
Math 5230 - Algebraic Number Theory (Fall 2012) Due in MSB 318

Problem Set 2 9/21/12 at 4 PM

A generalization made not for the vain pleasure of generalizing, but rather for the solution

of problems previously posed, is always a fruitful generalization. Lebesgue

1. Let K = Q(
√
d) be a quadratic field, with d a squarefree integer. Write OK = Z + Zω for

some ω. (For instance, we could take ω =
√
d or (1 +

√
d)/2, depending on d mod 4. But the

particular choice of ω for which OK = Z+Zω does not matter.) In this exercise, you will find

all subrings of OK .

a) For c ≥ 1, show Z + Zcω = Z[cω] is the unique subring of OK with index c. (Hint: Start

by showing any subring of index c must contain cω.)

b) Show any subring of OK other than Z has finite index in OK , and therefore by part a it is

Z[cω] for some c. (Hint: Use the structure of subgroups of finitely generated abelian groups.)

2. a) If d is a positive nonsquare integer such that d ≡ 1 mod 4, show any unit u = a + b 1+
√
d

2

in Z[ 1+
√
d

2 ] that is greater than 1 has a ≥ 0 and b ≥ 1. (The example of the unit 1+
√
5

2 in

Z[ 1+
√
5

2 ] shows the case a = 0 can happen.)

b) Verify that the following is the least unit greater than 1 in Z[
√
d] subject to the indicated

constraint. (The values of d in the table may not be squarefree, but they are never perfect

squares.)

d Least Unit > 1 Constraint

n2 + 1 n+
√
n2 + 1 n ≥ 1

n2 − 1 n+
√
n2 − 1 n ≥ 2

n2 + 2 n2 + 1 + n
√
n2 + 2 n ≥ 1

n2 − 2 n2 − 1 + n
√
n2 − 2 n ≥ 3

c) Verify the following is the least unit > 1 in Z[ 1+
√
d

2 ] subject to the indicated constraint.

d Least Unit > 1 Constraint

n2 + 4 n+
√
n2+4
2 odd n ≥ 1

n2 − 4 n+
√
n2−4
2 odd n ≥ 5

3. Let K = Q(
√
−3). Inside K is ζ3 = (−1+

√
−3)/2, a nontrivial cube root of unity. (Note ζ3 is

not (1 +
√
−3)/2 = 1 + ζ3 = −ζ23 .) The ring Z[ζ3] is the full ring of integers in K. It contains

Z[
√
−3] = Z[2ζ3] with index 2.

The norm formulas from K to Q with respect to the two Q-bases {1,
√
−3} and {1, ζ3} are

N(x+ y
√
−3) = x2 + 3y2, N(a+ bζ3) = a2 − ab+ b2

for rational x, y, a, and b.
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a) Prove the units of Z[ζ3] are {±1,±ζ3,±ζ23}.

b) Show Z[ζ3] is Euclidean with respect to the norm, so Z[ζ3] is a UFD (unlike Z[
√
−3]).

c) Explain why the equation 21 = 3 · 7 = (3 + 2
√
−3)(3 − 2

√
−3) is not an example of non

unique factorization in Z[ζ3].

d) Although Z[
√
−3] is a proper subset of Z[ζ3], show the norm values are the same: for any

α ∈ Z[ζ3] there is a β ∈ Z[
√
−3] such that N(α) = N(β). (The other way is automatic: for

every β ∈ Z[
√
−3] there is an α ∈ Z[ζ3] such that N(α) = N(β) because we can use α = β.)

In simpler terms, you’re being asked to show for any a and b in Z that a2− ab+ b2 = x2 + 3y2

for some x and y in Z. (Hint: Consider the norm of (a+ bζ3)u for u = 1, ζ3, or ζ23 .)

e) Use previous parts of this exercise to show for any prime p 6= 2 or 3 that

−3 ≡ � mod p⇐⇒ p = x2 + 3y2 for some x, y ∈ Z.

This would follow from Z[
√
−3] being a UFD, but it is not a UFD. The result is nevertheless

correct! (Warning: It is false that if p|(c +
√
−3) in Z[ζ3] for some c ∈ Z then p|1: {1,

√
−3}

is not a Z-basis of Z[ζ3].)

4. Let F be a field not of characteristic 2. For a nonconstant squarefree1 polynomial f(X) ∈ F [X],

the polynomial T 2 − f(X) is irreducible in F (X)[T ]. Prove the integral closure of F [X] in

F (X)(
√
f) is F [X][

√
f ] = F [X,

√
f ]. (For example, the ring C[X,

√
X3 −X] is integrally

closed.)

Comment. Although F [X] is a UFD, its integral closure in the field F (X,
√
f) need not be

a UFD. This is similar to the situation in quadratic fields, where Z is a UFD but Z[
√
−5] is

not a UFD.

5. Let A be a ring. A sequence a1, a2, a3, . . . in A satisfies an r-term linear recursion when there

are constants c1, c2, . . . , cr in A such that

an = c1an−1 + c2an−2 + · · ·+ cran−r

for all n > r. Without mentioning r, the sequence is called linearly recursive.

The set of all sequences in A obviously is a ring under termwise addition and multiplication.

Remarkably, the linearly recursive sequences in A are a subring. This will be proved using

ideas similar to the proof that integral elements over a ring are closed under addition and

multiplication.

a) Show the squares of the Fibonacci numbers, F 2
n , satisfy the linear recursion F 2

n = 2F 2
n−1 +

2F 2
n−2 −F 2

n−3. More generally, if a sequence a1, a2, a3, . . . satisfies the 2-term linear recursion

an = an−1 + an−2, show the sequence bn := a2n satisfies the 3-term linear recursion bn =

2bn−1 + 2bn−2 − bn−3. (Admittedly the recursion for F 2
n is coming out of nowhere.)

1Squarefree for polynomials means no irreducible factor appears more than once. It has nothing to do with constant
factors that may be squares: 4X(X + 1) is considered squarefree.
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b) Let Seq(A) denote the set of all sequences in A. We think of them as infinite-length vectors:

a = (a1, a2, a3, . . . ). Define the shift operator S : Seq(A) → Seq(A) by S(a1, a2, a3, . . . ) =

(a2, a3, a4, . . . ). It drops the first term and moves all other terms back by one position. Show

S is a ring homomorphism.

c) Show (S2−S− I)(F) = 0, where F = (1, 1, 2, 3, 5, . . . ) is the Fibonacci sequence, and more

generally a sequence a in A satisfies a linear recursion if and only if f(S)(a) = 0 for some

monic polynomial f(T ) ∈ A[T ]. This is the link between linear recursions and integrality.

d) Use part c to show the sum of two linearly recursive sequences is linearly recursive.

e) A subset M of Seq(A) is called shift-stable if S(M) ⊂M . Show the following conditions on

a sequence a in Seq(A) are equivalent:

1) a is linearly recursive,

2) the A-module
∑

n≥0AS
n(a) = Aa + AS(a) + AS2(a) + · · · is finitely generated and

shift-stable,

3) a is contained in a finitely generated shift-stable A-submodule of Seq(A).

This is similar to a theorem from class that linearizes the property of algebraic integers, and

as in that proof the hardest part is going from the last condition to the first one.

f) Deduce that the product of two linearly recursive sequences is linearly recursive and use

your work to derive the recursion in part a for F 2
n in a systematic way.
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