Math 5230 - Algebraic Number Theory (Fall 2012) Problem Set 1

One soon realizes that in this rich domain of higher arithmetic one can only penetrate through completely new roads... that to that end a specific expansion of the whole field of higher arithmetic is an essential necessity. Gauss

- 1. Use norms to discover prime factorizations of 3 + 7i and 23 + 14i in $\mathbf{Z}[i]$.
- 2. Use algebraic properties of $\mathbb{Z}[\sqrt{-2}]$ to prove for prime numbers p in \mathbb{Z} that $p = x^2 + 2y^2$ for some x and y in \mathbb{Z} if and only if $-2 \equiv \Box \mod p$.
- 3. Prove $\mathbb{Z}[\sqrt{3}]$ is Euclidean with respect to the absolute value of the norm. (Hint: $|x^2 3y^2| \le \max(x^2, 3y^2)$ because x^2 and $3y^2$ are on the same side of 0.) What goes wrong if you try to prove $\mathbb{Z}[\sqrt{-3}]$ is Euclidean with respect to the norm?
- 4. (Quadratic Units)

a) Generalize the argument from class that the smallest unit > 1 in $\mathbb{Z}[\sqrt{2}]$ is $1 + \sqrt{2}$ to show the following: if d > 0 is not a perfect square and $u := a + b\sqrt{d}$ is a unit in $\mathbb{Z}[\sqrt{d}]$ which is greater than 1, the integer coefficients a and b are both positive.

b) Use part a to find the smallest unit > 1 in $\mathbb{Z}[\sqrt{d}]$ for d = 3, 6, 7, and 34. In particular, describe all the units in $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{6}]$.

- c) Give an example of a unit $\neq \pm 1$ in $\mathbb{Z}[\sqrt{d}]$ for the following values of d: 5, 8, 10, 11, 12.
- 5. (Factoring in quadratic rings)

a) In $\mathbf{Z}[\sqrt{6}]$, $2 \cdot 3 = \sqrt{6}^2$ is a square and 2 and 3 have no common factors except units (after all, their difference is 1). Can you show 2 and 3 are unit multiples of squares in $\mathbf{Z}[\sqrt{6}]$? b) In $\mathbf{Z}[\sqrt{-6}]$, $2 \cdot (-3) = \sqrt{-6}^2$ is a square and 2 and -3 have no common factors except units (their sum is -1). Can you show 2 and -3 are unit multiples of squares in $\mathbf{Z}[\sqrt{-6}]$?

6. a) Use algebraic properties of $\mathbf{Z}[\sqrt{2}]$ and $\mathbf{Z}[\sqrt{3}]$ to prove for prime numbers p in \mathbf{Z} that

$$\pm p = x^2 - 2y^2 \text{ for some } x \text{ and } y \text{ in } \mathbf{Z} \iff 2 \equiv \Box \mod p,$$

$$\pm p = x^2 - 3y^2 \text{ for some } x \text{ and } y \text{ in } \mathbf{Z} \iff 3 \equiv \Box \mod p.$$

(Saying $\pm p = x^2 - dy^2$ here means either p or -p has this form, not that both must.) b) Is it true that

$$p = x^2 - 2y^2$$
 for some x and y in $\mathbf{Z} \iff 2 \equiv \Box \mod p$?

What about, for $p \neq 3$,

$$p = x^2 - 3y^2$$
 for some x and y in $\mathbf{Z} \iff 3 \equiv \Box \mod p$?