
IDEAL CLASSES AND MATRIX CONJUGATION OVER Z

KEITH CONRAD

When R is a commutative ring, matrices A and B in Mn(R) are called conjugate when
UAU−1 = B for some U ∈ GLn(R). The conjugacy problem in Mn(R) is: decide when two
matrices in Mn(R) are conjugate. We want to look at the conjugacy problem in Mn(Z),
where ideal theory and class groups make an interesting appearance.

The most basic invariant for conjugacy classes of matrices is the characteristic polynomial:
conjugate matrices have the same characteristic polynomial. This is not a complete invariant
in general: the matrices ( 1 0

0 1 ) and ( 1 1
0 1 ), both have characteristic polynomial (T − 1)2, but

( 1 0
0 1 ) and ( 1 1

0 1 ) are not conjugate (in any M2(R)) since the identity matrix is conjugate
only to itself. While there are refinements of the characteristic polynomial that settle the
conjugacy problem in Mn(F ) for F a field (use the rational canonical form), we don’t
pursue that direction. Instead our starting point is a special case where the characteristic
polynomial is a complete invariant.

Theorem 1. Let F be a field and f(T ) ∈ F [T ] be monic irreducible of degree n.

(a) A matrix A in Mn(F ) has characteristic polynomial f(T ) if and only if f(A) = O.
(b) All matrices in Mn(F ) with characteristic polynomial f(T ) are conjugate in Mn(F ).

The key point here is irreducibility of the characteristic polynomial. If that assumption
is dropped, the theorem breaks down completely (the matrices in Mn(F ) sharing a common
reducible characteristic polynomial are not all conjugate to each other in Mn(F )).

Proof. (a) If A has characteristic polynomial f(T ) then f(A) = O by the Cayley-Hamilton
theorem. Conversely, suppose f(A) = O. Let χ(T ) be the characteristic polynomial of A.
We want to show χ(T ) = f(T ). Since f(T ) is irreducible in F [T ], f(T ) is the minimal
polynomial of A in F [T ], so f(T )|χ(T ) in F [T ] because χ(A) = O. Since f(T ) and χ(T )
are monic of the same degree, the divisibility relation forces equality.

(b) Suppose A ∈ Mn(F ) has characteristic polynomial f(T ). We make Fn into an F [T ]-
module by letting multiplication by T on Fn be the action of A: g(T )v = g(A)v for v ∈ Fn.
We are going to show Fn as an F [T ]-module in this way is isomorphic to F [T ]/(f(T ))
as an F [T ]-module. Therefore any two matrices in Mn(F ) with characteristic polynomial
f(T ) give Fn isomorphic F [T ]-module structures (it always looks like F [T ]/(f(T )) as an
F [T ]-module), so the two matrices are conjugate because matrices in Mn(F ) give rise to
isomorphic F [T ]-module structures on Fn if and only if they are conjugate.

Since f(A) = O, so f(T )v = 0 for all v ∈ Fn, the F [T ]-module structure on Fn can be

replaced with an F [T ]/(f(T ))-module structure: g(T )v = g(A)v. The ring F [T ]/(f(T )) is
a field since f(T ) is irreducible, so Fn is an F [T ]/(f(T ))-vector space. Fixing a nonzero
v0 ∈ Fn, the multiples F [T ] · v0 = (F [T ]/(f(T ))) · v0 form a subspace of Fn with F -
dimension dimF (F [T ]/(f(T ))) = n, so it fills up all of Fn: Fn = (F [T ]/(f(T ))) · v0. Since
v0 6= 0 and F [T ]/(f(T )) is a field, F [T ]/(f(T )) ∼= F [T ]/(f(T )) · v0 as F [T ]-modules, so
Fn ∼= F [T ]/(f(T )) as F [T ]-modules. �
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Another key point in Theorem 1 besides irreducibility of the characteristic polynomial is
that we are working over a field. If we work over Z, irreducible characteristic polynomials
don’t necessarily provide a complete conjugacy invariant anymore. That is, two matrices in
Mn(Z) can have a common irreducible characteristic polynomial while not being conjugate
in Mn(Z) (that is, they are not conjugate by any matrix in GLn(Z)), although they must
be conjugate in Mn(Q).

Example 2. The integral matrices A = ( 0 4
2 0 ) and B = ( 0 8

1 0 ) both have characteristic
polynomial T 2 − 8, which is irreducible in Z[T ], but they are not conjugate in M2(Z). We
show this by contradiction. Assume UAU−1 = B for some U ∈ GL2(Z), so detU = ±1.
Write the conjugacy relation as UA = BU and let U = ( a bc d ). Computing UA and BU

shows a = 2d and b = 4c, so detU = ad− bc = 2d2 − 4c2, which can’t be ±1.
Since T 2 − 8 is irreducible in Q[T ], Theorem 1 says A and B are conjugate in M2(Q),

and indeed ( 1 0
0 1/2 )A( 1 0

0 1/2 )−1 = B.

