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KEITH CONRAD

1. Introduction

A (monic) polynomial in Z[T ],

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0,

is Eisenstein at a prime p when each coefficient ci is divisible by p and the constant term
c0 is not divisible by p2. Such polynomials are irreducible in Q[T ], and this Eisenstein
criterion for irreducibility is the way nearly everyone first meets Eisenstein polynomials.
Here, we will show Eisenstein polynomials are closely related to total ramification of primes
in number fields.

Let K be a number field, with degree n over Q. A prime number p is said to be totally
ramified in K when pOK = pn. For example, in Z[i] we have (2) = (1 + i)2, so 2 is totally
ramified in Q(i).

The link between Eisenstein polynomials and totally ramified primes is described in the
following two theorems, which are converses of each other.

Theorem 1.1. Let K = Q(α), where α is the root of a polynomial which is Eisenstein at
p. Then p is totally ramified in K.

Theorem 1.2. Let K be a number field, and suppose there is a prime p which is totally
ramified in K. Then K = Q(α) for some α which is the root of an Eisenstein polynomial
at p.

Let’s illustrate Theorem 1.1.

Example 1.3. Let K = Q( 3
√

2). Since 3
√

2 is a root of T 3 − 2, which is Eisenstein at
2, the prime number 2 is totally ramified in K. Indeed, (2) = ( 3

√
2)3. Similarly, since

K = Q( 3
√

2 + 1) and 3
√

2 + 1 is a root of

(T − 1)3 − 2 = T 3 − 3T 2 + 3T − 3,

which is Eisenstein at 3, we must have (3) = p3 as well. In fact,

( 3
√

2 + 1)3 = 3(1 + 3
√

2 + 3
√

4),

and the second factor is a unit in Z[ 3
√

2], so (3) = ( 3
√

2 + 1)3.

Example 1.4. Let K = Q(
√
−5). Since 1 +

√
−5 is a field generator and is a root of

T 2 − 2T + 6, which is Eisenstein at 2, we have (2) = p2 for some prime ideal p. The ideal p

is (2, 1 +
√
−5), which is not principal.
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2. Proofs

Now we prove Theorem 1.1.

Proof. Let p be a prime ideal of OK which divides (p) = pOK and n = [K : Q]. We want
to show that (p) = pn.

Let e ≥ 1 be the multiplicity of p in (p), so

(p) = pea,

where p does not divide a. Then e ≤ n. We will show e = n, which implies by taking norms
that a = (1) (and Np = p).

Let f(T ) be the Eisenstein polynomial at p with α as a root, say

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0.

Since ci ≡ 0 mod p, the equation f(α) = 0 implies αn ≡ 0 mod p, so

(2.1) α ≡ 0 mod p,

since p is prime.
Since c1, . . . , cn−1 are divisible by p, and thus by pe, we get from (2.1) that

ciα
i ≡ 0 mod pe+1

for i = 1, . . . , n− 1. Therefore all intermediate terms in f(α) are divisible by pe+1, so

(2.2) αn + c0 ≡ 0 mod pe+1.

Since c0 is divisible by p exactly once, c0OK = peb where p does not divide b. Therefore
c0 6≡ 0 mod pe+1, so (2.2) implies αn 6≡ 0 mod pe+1. As α is divisible by p at least once, so
αn is divisible by pn, we must have e + 1 > n. Therefore e > n− 1. Since e ≤ n, the only
choice is e = n. �

The proof of Theorem 1.2 will tell us quite explicitly how to find the element α which is
the root of an Eisenstein polynomial.

Proof. Let n = [K : Q] and pOK = pn. Then, taking ideal norms, pn = Npn, so Np = p.
We will use as α any number in p which is not in p2. (In other words, (α) is divisible

by p exactly once.) It will turn out that the characteristic polynomial of α over Q, which
we know is monic of degree n in Z[T ], is an Eisenstein polynomial at p. That implies this
characteristic polynomial is irreducible, so K = Q(α) and we’re done.

Consider the characteristic polynomial of α over Q:

Tn + an−1T
n−1 + · · ·+ a1T + a0,

where ai ∈ Z. The constant term is a0 = ±NK/Q(α). Let’s show this is divisible by p
exactly once.

