
EXAMPLES OF MORDELL’S EQUATION

KEITH CONRAD

1. Introduction

The equation y2 = x3 +k, for k ∈ Z, is called Mordell’s equation1 on account of Mordell’s
long interest in it throughout his life. A natural number-theoretic task is the description
of all rational and integral solutions to such an equation, either qualitatively (decide if
there are finitely or infinitely many solutions in Z or Q) or quantitatively (list or otherwise
conveniently describe all such solutions). Mordell, in 1922, proved that for each k ∈ Z,
the equation y2 = x3 + k has only finitely many integral solutions. The rational solutions
present a different story: there may be finitely many or infinitely many, depending on the
integer k. Whether or not there are infinitely many rational solutions is connected to one
of the most outstanding open problems in number theory, the Birch and Swinnerton–Dyer
conjecture.

Here we will describe all the integral solutions to Mordell’s equation for some selected
values of k, and make a few comments at the end about rational solutions.

2. Examples without Solutions

To prove y2 = x3 + k has no integral solution for particular values of k, we will use
congruence and quadratic residue considerations. Specifically, we will use the following
descriptions of when −1, 2, and −2 are squares modulo an odd prime p:

−1 ≡ � mod p ⇐⇒ p ≡ 1 mod 4,
2 ≡ � mod p ⇐⇒ p ≡ 1, 7 mod 8,
−2 ≡ � mod p ⇐⇒ p ≡ 1, 3 mod 8.

Our last example without solutions will not succumb to these kinds of methods.

Theorem 2.1. The equation y2 = x3 + 7 has no integral solutions.

Proof. (V. A. Lebesgue, 1869) Assume there is an integral solution. If x is even then
y2 ≡ 7 mod 8, but 7 mod 8 is not a square. Therefore x is odd. Rewrite y2 = x3 + 7 as

(1) y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4).

The second factor, x2−2x+4 = (x−1)2+3, is positive. Since x is odd, (x−1)2+3 ≡ 3 mod 4.
Therefore x2− 2x+ 4 is divisible by a prime p ≡ 3 mod 4 (otherwise all of its prime factors
are 1 mod 4, but then that means x2−2x+4 ≡ 1 mod 4, which is false). Since p|(x2−2x+4),
we get p|(y2 +1) from (1), so y2 +1 ≡ 0 mod p. Therefore −1 ≡ � mod p, which contradicts
p ≡ 3 mod 4.

Here’s another approach, using the factor x+ 2 instead of the factor x2 − 2x+ 4. Since
(as seen above) x is odd and y is even, x3 ≡ x mod 4 (true for any odd x), so reducing

1also Bachet’s equation
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y2 = x3 + 7 modulo 4 gives us 0 ≡ x + 3 mod 4, so x ≡ 1 mod 4. Then x + 2 ≡ 3 mod 4.
Moreover, x+2 > 0, since if x ≤ −2 then x3 ≤ −8, so x3 +7 ≤ −1, which contradicts x3 +7
being a perfect square. From x+ 2 being positive and congruent to 3 mod 4, it has a prime
factor p ≡ 3 mod 4, so y2 + 1 ≡ 0 mod p from (1) and we get a contradiction as before. �

Theorem 2.2. The equation y2 = x3 − 5 has no integral solutions.

Proof. Assuming there is a solution, reduce modulo 4:

y2 ≡ x3 − 1 mod 4.

Here is a table of values of y2 and x3 − 1 modulo 4:

y y2 mod 4 x x3 − 1 mod 4
0 0 0 3
1 1 1 0
2 0 2 3
3 1 3 2

The only common value of y2 mod 4 and x3−1 mod 4 is 0, so y is even and x ≡ 1 mod 4.
Then rewrite y2 = x3 − 5 as

(2) y2 + 4 = x3 − 1 = (x− 1)(x2 + x+ 1).

Since x ≡ 1 mod 4, x2 + x + 1 ≡ 3 mod 4, so x2 + x + 1 is odd. Moreover, x2 + x + 1 =
(x + 1/2)2 + 3/4 > 0, so x2 + x + 1 ≥ 3. Therefore x2 + x + 1 must have a prime factor
p ≡ 3 mod 4 (same reasoning as in the previous proof). Since p is a factor of x2 + x+ 1, p
divides y2 + 4 by (2), so y2 + 4 ≡ 0 mod p. Therefore −4 ≡ � mod p, so −1 ≡ � mod p.
This implies p ≡ 1 mod 4, contradicting p ≡ 3 mod 4. �

Our next two theorems will rely on the condition for when 2 ≡ � mod p.

