Z[

√
d], we have

NK/Q(x+ y
√
d) = x2 − dy2.

The Diophantine equation x2 − dy2 = 2 only has solutions (with d < 0) if d = −1
or d = −2, which shows that if OK is a PID and d ≡ 2, 3 (mod 4), then d = −1 or
−2.

We turn now to the d ≡ 1 (mod 4) case. We must show that if OK is a PID
and d ≡ 1 (mod 8), then d = −7. When d ≡ 1 (mod 8), 2 factors as(

2
)

=
(
2, α

)(
2, α+ 1

)
,

where as usual α = 1+
√
d

2 . We will show that
(
2, α

)
is not principal unless d = −7.

We could again use a norm argument, but instead we use our j-invariant methods.
Specifically, OK has j-invariant

1
2

+
√
−d
2

i

and
(
2, α

)
has j-invariant

1
4

+
√
−d
4

i.

If both of these lie in the fundamental domain Y then it follows that
(
2, α

)
is not

principal and thus that OK is not a PID. The value for OK is certainly in Y since
−d ≥ 7. The value for

(
2, α

)
will be in Y so long as it has absolute value at least

1. This occurs when ∣∣∣∣14 +
√
−d
4

i

∣∣∣∣ ≥ 1

1
16

+
−d
16
≥ 1

−d ≥ 15.
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Since d ≡ 1 (mod 8), this leaves only the case d = −7, which was the desired
exception.

Solution 4.9. We have K = Q(
√

10), α =
√

10, f(x) = x2 − 10 and µK ≈
4.02633696836. The relevant factorizations are

(2) =
(
2, α

)2;

(3) =
(
3, α+ 1

)(
3, α+ 2

)
.

Let us first show that these ideals are not principal. Note that if any of them
were principal, then they would have to be generated by elements of OK of norm
2 or 3. In particular, there would exists solutions of the Diophantine equations
x2 − 10y2 = 2 or x2 − 10y2 = 3. However, considering these equations modulo 5
shows that there are no solutions (since 2 and 3 are not squares in Z/5Z), so no
such elements exist and these ideals are not principal.

It remains to show, then, that these ideals are all equivalent. We begin with(
2, α

)
and

(
3, α + 1

)
. Note that assuming that they are equivalent, the fractional

ideal (
2, α

)(
3, α+ 1

)−1

is principal. Since (
3, α+ 1

)−1 ∼
(
3, α+ 2

)
,

this should mean that the ideal (
2, α

)(
3, α+ 2

)
is principal. We compute(

2, α
)(

3, α+ 2
)

=
(
6, 2α+ 4, 3α, α2 + 2α

)
=
(
6, 2α+ 4, 3α, 2α+ 10

)
=
(
6, α+ 2

)
.

We find that NK/Q(α + 2) = −6, so α + 2 divides 6 and this ideal is indeed a
principal ideal: (

2, α
)(

3, α+ 2
)

=
(
α+ 2

)
.

Going backwards we find that(
2, α

)
=
α+ 2

3
(
3, α+ 1

)
,

so these ideals are equivalent. Since
(
2, α

)
is its own inverse this also implies that(

2, α
)

and
(
3, α+ 2

)
are equivalent, and thus also that

(
3, α+ 1

)
and

(
3, α+ 2

)
are

equivalent Thus hK = 2.
Solution 4.10. Let K = Q(ζ11). We have ∆K = 119, n = 10 and s = 5, so

we compute
µK ≈ 58.9631543984.

We must therefore show that every prime of OK of norm at most 59 is principal.
Let p be a prime of OK of norm < 59. Let p be a prime of Z lying under p and

let f be the inertial degree f(p/p). Since NK/Q(p) = pf , we must have pf < 59. In
particular, we must either have p ≤ 7 or f = 1.

For p = 2, 3, 5, 7, we compute f = 10, 5, 5, 10 respectively. It follows that theses
cases can not occur.