If two integral matrices have the same irreducible characteristic polynomial, what addi-
tional data is needed to decide if the matrices are conjugate over Z? This task turns out to
be equivalent to finding the ideal classes in an order in a number field.

Let’s recall some terminology. In any order O in a number field K, a fractional O-ideal
is a nonzero finitely generated O-module in K. We call two fractional O-ideals I and J
equivalent if I = xJ for some x ∈ K×. The equivalence classes are called (fractional) O-
ideal classes and there are finitely many of them. When O = OK , every fractional O-ideal
is invertible. When O 6= OK there are some noninvertible fractional O-ideals. The label
“ideal classes” here allows all fractional O-ideals, invertible and noninvertible.

Theorem 3. Let f(T ) ∈ Z[T ] be monic irreducible of degree n.

(a) A matrix A in Mn(Z) has characteristic polynomial f(T ) if and only if f(A) = O.
(b) Conjugacy classes of matrices in Mn(Z) with characteristic polynomial f(T ) are in

bijection with the Z[α]-ideal classes in Q(α), where α is a root of f(T ).

In particular, there are finitely many conjugacy classes of matrices in Mn(Z) with charac-
teristic polynomial f(T ), since Z[α] has finitely many ideal classes.

Theorem 3 is due to Latimer and MacDuffee [3]. See also [4, pp. 49–55], [5], and [6].

Example 4. Taking f(T ) = T 2 + 1, all A ∈ M2(Z) satisfying A2 + I2 = O are conjugate
since Z[i] has class number 1. One such matrix is ( 0 −1

1 0 ).

Example 5. Taking f(T ) = T 2 + 5, all A ∈ M2(Z) satisfying A2 + 5I2 = O fall into two
conjugacy classes since Z[

√
−5] has class number 2.

Example 6. The ring of integers of Q(
√

10) is Z[
√

10], which has class number 2 and
contains the unit 3 +

√
10. This unit is a root of T 2 − 6T − 1. Since Z[

√
10] = Z[3 +

√
10],

all A ∈ M2(Z) satisfying A2 − 6A− I2 = O fall into two conjugacy classes.

Example 7. Since Z[ 3
√

2] has class number 1, all A ∈ M3(Z) satisfying A3 = 2I3 are
conjugate to each other in M3(Z).

Now we prove Theorem 3.

Proof. (a) The proof in Theorem 1(a) carries over, since a monic irreducible in Z[T ] is
irreducible in Q[T ].
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(b) For any Z[α]-fractional ideal a in Q(α), multiplication by α is a Z-linear map mα : a→
a. Since a as a Z-module has a basis of size n, choosing a Z-basis lets us represent mα by a
matrix [mα] ∈ Mn(Z). Changing the Z-basis of a changes the matrix representation of mα

to a conjugate matrix. So independent of a choice of basis we can associate to a fractional
ideal a the conjugacy class in Mn(Z) of a matrix representation for mα : a→ a. All matrices
A in this conjugacy class satisfy f(A) = O since f(A) = f([mα]) = [mf(α)] = [m0] = O.

For an equivalent fractional Z[α]-ideal b = xa, where x ∈ Q(α)×, its conjugacy class of
matrices (the matrices representing mα : b→ b with respect to Z-bases of b) is the same as
that for a, since the matrix for mα with respect to a Z-basis {e1, . . . , en} of a is the same
matrix as that for mα with respect to the Z-basis {xe1, . . . , xen} of b. Thus we have a
well-defined function

(1) Z[α]-ideal classes in Q(α) conjugacy classes of A ∈ Mn(Z) such that f(A) = O

by the rule: pick a fractional ideal in the ideal class, pick a Z-basis of it, write a matrix
representation for mα in terms of this basis, and use the conjugacy class of that matrix.
We will show this function from fractional ideal classes to conjugacy classes of matrices is
a bijection.

To show surjectivity, for every A ∈ Mn(Z) satisfying f(A) = O we will find a Z[α]-
fractional ideal a in Q(α) such that A is the matrix representation for mα : a → a with
respect to some Z-basis of a. Let K = Q(α) = Q[α]. Make Qn into a K-vector space in
the following way. For c ∈ K, write c = g(α) for g(T ) ∈ Q[T ]. For v ∈ Qn, set

(2) cv = g(α)v := g(A)v

This is well-defined: if c = h(α) for h(T ) ∈ Q[T ] then g(α) = h(α), so g(T )−h(T ) is divisible
by f(T ) (because f is the minimal polynomial of α in Q[T ], as it is monic irreducible with
root α) and therefore g(A) = h(A) as matrices (since f(A) = O), so g(A)v = h(A)v for
all v ∈ Qn. If v ∈ Zn then αv = Av is in Zn since A has integral entries, so Zn is a
Z[α]-submodule of Qn that is finitely generated since Zn is already finitely generated as an
abelian group. From the way we define Qn as a K-vector space, the equation αv = Av tells
us the matrix representation of mα on Zn with respect to the standard basis of Zn is A.