Theorem 2.3. The equation y2 = x3 − 6 has no integral solutions.

Proof. Assume there is an integral solution. If x is even then y2 ≡ −6 ≡ 2 mod 8, but
2 mod 8 is not a square. Therefore x is odd, so y is odd and x3 = y2 + 6 ≡ 7 mod 8. Also
x3 ≡ x mod 8 (true for any odd x), so x ≡ 7 mod 8.

Rewrite y2 = x3 − 6 as

(3) y2 − 2 = x3 − 8 = (x− 2)(x2 + 2x+ 4),

with x2 + 2x + 4 ≡ 72 + 2 · 7 + 4 ≡ 3 mod 8. Since x2 + 2x + 4 = (x + 1)2 + 3 is positive,
it must have a prime factor p ≡ ±3 mod 8 because if all of its prime factors are ±1 mod 8
then x2 + 2x+ 4 ≡ ±1 mod 8, which is not true. Let p be a prime factor of x2 + 2x+ 4 with
p ≡ ±3 mod 8. Since p divides y2 − 2 by (3), we get y2 ≡ 2 mod p. Thus 2 ≡ � mod p, so
p ≡ ±1 mod 8, which is a contradiction.

We can get a contradiction using the factor x−2 also. Since x ≡ 7 mod 8, x−2 ≡ 5 mod 8.
Also x− 2 > 0, since if x ≤ 2 and x− 2 ≡ 5 mod 8 then x ≤ −1, but then x3− 6 is negative
so it can’t be a perfect square. From x−2 being positive and congruent to 5 mod 8, it has a
prime factor p ≡ ±3 mod 8 and then y2 ≡ 2 mod p and we get a contradiction in the same
way as before. �

Theorem 2.4. The equation y2 = x3 + 45 has no integral solutions.
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Proof. Assume there is an integral solution. If y is odd then x3 = y2−45 ≡ 1−45 ≡ 4 mod 8,
which is impossible. Therefore y is even, so x is odd. Reducing the equation mod 4,
0 ≡ x3 + 1 mod 4. Since x3 ≡ x mod 4 for odd x, x ≡ 3 mod 4. Also, y is not a multiple of
3. If 3|y then the equation y2 = x3 + 45 shows 3 divides x. Write x = 3x′ and y = 3y′, so
9y′2 = 27x′3 + 45, so y′2 = 3x′3 + 5, which implies y′2 ≡ 2 mod 3, and that is impossible.

We will now take cases depending on whether x ≡ 3 mod 8 or x ≡ 7 mod 8. (If you know
an elementary method which treats both cases in a uniform way, please tell me!)

Case 1: x ≡ 3 mod 8. Rewrite y2 = x3 + 45 as

(4) y2 − 72 = x3 − 27 = (x− 3)(x2 + 3x+ 9).

The factor x2 + 3x + 9 = (x + 3/2)2 + 27/4 is positive and is congruent to 3 mod 8, so it
has a prime factor p ≡ ±3 mod 8. Feeding this into (4),

(5) y2 ≡ 72 ≡ 2 · 62 mod p.

We can’t have p = 3 (just in case p ≡ 3 mod 8, this is something we need to deal with)
since it would imply y2 ≡ 0 mod 3, but we already checked y is not a multiple of 3. Since
p is not 3, (5) implies 2 ≡ � mod p, so p ≡ ±1 mod 8, contradicting p ≡ ±3 mod 8.

Case 2: x ≡ 7 mod 8. Rewrite y2 = x3 + 45 as

(6) y2 − 18 = x3 + 27 = (x+ 3)(x2 − 3x+ 9).

The factor x2 − 3x + 9 = (x − 3/2)2 + 27/4 is positive and is congruent to 5 mod 8, so it
has a prime factor p ≡ ±3 mod 8. From (6) we get y2 ≡ 18 ≡ 2 · 32 mod p. Arguing as in
Case 1, we again find p ≡ ±1 mod 8, which is a contradiction. �

In our next example we will use the condition for when −2 ≡ � mod p.

Theorem 2.5. The equation y2 = x3 + 46 has no integral solutions.