Since α ∈ p− p2,

(2.3) (α) = pa,

where p does not divide a. Taking ideal norms in (2.3),

|NK/Q(α)| = pNa.

Thus a0 = ±NK/Q(α) is divisible by p. To show p2 does not divide a0, we show p is not a
factor of Na. The prime numbers dividing Na are the prime numbers lying under the prime



TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS 3

ideals dividing a. Since p does not divide a, and p is the only prime ideal dividing p, Na is
not divisible by p.

Now we show every ai is divisible by p. We may assume n ≥ 2. (Otherwise, if n = 1,
K = Q and the characteristic polynomial is T + a0, which is Eisenstein at p.) Assume for
some i from 1 to n− 1 that we know a0, . . . , ai−1 ≡ 0 mod p. To show ai ≡ 0 mod p, reduce
the equation

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

modulo pOK :

(2.4) αn + an−1α
n−1 + · · ·+ aiα

i ≡ 0 mod pOK .

Raising both sides of (2.3) to the n-th power,

(αn) = (p)an,

so

(2.5) αn ∈ pOK .

Multiply through (2.4) by αn−1−i, and take into account (2.5):

aiα
n−1 ≡ 0 mod pOK .

Now take norms:
an

i NK/Q(α)n−1 ≡ 0 mod pnZ.
Since NK/Q(α) is divisible by p just once, the left side is a multiple of pn only if p|ai. Thus,
by induction, every ai is a multiple of p. �

So far we have been discussing Eisenstein polynomials in Z[T ]. Let’s generalize the
concept to polynomials over other rings of integers.

Definition 2.1. Let K be a number field. A monic polynomial

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0 ∈ OK [T ]

is called Eisenstein at the nonzero prime ideal p when ci ≡ 0 mod p for all i and c0 6≡
0 mod p2.

Theorem 2.2. Any Eisenstein polynomial in OK [T ] is irreducible in K[T ].

Proof. Let f(T ) ∈ OK [T ] be Eisenstein at some prime ideal. If f(T ) is reducible in K[T ]
then f(T ) = g(T )h(T ) for some nonconstant g(T ) and h(T ) in K[T ].

We first show that g and h can be chosen in OK [T ]. As f is monic, we can assume g and
h are monic by rescaling if necessary. Every root of g or h is an algebraic integer (since
their roots are roots of f(T ), so they’re integral over OK and thus also over Z). Because
both are monic, their coefficients are polynomials in their roots, hence their coefficients are
algebraic integers. Thus g and h both lie in OK [T ].

Let n = deg f , r = deg g, and s = deg h. All of these degrees are positive. Let p be
a prime at which f is Eisenstein. Reduce the equation f = gh in OK [T ] modulo p to get
f = gh in (OK/p)[T ]. As f, g, and h are all monic, their reductions modulo p have the
same degree as the original polynomials (n, r, and s respectively). Since f is Eisenstein at
p, f = Tn. Therefore, by unique factorization in (OK/p)[T ], g and h are powers of T too,
so g = T r and h = T s. But, because r and s are positive, we conclude that g and h have
constant term in p. Then the constant term of f is f(0) = g(0)h(0) ∈ p2. This contradicts
the definition of an Eisenstein polynomial. �
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Theorems 1.1 and 1.2 generalize as follows.

Theorem 2.3. Let F be a number field and E = F (α), where α is the root of a polynomial
in OF [T ] which is Eisenstein at a prime p. Then p is totally ramified in E: pOE = Pn for
some prime ideal P of OE, where n = [E : F ].

Theorem 2.4. Let E/F be a finite extension, and suppose there is a prime p of F which
is totally ramified in E. Then E = F (α) for some α which is the root of an Eisenstein
polynomial at p.

It is left to the reader to work out the proofs, which are quite similar to the case of base
field Q.

3. p-Divisibility of coefficients

As an application of Eisenstein polynomials, we extract information about coefficients
for algebraic integers in the power basis generated by the root of an Eisenstein polynomial.
Theorems 1.1 and 1.2 will not be used.

Lemma 3.1. Let K/Q be a number field with degree n. Assume K = Q(α), where α ∈ OK

and its minimal polynomial over Q is Eisenstein at p. For a0, a1, . . . , an−1 ∈ Z, if

(3.1) a0 + a1α+ · · ·+ an−1α
n−1 ≡ 0 mod pOK ,

then ai ≡ 0 mod pZ for all i.