Treating Qn as both a Q-vector space and as K-vector space (by (2)), we have

n = dimQ(Qn) = [K : Q] dimK(Qn) = n dimK(Qn),

so Qn is 1-dimensional as a K-vector space. That means for any nonzero v0 ∈ Qn, the
K-linear map ϕv0 : K → Qn given by ϕv0(c) = cv0 is an isomorphism of 1-dimensional
K-vector spaces. The inverse image ϕ−1v0 (Zn) is a finitely generated Z[α]-submodule of K

since Zn has these properties inside Qn. So ϕ−1v0 (Zn) is a fractional Z[α]-ideal in K. Call it
a, so

a = ϕ−1v0 (Zn) = {c ∈ K : cv0 ∈ Zn}.
Since A is the matrix representation of mα on Zn with respect to its standard basis
e1, . . . , en, A is also the matrix representation of mα on a with respect to the Z-basis
ϕ−1v0 (e1), . . . , ϕ

−1
v0 (en) of a. We have realized A as a matrix representation for mα on a

fractional Z[α]-ideal a, so (1) is onto.
To show (1) is injective, suppose a and b are two fractional Z[α]-ideals in K such that

the matrices A and B for mα with respect to some Z-bases of a and b are conjugate in
Mn(Z). We want to show a and b are in the same ideal class: b = xa for some x ∈ K×.
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Since A represents mα : a→ a with respect to some Z-basis A of a, there is a commutative
diagram

a

mα

��

[·]A // Zn

A
��

a
[·]A
// Zn

where the horitzonal arrows are the coordinate isomorphisms that identify A with the
standard basis of Zn. Similarly for the basis B of b with respect to which mα : b → b has
matrix representation B, we have a commutative diagram

b

mα
��

[·]B // Zn

B
��

b
[·]B
// Zn

.

Since A and B are conjugate in Mn(Z), B = UAU−1 for some U ∈ GLn(Z), so

Zn

A
��

U // Zn

B
��

Zn
U
// Zn

commutes. Let’s put these diagrams together:

a

mα

��

[·]A // Zn

A
��

U // Zn

B
��

[·]−1
B // b

mα
��

a
[·]A
// Zn

U
// Zn

[·]−1
B

// b

Each square in the diagram commutes, so the whole diagram commutes. The top and
bottom maps are Z-linear isomorphisms, so the common composite map a→ b on the top
and bottom is a Z-linear isomorphism that commutes with mα by commutativity of the
diagram around the boundary. That implies the composite map a → b is Z[α]-linear, not
just Z-linear, so a and b are isomorphic as Z[α]-modules. Isomorphic fractional Z[α]-ideals
are scalar multiples of each other, so b = xa for some x ∈ K×. More specifically, any
Z[α]-linear isomorphism of fractional Z[α]-ideals must be multiplication by some x ∈ K×,
so the composite map a→ b along the top and bottom of the above commutative diagram
is multiplication by x. �

Remark 8. Here is a more conceptual version of the proof of part b.
The fractional Z[α]-ideals are the Z[α]-modules in Q(α) that are free of rank n as Z-

modules. Moreover, any abstract Z[α]-module M whose underlying additive group is Zn is
isomorphic as a Z[α]-module to a fractional Z[α]-ideal. (Proof: Since M ∼= Zn as abelian
groups, Q ⊗Z M ∼= Qn as Q-vector spaces. Since M is a Z[α]-module, Q ⊗Z M is a
module over Q ⊗Z Z[α] ∼= Q(α), and since dimQ(Q(α)) = n = dimQ(Q ⊗Z M), Q ⊗Z M
has dimension 1 as a Q(α)-vector space. Using any vector space isomorphism of Q ⊗Z M
with Q(α) lets us identify the subset 1 ⊗ M of Q ⊗Z M with a Z[α]-module in Q(α)
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that’s additively Zn, and this is a fractional Z[α]-ideal in Q(α).) Fractional Z[α]-ideals
are equivalent precisely when they are isomorphic as Z[α]-modules, so Z[α]-ideal classes in
Q(α) can be identified with isomorphism classes of Z[α]-modules that additively are Zn, or
equivalently with isomorphism classes of Z[α]-module structures on Zn.