Proof. Assume there is an integral solution. If x is even then y2 ≡ 6 mod 8, which has no
solution, so x is odd and y is odd. Thus y2 ≡ 1 mod 8 and x3 ≡ x mod 8, so 1 ≡ x+6 mod 8,
making x ≡ 3 mod 8.

Now rewrite y2 = x3 + 46 as

(7) y2 + 18 = x3 + 64 = (x+ 4)(x2 − 4x+ 16).

Since x ≡ 3 mod 8, the first factor on the right side of (7) is 7 mod 8 and the second factor
is 5 mod 8. We will get a contradiction using either of these factors.

First we work with the quadratic factor x2 − 4x+ 16 = (x− 2)2 + 12, which is positive.
Since it is 5 mod 8, it must have a prime factor p which is not 1 or 3 mod 8. Indeed, if all
the prime factors of x2−4x+16 are 1 or 3 mod 8 then so is x2−4x+16, since {1, 3 mod 8}
is closed under multiplication. But x2 − 4x + 16 6≡ 1, 3 mod 8. The prime p, not being
3 mod 8, is in particular not equal to 3. Also, p 6= 2 since x2 − 4x + 16 is odd. Since
p|(x2− 4x+ 16) we get by (7) that p|(y2 + 18), so y2 ≡ −18 mod p. Hence −18 ≡ � mod p,
so −2 ≡ � mod p. This implies p ≡ 1 or 3 mod 8. But p 6≡ 1 or 3 mod 8, so we have a
contradiction.

To get a contradiction using the factor x + 4, first let’s check it is positive. There
is no solution to y2 = x3 + 46 when y2 is a perfect square less than 46 (just try y2 =
0, 1, 4, 9, 16, 25, 36; there is no corresponding integral x), which means we must have x3 > 0,
so x > 0. Thus x+ 4 > 1. Since x+ 4 ≡ 7 mod 8, x+ 4 must have a prime factor p which
is not 1 or 3 mod 8, just as before. The prime p is not 2 since x+ 4 is odd, and p 6= 3 since
p 6≡ 3 mod 8. Then y2 ≡ −18 mod p from (7) and we get a contradiction as before. �
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Our final example that has no integral solutions is going to use more involved ideas than
congruences.

Theorem 2.6. The equation y2 = x3 + 6 has no integral solutions.

Proof. First we do a divisibility check by 2 and 3. If x is even then y2 ≡ 6 mod 8, which
has no solution, so x is odd and then y is odd. If 3|y then x3 ≡ −6 ≡ 3 mod 9, but the
cubes mod 9 are 0, 1, and −1. So y is not divisible by 3.

Since y2 = x3 + 6 resembles y2 = x3 − 6, it is natural to try to adapt the congruence
arguments as in Theorem 2.3. Begin by writing y2 + 2 = x3 + 8 = (x+ 2)(x2 − 2x+ 4) and
use the parity conditions on x and y to show x ≡ 3 mod 8. Alas, the kind of contradiction
that arises in the proof of Theorem 2.3 doesn’t show up in this new example. (Try it to see
why!) Rather than search for other congruence methods, we will use unique factorization
in Z[

√
6]. The argument is taken from [2, pp. 22–23].

In Z[
√

6] write

(8) x3 = y2 − 6 = (y +
√

6)(y −
√

6).

Let’s show y +
√

6 and y −
√

6 are relatively prime in Z[
√

6]. Suppose there is a common
divisor δ:

δ|(y +
√

6), δ|(y −
√

6).
Taking the norm of either divisibility relation, N(δ) divides y2 − 6 in Z, and y2 − 6 is odd
since y is odd, so N(δ) is odd. Subtracting the divisibility relations, δ|2

√
6, so N(δ) divides

24. Since N(δ) is odd, N(δ) is ±1 or ±3. If the norm is ±3 then 3|(y2 − 6), so 3|y, a
contradiction. Therefore δ has norm ±1, so δ is a unit.

In (8), a product of relatively prime numbers in Z[
√

6] is a cube, so y+
√

6 = u(a+b
√

6)3

where u is a unit and a and b are integers. The units in Z[
√

6] are ±(5 + 2
√

6)Z, and a unit
cube can be absorbed into (a+ b

√
6)3, so there are three possibilities:

y +
√

6 = (a+ b
√

6)3 or y +
√

6 = (5 + 2
√

6)(a+ b
√

6)3 or y +
√

6 = (5 + 2
√

6)2(a+ b
√

6)3.

