
Math 5230 - Algebraic Number Theory (Fall 2012) Due by email

Problem Set 7: Work on your own! 12/15/12 at 4 PM

If there is one thing in mathematics that fascinates me more than anything else (and

doubtless always has), it is neither “number” nor “size”, but always form. And among

the thousand-and-one faces whereby form chooses to reveal itself to us, the one that

fascinates me more than any other and continues to fascinate me, is the structure hidden

in mathematical things. Grothendieck

1. (In this problem, you can use nfbasis and nfdisc in PARI to compute bases for the ring of

integers and discriminants of number fields.)

a) Use the Minkowski bound to prove Q(
√

101), Q(
√
−163), and Q(ζ5) have class number 1.

(Be careful: for prime p, the degree of Q(ζp) over Q is p− 1, not p.)

b) Use the Minkowski bound to prove Q(
√
−31) has class number 3 and a prime ideal dividing

(2) generates the ideal class group.

c) The cubic field Q(α), where α3 − α − 10 = 0, has class number 4. Accepting this, use the

Minkowski bound to determine whether the class group is cyclic or a direct product of two

groups of order 2. (Bonus: prove the class number is 4 from scratch.)

2. Redo the proof of the Minkowski bound using the convex and centrally-symmetric region

Xt = {(x1, . . . , z1, . . . ) ∈ Rr1 ×Cr2 : |xi| < t, |zj | < t}.

This is a simpler type of region than the one in the proof from class: if an algebraic integer has

Euclidean image in Xt, its norm has absolute value at most tn, a bound that does not need

anything like the arithmetic-geometric mean inequality.

Using Xt for suitable t, for what bound M can you conclude each nonzero ideal a in OK

contains a nonzero element α such that |NK/Q(α)| ≤ M N(a)? (Be sure you compute the

volume of Xt correctly. It is generally not (2t)n.) Show this bound is always weaker than the

Minkowski bound when n ≥ 3 (what if n = 2?). Does this alternate bound allow you to prove

every number field K 6= Q has |disc(K)| > 1?

3. Let K = Q(r), where r3 − 3r − 1 = 0. You looked at this number field on Set 6.

a) In PARI, the class group command bnfclgp(x^3 - 3*x - 1) tells you that h(K) = 1.

Prove this using the Minkowski bound.

b) By the unit theorem, O×K has rank 3 + 0− 1 = 2. Show r, r + 1, r − 2, and 2r + 3 are all

units; they have infinite order since they are not ±1 (the only roots of unity in a field with a

real embedding). Compute the log mapping L : K× → R3 numerically at these four units and

use PARI (e.g., the matker command) to discover a Z-linear multiplicative relation among

L(r), L(r + 1), and the log mapping at each of the other two units. Use that to discover a

formula for r − 2 and 2r + 3 as a product of powers of r and r + 1, up to multiplication by a

definite sign ±1.



4. The polynomial T 4 + 8T + 12 is irreducible over Q and its splitting field K/Q has degree 12;

the group Gal(K/Q) looks like A4 as a permutation group on the four roots. Write the four

roots of T 4 + 8T + 12 as α, β, γ, δ. Depending on the ordering of these roots, αβ + γδ can

take on three possible values and (by PARI, say) they share the same minimal polynomial

T 3− 48T − 64 in Q[T ]. Since T 3− 48T − 64 = 64((T/4)3− 3(T/4)− 1) in Q[T ], Q(αβ+γδ) is

the cubic Galois extension of Q in the previous exercise. Here is a field diagram, where V is the

unique (normal) subgroup of index 3 in A4. Explicitly, V = {(1), (12)(34), (14)(23), (13)(24)}.

K

3

4

{(1)}

3

4Q(α)

4

H

4Q(αβ + γδ)

3

V

3

Q A4

a) Using the equation of principal ideals (2)2(3) = (α)(α3 + 8) in Q(α), show (3) = p3p
′3
3 as

ideals in the integers of Q(α). (Hint: α3 + 8 can be factored a little further.)

b) Use PARI’s nfbasis command to find a Z-basis for the ring of integers of Q(α); it is not

Z[α]. Then use algdep to find the minimal polynomials of the members of that basis not in

Z[α] to prove that 2 is totally ramified in K, and thus (2) = p42 in Q(α).

c) By looking at the factorizations of 2 and 3 in Q(α) and in Q(αβ+γδ), show the decomposi-

tion and inertia groups over 2 in Gal(K/Q) are A4 and V respectively, while the decomposition

and inertia groups over 3 in Gal(K/Q) are the subgroups conjugate to H. (Hint: there is no

subgroup in A4 of order 6, so no decomposition group in Gal(K/Q) can have order 6.)

d) Conjugacy classes in A4 are {(1)}, {(12)(34), (13)(24), (14)(23)}, {(123), (134), (142), (243)},
and {(132), (143), (124), (234)}. The cycle types in the third and fourth conjugacy classes are

the same, so only when T 4 + 8T + 12 mod p decomposes as a linear times a cubic does that

factorization not predict the Frobenius conjugacy class of p in Gal(K/Q).

The restriction homomorphism Gal(K/Q)→ Gal(Q(αβ + γδ)/Q) corresponds to the natural

reduction A4 → A4/V by Galois theory. Your task: show the two conjugacy classes of 3-

cycles in A4 are sent to different nontrivial cosets in A4/V ∼= Z/(3) and then explain why, if

T 4 + 8T + 12 mod p is a linear times a cubic irreducible, then the Frobenius conjugacy class

of p 6= 2, 3 in Gal(K/Q) is determined by the Frobenius at p in Gal(Q(αβ + γδ)/Q).

e) Use PARI to compute the Frobenius conjugacy class of p in Gal(K/Q) for 3 < p < 100. List

the primes with a common Frobenius conjugacy class, so there will be four lists. (Distinguish

between the conjugacy classes of 3-cycles by declaring one to be the Frobenius conjugacy class

of 5 and the other to be the Frobenius conjugacy class of 7, which are different by Set 6.)