Next we show Z[α]-module structures on Zn are in bijection with conjugacy classes of
A ∈ Mn(Z) such that f(A) = O. A Z[α]-module structure on Zn is the same as equipping Zn

with a linear map A : Zn → Zn such that f(A) = O. (The action of A on Zn is interpreted as
multiplication by α, which gives Zn a Z[α]-module structure.) Two such A define isomorphic
Z[α]-module structures on Zn precisely when they are conjugate in Mn(Z)1, so Z[α]-module
structures on Zn, up to isomorphism, can be identified with conjugacy classes of solutions
to f(A) = O in Mn(Z).

Remark 9. In Theorem 3 our matrix conjugations used the group GLn(Z) of all invertible
n × n integral matrices. The relation of conjugation by SLn(Z) is, potentially, more re-
strictive: matrices that are conjugate by an element of GLn(Z) might not be conjugate by
an element of SLn(Z). (This can only happen if n is even, since the relation B = UAU−1

implies B = (−U)A(−U)−1, and for odd n det(−U) = (−1)n det(U) = −det(U), so if
U ∈ GLn(Z)−SLn(Z) then −U ∈ SLn(Z).) If we use SLn(Z)-conjugacy classes in Theorem
3b, then to maintain a bijection we need to make the equivalence relation on Z[α]-fractional
ideals more restrictive: consider a ∼ b when b = xa for some x ∈ K× such that NK/Q(x)
is positive. These equivalence classes are called narrow ideal classes. The proof of Theo-
rem 3b can be modified to show there is a bijection between SLn(Z)-conjugacy classes of
A ∈ Mn(Z) satisfying f(A) = O and narrow Z[α]-fractional ideal classes in Q(α).

To illustrate Theorem 3 in examples, for some monic irreducible f(T ) ∈ Z[T ] we write
down a set of ideals in Z[α], where f(α) = 0, representing the different Z[α]-ideal classes
and compute the matrix for multiplication by α on each ideal with respect to a Z-basis of
that ideal. The resulting matrices are a complete set of representatives for the conjugacy
classes of all A ∈ Mn(Z) satisfying f(A) = O, where n = deg f . Our examples will have
deg f = 2.

Example 10. Let f(T ) = T 2 + 5 and α =
√
−5. We seek representatives for the conjugacy

classes of A ∈ M2(Z) satisfying A2 + 5I2 = O. The ring Z[α] = Z[
√
−5] has class number 2,

with ideal classes represented by (1) and (2, 1+
√
−5). To find matrices in M2(Z) associated

to multiplication by α on the ideals (1) and (2, 1 +
√
−5) we need Z-bases of the ideals:

(1) = Z +
√
−5Z and (2, 1 +

√
−5) = 2Z + (1 +

√
−5)Z. Multiplying the Z-basis {1,

√
−5}

of (1) by
√
−5,

√
−5 · 1 = 0 · 1 + 1 ·

√
−5√

−5 ·
√
−5 = −5 · 1 + 0 ·

√
−5,

and multiplying the basis {2, 1 +
√
−5} of (2, 1 +

√
−5) by

√
−5,

√
−5 · 2 = (−1) · 2 + 2 · (1 +

√
−5)

√
−5 · (1 +

√
−5) = (−3) · 2 + 1 · (1 +

√
−5).

Therefore multiplication by
√
−5 on these two ideals is represented by the matrices ( 0 −5

1 0 )

and ( −1 −32 1 ). That means any A ∈ M2(Z) that satisfies A2+5I2 = O is conjugate to exactly
one of these two matrices.

1This is similar to a vector space V over a field F having isomorphic F [T ]-module structures from two
linear operators A and B on V if and only if A and B are conjugate in EndF (V ).
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Another pair of ideals representing the two ideal classes is (4 +
√
−5) and (7, 2 + 3

√
−5).

Let’s convert these into matrices. The first ideal has Z-basis {4 +
√
−5,−5 + 4

√
−5}, and

√
−5 · (4 +

√
−5) = 0 · (4 +

√
−5) + 1 · (−5 + 4

√
−5)

√
−5 · (−5 + 4

√
−5) = −5 · 1 + 0 ·

√
−5,

so multiplication by
√
−5 with respect to this basis is ( 0 −5

1 0 ). Is it a coincidence we get

the same matrix as we did for multiplication by
√
−5 on the ideal (1)? Not really. For any

principal ideal (a+b
√
−5) the matrix for multiplication by

√
−5 with respect to the obvious

first choice of Z-basis – {a+ b
√
−5,−5b+ a

√
−5} – is ( 0 −5

1 0 ). Just compute it and see. So
it’s just a fluke of carrying out the computation on what happens to be the first basis that
comes to mind. If you use a different basis of a principal ideal you would get a different
matrix. Turning now to the second ideal (7, 2 + 3

√
−5), multiplying 7 and 2 + 3

√
−5 by√

−5 leads to the equations

√
−5 · 7 = −2

3
· 7 + 7 · (2 + 3

√
−5)

√
−5 · (2 + 3

√
−5) = −7

3
· 7 +

2

3
· (2 + 3

√
−5).