In the first case, equating the coefficients of
√

6 on both sides gives 1 = 3a2b+ 6b3, which
is impossible. In the second case, equating the coefficients of

√
6 on both sides gives

(9) 1 = 5(3a2b+ 6b3) + 2(a3 + 18ab2).

We will show this equation in a and b has no integral solution. Reducing both sides of (9)
modulo 3, 1 ≡ 2a3 ≡ 2a mod 3, so a ≡ 2 mod 3. Therefore a2 ≡ 1 mod 3 and a3 ≡ 8 mod 9.
Reducing both sides of (9) modulo 9, we now have

1 ≡ 5(3b+ 6b3) + 2(8) mod 9⇒ 0 ≡ 6b+ 3b3 + 6 mod 9⇒ 0 ≡ 2b+ b3 + 2 mod 3.

Since 2b+ b3 ≡ 0 mod 3 no matter what b is, we have 0 ≡ 2 mod 3, a contradiction. In the
third case, we will reduce ourselves back to the second case. Multiply both sides by 5+2

√
6

and absorb the (5 + 2
√

6)3 on the right into (a+ b
√

6)3:

(5 + 2
√

6)(y +
√

6) = (a+ b
√

6)3.

Multiply by (5 + 2
√

6)−1 = 5− 2
√

6:

y +
√

6 = (5− 2
√

6)(a+ b
√

6)3.

Conjugate both sides:
y −
√

6 = (5 + 2
√

6)(a− b
√

6)3.
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This is almost like the second case. Equating the coefficients of
√

6 on both sides,

−1 = 5(3a2(−b) + 6(−b)3) + 2(a3 + 18ab2).

Negating both sides,

(10) 1 = 5(3a2b+ 6b3) + 2((−a)3 + 18(−a)b2),

which matches (9) with −a in place of a. Since (9) has no integral solution, (10) has no
integral solution either. �

3. Examples with Solutions

We will now look at some instances of Mordell’s equation which have integral solutions.
The goal in each case is to find all integral solutions. The main tool we will use is unique
factorization (in different settings), and after some successes we will see that this technique
eventually runs into difficulties.

We start with the case k = 16: the equation y2 = x3 +16. There are two obvious integral
solutions: (x, y) = (0,±4). A numerical search does not reveal additional integral solutions,
so one might guess2 that (0, 4) and (0,−4) are the only integral solutions. To prove this,
we will use unique factorization in Z.

Theorem 3.1. The only integral solutions to y2 = x3 + 16 are (x, y) = (0,±4).

Proof. First we determine the parity of an integral solution. Rewrite the equation as x3 =
y2− 16 = (y+ 4)(y− 4). If y is odd then (y+ 4, y− 4) = 1 (why?), so both y+ 4 and y− 4
are cubes because their product is a cube. They differ by 8, and no odd cubes differ by 8.
Hence y is even, so x is even.

The right side of y2 = x3 + 16 is divisible by 8, so 4|y. Writing y = 4y′, 16y′2 = x3 + 16.
Therefore 4|x. Write x = 4x′, so y′2 = 4x′3 + 1, showing y′ is odd. Write y′ = 2m + 1, so
m2 +m = x′3. Since m2 +m = m(m+ 1) and (m,m+ 1) = 1, both m and m+ 1 are cubes.
The only consecutive cubes are among {−1, 0, 1}, so m or m+ 1 is 0. Therefore x′ = 0, so
x = 0 and y = ±4. �

Theorem 3.2. The only x, y ∈ Z satisfying y2 = x3 − 1 is (x, y) = (1, 0).

Proof. First we check the parity of an integral solution. Suppose x is even, so y2 +1 = x3 ≡
0 mod 8. Then y2 ≡ −1 mod 8. But −1 mod 8 is not a square. We have a contradiction, so
x is odd, which means y has to be even.

Write the equation y2 = x3 − 1 as

x3 = y2 + 1,

which in Z[i] has the factored form

(11) x3 = (y + i)(y − i).
If the two factors on the right side are relatively prime in Z[i], then since their product
is a cube, each factor must be a cube up to unit multiple, by unique factorization in Z[i].
Moreover, since every unit in Z[i] is a cube (1 = 13, −1 = (−1)3, i = (−i)3, −i = i3), unit
factors can be absorbed into the cubes. Thus, provided we show y+i and y−i are relatively
prime, (11) tells us y + i and y − i are themselves cubes.

