
Math 5230 - Algebraic Number Theory (Fall 2012) Due in MSB 318

Problem Set 4 10/22/12 at 4 PM

The further elaboration and development of systematic arithmetic, like nearly everything

else which the mathematics of our [nineteenth] century has produced in the way of original

scientific ideas, is knit to Gauss. Kronecker

1. a) In the ring Z[
√
−5], find an element of the ideal (6, 2 + 7

√
−5) that is not in the Z-span of

6 and 2 + 7
√
−5. Thus (6, 2 + 7

√
−5) 6= Z6 + Z(2 + 7

√
−5).

b) Let d be a nonsquare integer. In Z[
√
d], let a be the ideal (a, b + c

√
d), where a, b, and c

are integers and a and c are not 0. So as a Z[
√
d]-module,

a = Z[
√
d]a+ Z[

√
d](b+ c

√
d),

while as a Z-module

a = Za+ Za
√
d+ Z(b+ c

√
d) + Z(cd+ b

√
d).

It is natural to ask: does a = Za+ Z(b+ c
√
d)?

Show a = Za+ Z(b+ c
√
d) if and only if the following three conditions are all satisfied: c | a,

c | b, and d ≡ (b/c)2 mod a/c. (In particular, when a = (a, b±
√
d), we have a = Za+Z(b±

√
d)

if and only if d ≡ b2 mod a.)

c) In Z[
√
−5], part b implies that none of the ideals (6, 2+7

√
−5), (3, 1+2

√
−5), or (7, 2+3

√
−5)

have the given ideal generators as a Z-basis. Compute a Z-basis for each ideal and use that

Z-basis to compute the norm of each ideal.

2. Describe the prime ideal factorization in Z[
√
−6] of all prime numbers less than 20, not just in

terms of the shape of the factorization but also giving explicit generators for each prime ideal

that appears.

3. (Dedekind’s field, continued) Let K = Q(α), where α3 − α2 − 2α− 8 = 0.

a) For any nonzero prime p in OK with p|(2), prove p|(α) or p|(α− 1), but not both.

b) Compute NK/Q(α + c) for c ∈ Z and use this to factor (α − 1) into prime ideals. (Specify

the norm of each prime.)

c) Use parts a and b to show the ideal (2) must have at least two prime factors which do not

divide (α − 1), and therefore (2) = p2p
′
2p
′′
2 with the prime factors all distinct. (Hint: Think

about prime ideal factors of (α), (α− 1), and (α− 2).)

d) Use part c to show OK/(2) ∼= F2×F2×F2 as a ring, and explain from this why OK 6= Z[γ]

for any γ ∈ OK . Thus, Dedekind’s field does not admit a power basis for its ring of integers.

(This was the first known example of a ring of integers without a power basis.)

e) Factor the ideals (α), (α+ 1), (α+ 2), (α− 2), (α+ 3), and (α− 3) into primes, specifying

the norm of each prime that appears. Continue the notation for ideals used in parts b and c.
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4. For i = 1, 2, 3, define four cubic fields Ki = Q(αi) where αi is the root of fi(T ):

f1(T ) = T 3 − T 2 − 20T − 1,

f2(T ) = T 3 − T 2 − 52T + 159,

f3(T ) = T 3 − 41T − 95.

a) Show all three polynomials are irreducible over Q with three real roots.

b) Show all three number fields have prime discriminant 32009.

c) Find a basis for the ring of integers of each field.

d) Although these three number fields have the same degree and discriminant, prove they are

nonisomorphic by finding prime numbers that factor in different ways in each pair of fields.

5. Let K/F and L/F be finite extensions in a common larger field, with m = [K : F ] and

n = [L : F ]. Suppose [KL : F ] = mn.

Let e1, . . . , em be an F -basis of K and f1, . . . , fn be an F -basis of L.

a) Prove {eifj} is an F -basis of KL.

b) Use part a to prove for α ∈ K that χKL/L,α(T ) = χK/F,α(T ). In particular, for α ∈ K,

TrKL/L(α) = TrK/F (α).

c) Use parts a and b and transitivity of the trace map (TrKL/F = TrL/F ◦TrKL/L) to show

discKL/F ({eifj}) = discK/F ({ei})n discL/F ({fj})m.

(Hint: The right side of this equation resembles the formula for the determinant of a tensor

product of linear transformations: det(ϕ ⊗ ψ) = (detϕ)n(detψ)m where ϕ acts on an m-

dimensional F -vector space and ψ acts on an n-dimensional F -vector space. Review the

matrix representation of a tensor product of linear maps.)

d) Now we give an application to number fields. Let K and L be number fields of respective

degrees m and n over Q and assume [KL : Q] = mn. Set

d = (disc(OK),disc(OL)) and OKOL =

{
r∑

k=1

xkyk : r ≥ 1, xk ∈ OK , yk ∈ OL

}
,

so trivially OKOL ⊂ OKL. Show OKL ⊂ 1
dOKOL and discZ(OKOL) = disc(OK)n disc(OL)m.

(In particular, if [KL : Q] = [K : Q][L : Q] and K and L have relatively prime discriminants,

then OKL = OKOL and disc(OKL) = disc(OK)n disc(OL)m.)

(Hint: First show OKL ⊂ 1
disc(OK)OKOL. Then switch the roles of K and L.)

6. Let F be a field not of characteristic 2 and f(X) be a nonconstant squarefree1 polynomial

in F [X]. The polynomial Y 2 − f(X) ∈ F (X)[Y ] is irreducible (Eisenstein at any irreducible

1Squarefree means each irreducible factor of f(X) has multiplicity 1; f(X) need not be monic.
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factor of f(X)), so we have a quadratic extension F (X,
√
f(X))/F (X). From Set 2, the

integral closure of F [X] in F (X,
√
f(X)) is F [X,

√
f(X)]. This is analogous to knowing the

ring of integers in a quadratic field, as in the diagram below.

K

2OK

F

Z

F (X,
√
f(X))

2F [X,
√
f(X)]

F (X)

F [X]

a) Prove F [X,
√
f(X)]× = F× when deg f(X) is odd. (The situation when deg f(X) is even

is more subtle.)

b) Let π(X) be a monic irreducible factor of f(X) in F [X]. (There are such irreducibles since

f(X) is nonconstant.) In F [X,
√
f(X)], set pπ = (π(X),

√
f(X)). Prove p2π = (π(X)), pπ is a

maximal ideal, and

(
√
f(X)) =

∏
π|f

pπ,

where the product runs over monic irreducible factors π(X) of f(X) in F [X].

c) Let F be an algebraic closure of F . For any α, β ∈ F such that β2 = f(α) (that is, the

point (α, β) lies on the curve y2 = f(x) and has coordinates algebraic over F ), set

p(α,β) =
{
a(X) + b(X)

√
f(X) : a(X), b(X) ∈ F [X] and a(α) + b(α)β = 0

}
.

Show p(α,β) is a maximal ideal in F [X,
√
f(X)] and the ideal pπ in part b has the form p(α,β)

for some F -point (α, β) on y2 = f(x).

(Hint: Regard F [X,
√
f(X)] as F [X,Y ]/(Y 2− f(X)), with

√
f(X)↔ Y mod (Y 2− f(X)) to

streamline the construction of homomorphisms out of this ring.)
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