Recall that we will have f = 1 if and only if p = 11 or p ≡ 1 (mod 11). For
p = 11, we have the prime (

ζ11 − 1
)
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which we know to be principal. This leaves the case of p = 23. 23 splits completely
in OK , so there are 10 ideals p1, . . . , p10 of OK lying over 23. Note that if any
one of them is principal then they all must be principal; for example, one can use
Lemma III.2.14. We have therefore reduced ourselves to the question of whether or
not the primes lying over 23 are principal. Note that any element of OK of norm
±23 would generate such an ideal, and conversely any generator of such an ideal
must have norm ±23. Thus OK will be a UFD if and only if it has an element of
norm ±23.
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5. Chapter 5

Solution 5.1. If x and y are not congruent modulo p, then there is nothing
to do, so suppose that x ≡ y (mod p). Then

z ≡ zp ≡ xp + yp ≡ x+ y ≡ 2x (mod p).

Set x′ = x, y′ = −z, z′ = −y. Since p is odd we have

(x′)p + (y′)p = xp − zp = −yp = (z′)p.

Also,

y′ = −z ≡ −2x (mod p).

This means that if x′ ≡ y′ (mod p), then x ≡ −2x (mod p), so p divides 3x. Since
p ≥ 5 and p does not divide x this is impossible; thus x′ and y′ are not congruent
modulo p, as desired.

Solution 5.2. Since a divides
(
α
)

and
(
β
)
, we have α, β ∈ a. Since a is an

ideal, this implies that α + β ∈ a, and thus that a ⊇
(
α + β

)
. Since OK is a

Dedekind domain, this in turn implies that a divides
(
α+ β

)
, as claimed.

Solution 5.3. Write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

with ai ∈ Z. Then

αp ≡
(
a0 + a1ζ + · · ·+ ap−2ζ

p−2
)p (mod p)

≡ ap0 + ap1ζ
p + · · ·+ app−2ζ

(p−2)p

≡ a0 + a1 + · · ·+ ap−2 (mod p),

which is an integer, as claimed.

Solution 5.4. Recall that if f : R→ R is any function, then we can write

f(t) =
f(t) + f(−t)

2
+
f(t)− f(−t)

2

where the first summand is even and the second summand is odd. We simply apply
this formula to f(t) = t

et−1 . We find

f(t) + f(−t) =
t

et − 1
+

−t
e−t − 1

=
t(e−t − 1)− t(et − 1)

(et − 1)(e−t − 1)

=
t(et − e−t)
et − 2 + e−t

=
t(et − e−t)

(et/2 − e−t/2)2
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and

f(t)− f(−t) =
t

et − 1
− −t
e−t − 1

=
t(e−t − 1) + t(et − 1)

(et − 1)(e−t − 1)

=
t(et − 2 + e−t)
−et + 2− e−t

= −t.
Thus we can write

t

et − 1
=

t(et − e−t)
2(et/2 − e−t/2)2

+
−t
2

where the first function is even and the second is odd. Since the first function is
even its power series will only involve even powers of t; we conclude that the only
odd term in the power series for t

et−1 is − t
2 , and thus that Bn = 0 for n odd and

> 1.
Solution 5.5. We have

et =
∞∑
n=0

tn

n!

et − 1 =
∞∑
n=1

tn

n!

et−1 − 1
t

=
∞∑
n=0

tn

(n+ 1)!
.

Thus (
et − 1
t

)(
t

et − 1

)
= 1( ∞∑

i=0

ti

(i+ 1)!

) ∞∑
j=0

Bj
tj

j!

 = 1

∞∑
i=0

∞∑
j=0

Bj
ti+j

(i+ 1)!j!
= 1.

Grouping together the terms of degree n, we find that
∞∑
n=0

(
n∑
k=0

Bk
1

(n− k + 1)!k!

)
tn = 1.

Equating coefficients of tn−1 for n > 1 gives
n−1∑
k=0

Bk
1

(n− k)!k!
= 0.

Multiplying by n! now yields the formula
n−1∑
k=0

Bk

(
n

k

)
= 0,

as desired.
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The fact that each Bk is rational follows from this formula by an easy induction,
using the fact that B0 = 1 and B1 = − 1

2 are both rational for the base case.

Solution 5.6. Recall that

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i
.

Now, by the solution to Exercise 5.4 we have

∞∑
n=0

B2n
t2n

(2n)!
=

t(et − e−t)
2(et/2 − e−t/2)2

.