2It’s a tricky business to decide when to stop searching: y2 = x3+24 has integral solutions at x = −2, 1, 10,
and 8158 (and no others).
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To see that y+ i and y− i are relatively prime, let δ be a common divisor. Since δ divides
(y + i) − (y − i) = 2i, N(δ) divides N(2i) = 4. Also N(δ) divides N(y + i) = y2 + 1 = x3,
which is odd. Therefore N(δ) divides 4 and is odd, which means N(δ) = 1, so δ is a unit.

Now that we know y+ i and y− i are relatively prime, we must have (as argued already)

y + i = (m+ ni)3

for some m,n ∈ Z. Expanding the cube and equating real and imaginary parts,

y = m3 − 3mn2 = m(m2 − 3n2), 1 = 3m2n− n3 = n(3m2 − n2).

The equation on the right tells us n = ±1. If n = 1, then 1 = 3m2 − 1, so 3m2 = 2, which
has no integer solution. If n = −1, then 1 = −(3m2 − 1), so m = 0. Therefore y = 0, so
x3 = y2 + 1 = 1. Thus x = 1. �

Theorem 3.3. The only x, y ∈ Z satisfying y2 = x3 − 4 are (x, y) = (2,±2) and (5,±11).

Proof. We rewrite y2 = x3 − 4 in Z[i] as

(12) x3 = y2 + 4 = (y + 2i)(y − 2i).

We will show that both factors on the right are cubes. Let’s first see why this leads to the
desired integral solutions. Write

y + 2i = (m+ ni)3

for some m,n ∈ Z. Equating real and imaginary parts,

y = m(m2 − 3n2), 2 = n(3m2 − n2).

From the second equation, n = ±1 or n = ±2. In each case we try to solve for m in Z. The
cases which work out are n = 1 and m = ±1, and n = −2 and m = ±1. In the first case,
y = ±(1− 3) = ±2 and x = 2, while in the second case y = ±(1− 3 · 4) = ±11 and x = 5.

It remains to show in (12) that y + 2i and y − 2i are cubes. Since y2 ≡ x3 mod 2 either
x and y are both even or they are both odd. We will consider these cases separately, since
they affect the greatest common factor of y + 2i and y − 2i.

First suppose x and y are both odd. We will show y + 2i and y − 2i are relatively prime
in Z[i]. Let δ be a common divisor, so δ divides (y + 2i) − (y − 2i) = 4i. Therefore N(δ)
divides N(4i) = 16. Since N(δ) also divides N(y+ 2i) = y2 + 4 = x3, which is odd, we must
have N(δ) = 1, so δ is a unit. This means y + 2i and y − 2i are relatively prime, so since
their product in (12) is a cube and any unit in Z[i] are cubes, y + 2i and y − 2i are both
cubes.

Now suppose x and y are both even. Write x = 2x′ and y = 2y′, so 4y′2 = 8x′3 − 4.
Dividing by 4, y′2 = 2x′3 − 1. Therefore y′ is odd. We must have x′ odd too, as otherwise
y′2 ≡ −1 mod 4, but −1 mod 4 is not a square. Writing

2x′3 = y′2 + 1 = (y′ + i)(y′ − i),
the factors on the right each have even norm, so each is divisible by 1 + i. Divide the
equation by (1 + i)2 = 2i:

−ix′3 =
y′ + i

1 + i

y′ − i
1 + i

.

We will show the two factors on the right are relatively prime. Their difference is 2i/(1+i) =
1 + i, so any common divisor has norm dividing N(1 + i) = 2. Also any common divisor
divides x′3, so the norm divides N(x′3) = x′6, which is odd. Thus any common divisor
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of (y′ + i)/(1 + i) and (y′ − i)/(1 + i) has norm 1, so is a unit. As before, we now know
(y′ + i)/(1 + i) is a cube, so

y + 2i = 2(y′ + i) = −i(1 + i)2(y′ + i) = i3(1 + i)3
y′ + i

1 + i

is a cube in Z[i]. Similarly, y − 2i is a cube. �

Using unique factorization in another imaginary quadratic ring, we can find all the inte-
gral solutions to another case of Mordell’s equation.