Proof. We will argue by induction from a0 up to an−1.
Multiply through the congruence (3.1) by αn−1, making all but the first term a0α

n−1 a
multiple of αn. Since α is the root of an Eisenstein polynomial at p, αn ≡ 0 mod pOK , so

a0α
n−1 ≡ 0 mod pOK .

Now take norms down to Z:

an
0 NK/Q(α)n−1 ≡ 0 mod pnZ.

The norm of α is, up to sign, the constant term of its characteristic polynomial for K/Q.
Since α generates K/Q, its characteristic polynomial is its minimal polynomial, which is
Eisenstein. Therefore NK/Q(α) is divisible by p exactly once, so the above congruence
modulo pn implies p|an

0 , so p|a0. Now the congruence (3.1) becomes

a1α+ · · ·+ an−1α
n−1 ≡ 0 mod pOK

Multiply this by αn−2 to get a1α
n−1 ≡ 0 mod pOK and take norms again. The conclusion

now will be p|a1. We can now take out the a1-term from the original congruence and iterate
this idea all the way to the last term, so each ai is divisible by p. �

Theorem 3.2. Let K/Q be a number field with degree n. Assume K = Q(α), where α is
an algebraic integer whose minimal polynomial over Q is Eisenstein at p. If

r0 + r1α+ · · ·+ rn−1α
n−1 ∈ OK

with ri ∈ Q, then each ri has no p in its denominator.

Proof. Assume some ri has a p in its denominator. Let d be the least common denominator,
so p|d, dri ∈ Z for all i, and some dri is not a multiple of p. Then

dr0 + dr1α+ · · ·+ drn−1α
n−1 ∈ pOK ,

so Lemma 3.1 tells us dri ∈ pZ for every i. This is a contradiction. �
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Theorem 3.3. Let K = Q(α) where α is the root of an Eisenstein polynomial at p, with
degree n. Then

(a) p - [OK : Z[α]].
(b) pn−1||disc(K) if p - n and pn | disc(K) if p | n.

Proof. (a) We argue by contradiction. Suppose p | [OK : Z[α]]. Then OK/Z[α], viewed as
a finite abelian group, has an element of order p: there is some γ ∈ OK such that γ 6∈ Z[α]
but pγ ∈ Z[α]. Using the basis {1, α, . . . , αn−1} for K/Q, write

γ = r0 + r1α+ · · ·+ rn−1α
n−1

with ri ∈ Q. Since γ 6∈ Z[α], some ri is not in Z. Since pγ ∈ Z[α] we have pri ∈ Z. Hence
ri has a p in its denominator, which contradicts Theorem 3.2.

(b) Since disc(Z[α]) = [OK : Z[α]]2 disc(K), by part a the highest power of p in disc(K)
and disc(Z[α]) is the same. We now use the formula

disc(Z[α]) = disc(f(T )) = ±NK/Q(f ′(α))

to find the highest power of p that is a factor.
Write (p) = pn and (α) = pa with p - a. Let the minimal polynomial of α over Q be

f(T ) =
∑n

i=0 ciT
i, so

f ′(α) = nαn−1 + (n− 1)cn−1α
n−2 + · · ·+ 2c2α+ c1.

Since each ci is divisible by p and thus by pn, all terms in f ′(α) except the leading term are
divisible by pn. Thus

(3.2) f ′(α) ≡ nαn−1 mod pn.

We know αn−1 is divisible by pn−1 and not by pn. Therefore if n 6≡ 0 mod p, which is
the same as n 6≡ 0 mod p, (3.2) says (f ′(α)) is divisibile by p exactly n − 1 times, while if
n ≡ 0 mod p then (f ′(α)) is divisible by p at least n times. In the first case, (f ′(α)) = pn−1b
where p - b, so taking norms gives us NK/Q(f ′(α)) = pn−1b where p - b. In the second case,
pn | (f ′(α)), so pn | NK/Q((f ′(α)). �

Example 3.4. We show the ring of algebraic integers of Q( 3
√

2) is Z[ 3
√

2]. Let O be the full
ring of algebraic integers of Q( 3

√
2), so Z[ 3

√
2] ⊂ O and

disc(Z[ 3
√

2]) = [O : Z[ 3
√

2]]2 disc(O).