How come we got rational coefficients and not integral coefficients? Because the computa-
tion needs a Z-basis of (7, 2 + 3

√
−5) but {7, 2 + 3

√
−5} is not a Z-basis (e.g., 7

√
−5 is in

the ideal but it is not in the Z-span of 7 and 2 + 3
√
−5.) A Z-basis of (7, 2 + 3

√
−5) is

{7, 3 +
√
−5} (check!) and relative to this basis

√
−5 · 7 = −3 · 7 + 7 · (3 +

√
−5)

√
−5 · (3 +

√
−5) = −2 · 7 + 3 · (3 +

√
−5),

so the corresponding matrix is ( −3 −27 3 ). Therefore ( 0 −5
1 0 ) and ( −3 −27 3 ) are a pair of conju-

gacy class representatives of A ∈ M2(Z) satisfying A2 + 5I2 = O.

Example 11. From Example 6, there are two conjugacy classes of matrices in M2(Z)
satisfying A2 − 6A − I2 = O since a root of T 2 − 6T − 1 is α = 3 +

√
10 and the ring

Z[3 +
√

10] = Z[
√

10] has class number 2. Ideals representing the ideal classes are (1) =
Z+Z

√
10 and (2,

√
10) = Z · 2 +Z

√
10. A matrix representation for multiplication of each

ideal by α can be found from

α · 1 = 3 · 1 + 1 ·
√

10

α ·
√

10 = 10 · 1 + 3 ·
√

10,

α · 2 = 3 · 2 + 2 ·
√

10

α ·
√

10 = 5 · 2 + 3 ·
√

10,

which tells us α has matrix representations ( 3 10
1 3 ) and ( 3 5

2 3 ): any A ∈ M2(Z) satisfying
A2 − 6A− I2 = O is conjugate in M2(Z) to exactly one of these two matrices.

In the integers of the number field Q(
√

10,
√

2) = Q(
√

2,
√

5), the ideal (2,
√

10) becomes
principal, since there it equals (

√
2)(
√

2,
√

5) = (
√

2). Corresponding to this, the matrices

( 3 10
1 3 ) and ( 3 5

2 3 ) become conjugate in M2(Z[
√

2]): U( 3 10
1 3 )U−1 = ( 3 5

2 3 ) where U = (
√
2 5
1 2
√
2
)

has determinant −1. (More generally, U( 3 10
1 3 )U−1 = ( 3 5

2 3 ) when U = ( a 5c
c 2a ), and for a
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suitable choice of a and c the determinant 2a2 − 5c2 is −1.) For a broader viewpoint on
this example, see [1].

Example 12. Let f(T ) = T 2 − T + 6 = 0, with root α = 1+
√
−23
2 . The ring Z[α] has

class number 3, with ideal classes represented by (1), (2, α), and (2, α)2 = (4, 6 + α). As
Z-modules, these ideals have respective Z-bases {1, α}, {2, α}, and {4, 6 + α}.

The matrices for multiplication by α on these ideals, with respect to the indicated Z-bases
of them, are found as follows:

α · 1 = 0 · 1 + 1 · α
α · α = −6 · 1 + 1 · α,

α · 2 = 0 · 1 + 2 · α
α · α = −3 · 2 + 1 · α,

α · 4 = (−6) · 4 + 4 · (6 + α)

α · (6 + α) = (−12) · 4 + 7 · (6 + α),

so the three conjugacy classes of A ∈ M2(Z) satisfying A2 − A + 6I2 = O are represented
by ( 0 −6

1 1 ), ( 0 −3
2 1 ), and ( −6 −124 7 ).

Example 13. Let d be a nonsquare in Z and m ≥ 2. Then f(T ) = T 2−m2d is irreducible

in Z[T ] with root α = m
√
d. Both a := Z[

√
d] = Z + Z

√
d and b := Z[α] = Z + Zm

√
d are

fractional Z[α]-ideals in Q(α) that do not lie in the same Z[α]-ideal class. (As fractional
Z[α]-ideals, b is principal and a is nonprincipal.) We are not saying every Z[α]-fractional
ideal is equivalent to a or b, but only that a and b are inequivalent.