Theorem 3.4 (Fermat). The only integral solutions to y2 = x3 − 2 are (x, y) = (3,±5).

Proof. (Euler) Suppose y2 = x3 − 2 with integral x and y. As in the previous proof, first
we do a parity check on x and y. If x is even then y2 ≡ −2 mod 8, but −2 mod 8 is not a
square. Therefore x is odd, so y is also odd.

Write the relation between x and y as

x3 = y2 + 2.

In Z[
√
−2], we can rewrite this as

(13) x3 = (y +
√
−2)(y −

√
−2).

The two factors on the right are relatively prime. Indeed, let δ be a common divisor,
so δ divides their difference (y +

√
−2) − (y −

√
−2) = 2

√
−2, which means N(δ) divides

N(2
√
−2) = 8. At the same time, N(δ) divides N(y+

√
−2) = y2 +2, which is odd since y is

odd. So N(δ) must be 1, which means δ is a unit in Z[
√
−2], so y +

√
−2 and y −

√
−2 are

relatively prime in Z[
√
−2]. From (13) and unique factorization in Z[

√
−2], y +

√
−2 and

y −
√
−2 are both cubes up to unit multiple. The units in Z[

√
−2] are ±1, which are both

cubes, and therefore a unit multiple of a cube is also a cube. Hence y+
√
−2 and y−

√
−2

are both cubes.
Write

y +
√
−2 = (m+ n

√
−2)3

for some m,n ∈ Z. It follows that

y = m3 − 6mn2 = m(m2 − 6n2), 1 = 3m2n− 2n3 = n(3m2 − 2n2).

From the second equation, n = ±1. When n = 1 the second equation says 1 = 3m2 − 2,
so m = ±1. Then y = ±1(1 − 6) = ±5 and x3 = y2 + 2 = 27, so we recover the solutions
(x, y) = (3,±5). When n = −1 we have 1 = −(3m2 − 2 · 12) = −(3m2 − 2), so 1 = 3m2,
which has no solution in Z. �

Our treatment of y2 = x3 + 16, y2 = x3 − 1, y2 = x3 − 4, and y2 = x3 − 2 relied on
features of Z, Z[i], Z[

√
−2]: they satisfy unique factorization and every unit in them is a

cube. We can try the same technique on y2 = x3 +k with other values of k. The next three
examples illustrate some new features.

Example 3.5. Consider Mordell’s equation with k = 1: y2 = x3 + 1. There are several
obvious integral solutions:

(x, y) = (−1, 0), (0,±1), and (2,±3).

We will use unique factorization in Z to try to show these are the only integral solutions.
This will need a lot more work than Theorem 3.1, where we previously used unique factor-
ization in Z to study y2 = x3 + 16.
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We rewrite the equation in the form

x3 = y2 − 1 = (y + 1)(y − 1).

The integers y + 1 and y − 1 differ by 2, so (y + 1, y − 1) is either 1 or 2.
First suppose y is even. Then y + 1 and y − 1 are both odd, so (y + 1, y − 1) = 1. (That

is, any two consecutive odd integers are relatively prime.) Since y + 1 and y − 1 have a
product which is a cube and they are relatively prime, unique factorization in Z tells us
that they are both cubes or both the negatives of cubes. The negative of a cube is also a
cube (since −1 = (−1)3), so y + 1 and y − 1 are both cubes:

y + 1 = a3, y − 1 = b3.

Subtracting, we have a3 − b3 = 2. Considering how cubes spread apart, the only cubes
which differ by 2 are 1 and −1. So a3 = 1 and b3 = −1, meaning a = 1 and b = −1.
Therefore y + 1 = 1, so y = 0 and x = −1. The integral solution (−1, 0) of y2 = x3 − 1 is
the only one where y is even.

Now suppose y is odd, so x is even. We expect to show that the only such integral
solutions are (0,±1) and (2,±3). Since y + 1 and y − 1 are both even and differ by 2,
(y + 1, y − 1) = 2. Either y ≡ 1 mod 4 or y ≡ 3 mod 4. Since (x, y) is a solution if and
only if (x,−y) is a solution, by negating y if necessary we may assume y ≡ 1 mod 4. Then
y + 1 ≡ 2 mod 4 and y − 1 ≡ 0 mod 4. Dividing the equation x3 = y2 − 1 by 8, we have(x

2

)3
=
y + 1

2
· y − 1

4
.