By an explicit calculation, discZ(Z[ 3
√

2]) = −108 = −2233, so 2 and 3 are the only primes
which could divide [O : Z[ 3

√
2]]. Since 3

√
2 is the root of T 3 − 2, which is Eisenstein at 2, 2

does not divide [O : Z[ 3
√

2]] by Corollary 3.3. The number 3
√

2 + 1 is a root of (T −1)3−2 =
T 3−3T 2+3T−3, which is Eisenstein at 3, so 3 does not divide [O : Z[ 3

√
2+1]] = [O : Z[ 3

√
2]].

Hence [O : Z[ 3
√

2]] must be 1, so O = Z[ 3
√

2].

Example 3.5. We show the ring O of algebraic integers of Q( 4
√

2) is Z[ 4
√

2]. Since

disc(Z[ 4
√

2]) = [O : Z[ 4
√

2]]2 disc(O)

and the discriminant of Z[ 4
√

2] is −211, [O : Z[ 4
√

2]] is a power of 2. Because 4
√

2 is a root of
T 4 − 2 which is Eisenstein at 2, 2 does not divide [O : Z[ 4

√
2]] by Corollary 3.3. Therefore

the index is 1.



6 KEITH CONRAD

Example 3.6. We show the ring O of algebraic integers of Q( 5
√

2) is Z[ 5
√

2]. The discrimi-
nant of Z[ 5

√
2] is 2455, so the only prime factors of [O : Z[ 5

√
2]] could be 2 and 5. Since 5

√
2

is a root of T 5 − 2, which is Eisenstein at 2, and 5
√

2− 2 is a root of

(T + 2)5 − 2 = T 5 + 10T 4 + 40T 3 + 80T 2 + 80T + 30,

which is Eisenstein at 5, neither 2 nor 5 divides the index since Z[ 5
√

2 − 2] = Z[ 5
√

2], by
Corollary 3.3.

Example 3.7. As a final use of Corollary 3.3, we compute the ring of integers of 3 cubic
fields. For i = 1, 2, 3, define three number fields Ki = Q(αi) where αi is the root of the
cubic polynomial fi(T ):

(3.3) f1(T ) = T 3 − 18T − 6, f2(T ) = T 3 − 36T − 78, f3(T ) = T 3 − 54T − 150.

These polynomials are all Eisenstein at 2 and 3, so they are irreducible over Q. Each
polynomial has 3 real roots and the same discriminant: 22356 = 22 · 35 · 23. (Recall
disc(T 3 + aT + b) = −4a3 − 27b2.) Let’s show Z[αi] is the ring of integers of Ki in each
case. Since 22356 = disc(Z[αi]) = [OKi : Z[αi]]2 disc(OKi), [OKi : Z[αi]] divides 2 · 32. Since
all the polynomials are Eisenstein at 2 and 3, neither 2 nor 3 divides the index of Z[αi] in
OKi by Corollary 3.3. That proves the index is 1 in all three cases. Therefore

disc(OKi) = disc(Z[αi]) = disc(Z[T ]/(fi(T ))) = disc(fi(T )) = 22356

for i = 1, 2, 3.
The fields K1, K2, and K3 are all cubic extensions of Q with the same discriminant and

the ring of integers of Ki has a power basis. The primes 2 and 3 are both totally ramified
in each Ki. So far the Ki’s seem to be quite similar. Are they isomorphic fields? No.
To prove this, we show some primes besides 2 and 3 factor differently in the fields. Since
OKi = Z[αi], Dedekind’s factorization criterion tells us that the way p factors in OKi is the
same as the way fi(T ) factors in Fp[T ] for the polynomials fi(T ) in (3.3).

In F5[T ], f1(T ) and f2(T ) are irreducible but f3(T ) = T (T − 2)(T − 3). Therefore 5
stays prime in K1 and K2 but it splits completely in K3, so K3 is not isomorphic to K1

or K2. In F7[T ], all three polynomials factor as a linear times a quadratic, so 7 factors in
the same way in each Ki. But 11 behaves differently and will distinguish K1 and K2: in
F11[T ], f1(T ) = (T − 3)(T − 9)(T − 10) while f2(T ) and f3(T ) are irreducible, so 11 splits
completely in K1 and remains prime in K2 and K3.