To find matrices satisfying f(A) = O that correspond to a and b, we compute the matrix

for multiplication by α = m
√
d with respect to Z-bases of each of them. Using the Z-bases

{1,
√
d} for a and {1,m

√
d} for b,

m
√
d · 1 = 0 · 1 +m ·

√
d

m
√
d ·
√
d = md · 1 + 0 ·

√
d,

and

m
√
d · 1 = 0 · 1 + 1 ·m

√
d

m
√
d ·m

√
d = m2d · 1 + 0 ·m

√
d,

so the matrices are ( 0 md
m 0 ) and ( 0 m2d

1 0 ). These both satisfy A2 = m2dI2 and they are non-
conjugate in M2(Z). Taking d = 2 and m = 2 recovers Example 2, where the nonconjugate
matrices ( 0 4

2 0 ) and ( 0 8
1 0 ) can now be interpreted as multiplication by

√
8 = 2

√
2 on Z[

√
2]

with respect to the Z-basis {1,
√

2} and on Z[2
√

2] with respect to the Z-basis {1, 2
√

2}.
The matrix ( 1 0

0 1/2 ) in M2(Q) that conjugates ( 0 4
2 0 ) to ( 0 8

1 0 ) can now be explained: it is the

change of basis matrix from {1, 2
√

2} to {1,
√

2} as Q-bases of Q(
√

2).
Unlike in Example 11, where the two matrices that are not conjugate in M2(Z) become

conjugate in M2(Z[
√

2]), ( 0 4
2 0 ) and ( 0 8

1 0 ) are not conjugate in M2(Z), where Z is the ring
of all algebraic integers. We can show this by contradiction. Assume U( 0 4

2 0 )U−1 = ( 0 8
1 0 )

for some U ∈ GL2(Z). As in the computation at the end of Example 2, U = ( a bc d ) where
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a = 2d and b = 4c, so detU = ad− bc = 2d2 − 4c2 = 2(d2 − 2c2), which is not a unit in Z
for any c and d in Z.

Example 14. So far we have computed matrices from fractional ideals. Let’s go the other
way around. The matrix A = ( 2 3

−3 −2 ) satisfies A2 + 5I2 = O. We will convert A into

a Z[
√
−5]-fractional ideal in Q(

√
−5) using the proof of the surjectivity in Theorem 3(b).

Make Q2 into a Q(
√
−5)-vector space by

(a+b
√
−5)

(
x

y

)
:= (a+bA)

(
x

y

)
=

(
a+ b

(
2 3
−3 −2

))(
x

y

)
=

(
a+ 2b 3b
−3b a− 2b

)(
x

y

)
.

Set v0 =
(
1
0

)
, so there is an isomorphism Q(

√
−5) → Q2 as Q(

√
−5)-vector spaces by

c 7→ cv0. The fractional ideal we want is the inverse image of Z2 under this isomorphism
Q(
√
−5)→ Q2. This is {c ∈ Q(

√
−5) : cv0 ∈ Z2}. Writing c = a+ b

√
−5,

cv0 = (a+ bA)

(
1

0

)
=

(
a+ 2b

−3b

)
=

(
1 2
0 −3

)(
a

b

)
,

so

cv0 ∈ Z2 ⇐⇒
(
a

b

)
∈
(

1 2
0 −3

)−1
Z2 =

(
1 2/3
0 −1/3

)
Z2 =

{(
x+ (2/3)y

−(1/3)y

)
: x, y ∈ Z

}
.

Therefore having cv0 ∈ Z2 is the same as saying c = x + (2/3)y − (1/3)y
√
−5 for some

integers x and y, so the Z[
√
−5]-fractional ideal in Q(

√
−5) corresponding to A is

(3)

{
x+

(
2

3
− 1

3

√
−5

)
y : x, y ∈ Z

}
= Z +

(
2−
√
−5

3

)
Z.

If we change v0 =
(
1
0

)
to another nonzero vector in Q2, we get an equivalent fractional

ideal. The ideal class of these fractional ideals is independent of the choice of v0. Scaling a
fractional ideal doesn’t change its ideal class, so we multiply the fractional ideal by 3 and
get the ideal 3Z + (2−

√
−5)Z = (3, 2−

√
−5) in Z[

√
−5].

As a check that our work is correct, let’s compute the matrix for multiplication by
√
−5

on the ideal (3, 2−
√
−5) using the Z-basis {3, 2−

√
−5}:

√
−5 · 3 = 2 · 3− 3(2−

√
−5)

√
−5 · (2−

√
−5) = 3 · 3− 2 · (2−

√
−5),

so the matrix is ( 2 3
−3 −2 ) = A.

Wait, there’s more! In Example 10 we said any A ∈ M2(Z) satisfying A2 + 5I2 = O
is conjugate to either ( 0 −5

1 0 ) or ( −1 −32 1 ). Which of these is ( 2 3
−3 −2 ) conjugate to? We

will answer this by turning it into a question about ideals. Table 14 summarizes the list
of matrices and corresponding ideals and their Z-bases with respect to which the matrix
represents multiplication by

√
−5 on the ideal.

Matrix Ideal Basis

( 0 −5
1 0 ) (1) {1,

√
−5}

( −1 −32 1 ) (2, 1 +
√
−5) {2, 1 +

√
−5}

( 2 3
−3 −2 ) (3, 2−

√
−5) {3, 2−

√
−5}

The ideal (3, 2−
√
−5) is equivalent to (1) or (2, 1+

√
−5): it is principal or nonprincipal.