The two factors on the right are relatively prime, since y+1 and y−1 have greatest common
factor 2 and we have divided each of them by a multiple of 2. Since the product of (y−1)/2
and (y + 1)/4 is a cube and the factors are relatively prime, each of them is a cube:

y + 1
2

= a3,
y − 1

4
= b3

with integers a and b. (Actually, at first we can say simply that (y + 1)/2 and (y − 1)/4
are cubes up to sign, but −1 = (−1)3 so we can absorb a sign into a and b if signs occur.)
Solving each equation for y,

(14) 2a3 − 1 = y = 4b3 + 1,

so a3−2b3 = 1. We can spot right away two integral solutions to a3−2b3 = 1: (a, b) = (1, 0)
and (a, b) = (−1,−1). In the first case, using (14) we get y = 1 (so x = 0) and in the second
case we get y = −3 (so x = 2). We have found two integral solutions to y2 = x3 + 1 when
y ≡ 1 mod 4: (0, 1) and (2,−3). Negating y produces the two solutions (0,−1) and (2, 3)
where y ≡ 3 mod 4.

Any integral solution of a3 − 2b3 = 1 leads to the integral solution (x, y) = (2ab, 4b3 + 1)
of y2 = x3 + 1, so showing the equation y2 = x3 + 1 has no further integral solutions is tan-
tamount to showing a3− 2b3 = 1 has no integral solution besides the two we already found,
(1, 0) and (−1,−1). To study a3− 2b3 = 1 introduces a whole new bag of complications, so
we will simply stop and leave this matter unsettled.

Example 3.6. Consider y2 = x3 − 5. We have already seen in Theorem 2.2 that this
equation has no integral solutions by a method that only uses calculations in Z. Let’s try
to show there are no integral solutions using factorizations in Z[

√
−5].

We start with a parity check. If x is even then y2 ≡ −5 ≡ 3 mod 8, but 3 mod 8 is not a
square. Therefore x is odd, so y is even.
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Write the equation as

x3 = y2 + 5 = (y +
√
−5)(y −

√
−5).

Suppose δ is a common factor of y +
√
−5 and y −

√
−5. First of all, N(δ) divides y2 + 5,

which is odd. Second of all, since δ divides (y +
√
−5)− (y −

√
−5) = 2

√
−5, N(δ) divides

N(2
√
−5) = 20. Therefore N(δ) is 1 or 5. If N(δ) = 5 then 5|(y2 + 5), so 5|y. Then

x3 = y2 +5 ≡ 0 mod 5, so x ≡ 0 mod 5. Now x and y are both multiples of 5, so 5 = x3−y2

is a multiple of 25, a contradiction. Hence N(δ) = 1, so δ is a unit. This shows y +
√
−5

and y −
√
−5 have no common factor in Z[

√
−5] except for units.

Since y +
√
−5 and y −

√
−5 are relatively prime and their product is a cube, they are

both cubes (the units in Z[
√
−5] are ±1, which are both cubes). Thus

y +
√
−5 = (m+ n

√
−5)3

for some integers m and n, so

y = m3 − 15mn2 = m(m2 − 15n2), 1 = 3m2n− 5n3 = n(3m2 − 5n2).

From the second equation, n = ±1. If n = 1 then 1 = 3m2 − 5, so 3m2 = 6, which has no
integral solution. If n = −1 then 1 = −(3m2 − 5), so 3m2 = 4, which also has no integral
solution. We appear to have recovered the fact that y2 = x3 − 5 has no integral solutions.

Alas, there is an error in Example 3.6. When we wrote certain numbers in Z[
√
−5] as

cubes, we were implicitly appealing to unique factorization in Z[
√
−5], which is in fact false.

A counterexample to unique factorization in Z[
√
−5] is 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5).

That doesn’t mean the numbers in Z[
√
−5] which we wanted to be cubes might not be

cubes, but our justification for those conclusions is certainly faulty. It is true in Z[
√
−5]

that if αβ is a cube and α and β only have common factors ±1 then α and β are both
cubes, but to explain why requires additional techniques to circumvent the lack of unique
factorization.

Example 3.7. Consider y2 = x3 − 26. Two obvious integral solutions are (3,±1). Let’s
use factorizations in Z[

√
−26] to see if (3,±1) are the only integral solutions.