Replacing the exponentials by sines gives

∞∑
n=0

B2n
t2n

(2n)!
=

2it sin(−it)
−8 sin2(−it/2)

.

The double angle formula now yields

∞∑
n=0

B2n
t2n

(2n)!
=

2it2 cos(−it/2) sin(−it/2)
−8 sin2(−it/2)

=
−it cos(−it/2)
2 sin(−it/2)

=
−it
2

cot(−it/2).

Now, setting s = −it/2, we find that

∞∑
n=0

B2n
(2is)2n

(2n)!
= s cot(s)

∞∑
n=0

(−1)n
22nB2n

(2n)!
s2n = s cot(s)

as claimed.

Solution 5.7. Taking logarithms of the formula

sin t = t
∞∏
k=1

(
1− t2

(kπ)2

)

yields

log sin t = log t+
∞∑
k=1

log
(

1− t2

(kπ)2

)
.
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Differentiating now yields

cos t
sin t

=
1
t

+
∞∑
k=1

−2t
(kπ)2

1− t2

(kπ)2

cot t =
1
t
− 2t

∞∑
k=1

1
(kπ)2 − t2

=
1
t

+ 2t
∞∑
k=1

1
t2 − k2π2

.

Solution 5.8. Using the formula of Exercise 5.6 we have

πt cot(πt) =
∞∑
n=0

(−1)n
22nB2n

(2n)!
(πt)2n =

∞∑
n=0

(−1)n
22nπ2nB2n

(2n)!
t2n.

On the other hand, the formula of Exercise 5.7 yields

t cot t = 1 + 2t2
∞∑
k=1

1
t2 − k2π2

πt cot(πt) = 1 + 2π2t2
∞∑
k=1

1
π2t2 − k2π2

= 1 + 2t2
∞∑
k=1

1
t2 − k2

= 1− 2
∞∑
k=1

t2

k2

1
1− (t/k)2

.

Expanding the term inside the sum as a geometric series yields

πt cot(πt) = 1− 2
∞∑
k=1

t2

k2

∞∑
n=0

(
t

k

)2n

= 1− 2
∞∑
k=1

∞∑
n=1

(
t

k

)2n

= 1− 2
∞∑
n=1

∞∑
k=1

1
k2n

t2n

= 1− 2
∞∑
n=1

ζ(2n)t2n.

Equating coefficients of t2n in our two power series for πt cot(πt) yields

−2ζ(2n) = (−1)n
22nB2nπ

2n

(2n)!

ζ(2n) = (−1)n−1 22nB2n

2(2n)!
π2n

Solution 5.9. We show that lims→∞ ζ(s) = 1, which together with Exer-
cise 5.8 will prove the first limit. For this, we group the sum in the zeta function
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as

ζ(s) = 1 +
(

1
2s

+
1
3s

)
+
(

1
4s

+ · · ·+ 1
7s

)
+
(

1
8s

+ · · ·+ 1
15s

)
+ · · ·

where each block has twice as many terms as the previous block. We find that
1
2s

+
1
3s
≤ 2

2s
1
4s

+ · · ·+ 1
7s
≤ 4

4s
1
8s

+ · · ·+ 1
15s
≤ 8

8s
and so on. Thus

ζ(s) ≤ 1 +
1

2s−1
+

1
4s−1

+
1

8s−1
+ · · · .

This is a geometric series with ratio 21−s, so this yields

ζ(s) ≤ 1
1− 21−s .

As s → ∞ the right hand side clearly approaches 1. Since 1 ≤ ζ(s) for all s > 1,
this shows that

lim
s→∞

ζ(s) = 1.

For the second limit, it will suffice to show that

lim
n→∞

22n−1π2n

(2n− 1)!
= 0,

as this and the first limit imply that we must have

lim
n→∞

∣∣∣∣B2n

2n

∣∣∣∣ =∞.

That the remaining limit approaches 0 can be seen in many ways; for example,
writing the nth term as

π
2π
1

2π
2

2π
3
· · · 2π

2n− 2
2π

2n− 1
makes it quite clear that the limit is 0.
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