We show (3, 2−
√
−5) is not principal by looking at the quotient ring

Z[
√
−5]/(3, 2−

√
−5) ∼= Z[T ]/(T 2 + 5, 3, 2− T ) ∼= Z/3Z.
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If (3, 2 −
√
−5) = (γ) is principal then #Z[

√
−5]/(γ) = 3, so NQ(

√
−5)/Q(γ) = 3. But no

element of Z[
√
−5] has norm 3. So (3, 2−

√
−5) is not principal, which makes it equivalent

to (2, 1 +
√
−5), so ( 2 3

−3 −2 ) is conjugate in M2(Z) to ( −1 −32 1 ).

Now it is natural to ask for an explicit conjugating matrix between ( 2 3
−3 −2 ) and ( −1 −32 1 ).

To find one, we will find an explicit scaling factor between the ideals (3, 2 −
√
−5) and

(2, 1 +
√
−5). There is an x ∈ Q(

√
−5) such that (3, 2−

√
−5) = x(2, 1 +

√
−5). To find x,

multiply both sides by (2, 1 +
√
−5). The right side becomes x(2) = (2x) and the left side

becomes

(3, 2−
√
−5)(2, 1 +

√
−5) = (6, 3 + 3

√
−5, 4− 2

√
−5, 7 +

√
−5).

We can eliminate the middle two generators since 3 + 3
√
−5 = (−3) · 6 + 3(7 +

√
−5) and

4− 2
√
−5 = 3 · 6− 2(7 +

√
−5), so

(3, 2−
√
−5)(2, 1 +

√
−5) = (6, 7 +

√
−5)

= ((1 +
√
−5)(1−

√
−5), (1 +

√
−5)(2−

√
−5))

= (1 +
√
−5)(1−

√
−5, 2−

√
−5)

= (1 +
√
−5).

Therefore (1 +
√
−5) = (2x), so we can use x = 1+

√
−5

2 :

(3, 2−
√
−5) =

1 +
√
−5

2
(2, 1 +

√
−5).

Since (3, 2−
√
−5) and (2, 1 +

√
−5) are scalar multiples of each other, we can multiply the

chosen Z-basis of (2, 1 +
√
−5) in Table 14 by 1+

√
−5

2 to express the second matrix in the

table as a representation of multiplication by
√
−5 on the ideal (3, 2−

√
−5):(

−1 −3
2 1

)
= [m√−5] on (3, 2−

√
−5) with respect to {1 +

√
−5,−2 +

√
−5}.

The matrices ( −1 −32 1 ) and ( 2 3
−3 −2 ) are now seen as representations of m√−5 with respect to

different Z-bases of the same ideal (3, 2−
√
−5). (That is the special feature of equivalent

fractional ideals: a basis of one can be scaled to a basis of the other, so a matrix represen-
tation on one is also valid on the other.) All we have to do now is compute the change of
basis matrix for the two bases {1 +

√
−5,−2 +

√
−5} and {3, 2 −

√
−5} of (3, 2 −

√
−5).

Writing the second basis in terms of the first,

3 = 1 · (1 +
√
−5) + (−1) · (−2 +

√
−5), 2−

√
−5 = 0 · (1 +

√
−5) + (−1) · (−2 +

√
−5).

The change of basis matrix is ( 1 0
−1 −1 ), and ( 1 0

−1 −1 )( −1 −32 1 )( 1 0
−1 −1 )−1 = ( 2 3

−3 −2 ).

Example 15. Let’s find an integral matrix A = ( a bc d ) ∈ M2(Z) such that A and A> are not
conjugate to each other in M2(Z). (In Mn(F ) for any field F , a matrix and its transpose
are conjugate.) The characteristic polynomials of A and A> are the same, namely

χ(T ) = T 2 − (a+ d)T + (ad− bc) ∈ Z[T ].

Suppose χ(T ) is irreducible in Z[T ], which is fairly typical anyway. Let α be a root of
χ(T ). We will produce ideals in Z[α] corresponding to A and A>, and then carefully select
a choice of A for which those two ideals are guaranteed to be inequivalent in an appropriate
quadratic ring.
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Let K = Q(α), and make Q2 into a K-vector space by

(r + sα)

(
x

y

)
:= (r + sA)

(
x

y

)
=

(
r + sa sb
sc r + sd

)(
x

y

)
.

A fractional Z[α]-ideal corresponding to A in Z[α] is

a =

{
m+ nα : m,n ∈ Z, (m+ nα)

(
1

0

)
∈ Z2

}
=

{
m+ nα : m,n ∈ Z,

(
m+ na

nc

)
∈ Z2

}
.