If x is even then y2 ≡ −26 ≡ 6 mod 8, but 6 mod 8 is not a square. Therefore x is odd,
so y is odd too.

Rewrite the equation as

x3 = y2 + 26 = (y +
√
−26)(y −

√
−26).

Let δ be a common factor of y +
√
−26 and y −

√
−26 in Z[

√
−26]. Then N(δ) divides

y2 + 26, which is odd. Also δ divides the difference (y +
√
−26) − (y −

√
−26) = 2

√
−26,

so N(δ) divides 4 · 26 = 8 · 13. Since N(δ) is odd, we see that N(δ) is 1 or 13. There is
no element of Z[

√
−26] with norm 13, so N(δ) = 1. Therefore δ = ±1, so y +

√
−26 and

y −
√
−26 have only ±1 as common factors.

If we assume Z[
√
−26] has unique factorization, then since y +

√
−26 and y −

√
−26

multiply to a cube and they have only ±1 as common factors, each of them is a cube. Write

y +
√
−26 = (m+ n

√
−26)3,

so
y = m3 − 78mn2 = m(m2 − 78n2), 1 = 3m2n− 26n3 = n(3m2 − 26n2).

The second equation tells us n = ±1. If n = 1 then 1 = 3m2 − 26, so 3m2 = 27, which tells
us m = ±3. Then y = (±3)(9− 78) = ±207 and x3 = 2072 + 26 = 42875 = 353, so x = 35.
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We have discovered new integral solutions to y2 = x3 − 26, namely (x, y) = (35,±207). If
n = −1 then 1 = −(3m2 − 26), so 3m2 = 25, which has no integral solutions.

Having looked at both possible values of n, we discovered two unexpected integral so-
lutions, but we missed the obvious integral solutions (3,±1)! How could that happen?
The reason is that our argument was based on the assumption of unique factorization in
Z[
√
−26], but there is not unique factorization in Z[

√
−26]. A counterexample is

27 = 3 · 3 · 3 = (1 +
√
−26)(1−

√
−26).

It is true that the only integral solutions to y2 = x3 − 26 are (3,±1) and (35,±207), but a
valid proof has to get around the lack of unique factorization in Z[

√
−26].

4. Rational solutions

The following table describes all the integral solutions for the cases of Mordell’s equation
we have looked at. (The examples k = 1, 2, and −26 were not fully justified above.)

k Z-solutions of y2 = x3 + k
1 (−1, 0), (0,±1), (2,±3)
−1 (1, 0)
−2 (3,±5)
−4 (2,±2), (5,±11)
−5 None

6 None
−6 None

7 None
16 (0, 4), (0,−4)
−26 (3,±1), (35,±207)

45 None
46 None

In each case there are a finite number of integral solutions. If we look instead at rational
solutions, we might not get anything new, but we could get a lot more that is new. The
next table summarizes the situation.

k Q-solutions of y2 = x3 + k
1 (−1, 0), (0,±1), (2,±3)
−1 (1, 0)
−2 Infinitely many
−4 Infinitely many
−5 None

6 None
−6 None

7 None
16 (0, 4), (0,−4)
−26 Infinitely many

45 None
46 Infinitely many

The equations which have more rational solutions than integral solutions are y2 = x3−2,
y2 = x3− 4, y2 = x3− 26, and y2 = x3 + 46. Examples of non-integral rational solutions to
these equations are given in the following table.
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k Q-solution of y2 = x3 + k
−2 (129/100, 383/1000)
−4 (106/9, 1090/27)
−26 (705/4, 18719/8)

46 (−7/4, 51/8)
To emphasize the distinction between classifying integral and rational solutions, we return

to y2 = x3 + 16. We proved the only integral solutions are (0,±4). This does not tell us
whether or not there are also rational solutions which are not integral solutions. It turns
out there are no further rational solutions, and here is an application. If a3 + b3 = c3

with nonzero integers a, b, and c, then the nonzero rational numbers x = 4bc/a2 and
y = 4(a3 + 2b3)/a3 satisfy y2 = x3 + 16. (This is taken from [1].) Therefore proving the
only rational solutions to y2 = x3 + 16 are (0,±4) forces x = 0, but x = 4bc/a2 6= 0, so this
would give a proof of Fermat’s Last Theorem for exponent 3.
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