The condition (
m+ na

nc

)
∈ Z2

is the same as (
1 a
0 c

)(
m

n

)
∈ Z2,

so (
m

n

)
=

(
1 a
0 c

)−1(x
y

)
=

(
x− ay/c
y/c

)
with integers x and y. Therefore

a =
{
x− ay

c
+
y

c
α : x, y ∈ Z

}
= Z +

(
−a+ α

c

)
Z.

If we run through this argument using A> in place of A, the roles of b and c get flipped, so
the corresponding fractional Z[α]-ideal is

a′ = Z +

(
−a+ α

b

)
Z.

Scaling fractional ideals doesn’t change the correspondence, so we replace a with ca and a′

with ba′. That is, redefine

a = (c, a− α), a′ = (b, a− α).

Putting everything together, we can formulate our task in terms of ideals rather than
(non)conjugate matrices: find A = ( a bc d ) ∈ M2(Z) such that its characteristic polynomial
χ(T ) is irreducible and for a root α of χ(T ) the ideals (c, a− α) and (b, a− α) in Z[α] are

inequivalent. Let’s try to get this to work in a quadratic ring Z[
√
D]. We want χ(T ) =

T 2 −D (thus α = ±
√
D), so A has to have trace 0 and determinant −D:

a+ d = 0, ad− bc = −D.
Thus

d = −a, a2 + bc = D.

Scaling a′ by c,

ca′ = (bc, ac−cα) = (D−a2, (a−α)c) = ((α−a)(α+a), (a−α)c) = (a−α)(c, a+α) = (a−α)a,

where a is the conjugate ideal to a in the sense of Gal(Q(α)/Q) acting on ideals. Thus a′ is
in the same ideal class as a. So we can dispense with a′ by using a. We seek a = (c, a− α)

such that a is not equivalent to a. If Z[
√
D] is the full ring of integers of Q(

√
D), then aa is

a principal ideal2, so [a] is the inverse ideal class to [a]. Asking for a and a to be inequivalent

2aa = (c2, 2ac, bc) and an ideal with generators in Z is principal.
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ideals is therefore the same as asking for a to have order greater than 2 in the ideal class
group of Q(

√
D).

Now it’s time to consult tables of class numbers of quadratic fields. The first imaginary
quadratic field with h > 2 is Q(

√
−14), where h = 4. You can check that the ideal

(3, 1 −
√
−14) in Z[

√
−14] has order 4 in the class group. (That is, the smallest power of

this ideal that is principal is its 4th power.) Let’s use this ideal. To have this be (c, a− α),
take c = 3 and a = 1, and D = −14 = a2 + bc = 1 + 3b, so b = −5. Our matrix is ( 1 −5

3 −1 ).
(We took the bottom right entry to be −1 because we need A to have trace 0.) This integral
matrix is not conjugate in M2(Z) to its transpose ( 1 3

−5 −1 ) because it corresponds to an ideal

class in Z[
√
−14] having order greater than 2.

Of course, the statement that ( 1 −5
3 −1 ) and ( 1 3

−5 −1 ) are not conjugate in M2(Z) is wholly
elementary, not mentioning ideals at all, and the fact that they are not conjugate in M2(Z)
can be proved by contradiction in an elementary way. But if you follow that approach then
you have absolutely no idea how the example was found or even how to find more examples.
The way we went about finding the example shows a path through number theory by which
many more examples can be found.

Over a field, a square matrix and its transpose are conjugate, so ( 1 −5
3 −1 ) and ( 1 3

−5 −1 )

are conjugate in M2(Q). Two explicit U ∈ GL2(Q) satisfying U( 1 −5
3 −1 )U−1 = ( 1 3

−5 −1 )

are U1 = ( 1 −1
−1 −1 ) (with determinant −2) and U2 = ( 2 1

1 −4 ) (with determinant −9). Darij
Grinberg noticed an interesting aspect of this example when we reduce mod p. Since Z/pZ
is a field, ( 1 −5

3 −1 ) and its transpose ( 1 3
−5 −1 ) are conjugate in M2(Z/pZ) for every prime p,

and we can make this explicit: U1 mod p is a conjugating matrix when p 6= 2 and U2 mod p
works when p 6= 3. Therefore it is false that if two matrices in M2(Z) are conjugate in
M2(Z/pZ) for all primes p then they are conjugate in M2(Z).

The matrices U1 and U2 also show us that ( 1 −5
3 −1 ) and ( 1 3

−5 −1 ) are conjugate in M2(Z(p))
for every prime p (use U1 when p 6= 2 and U2 when p 6= 3). Guralnick [2] proved that if
two matrices in Mn(Z) are conjugate in Mn(Z(p)) for all primes p then they are conjugate
in Mn(OK) for some number field K. With a little work we can make this explicit for our
example: U( 1 −5

3 −1 )U−1 = ( 1 3
−5 −1 ) when U = ( 1+2i 2−2i

2−2i −3−2i ), which lies in SL2(Z[i]).
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