EXISTENCE OF FROBENIUS ELEMENTS (D'APRÈS FROBENIUS)

KEITH CONRAD

We show how to lift automorphisms of a residue field extension, using the original proof of Frobenius (*Ges. Abh.* Vol. II p. 729) that Frobenius elements exist.

Let A be a Dedekind ring with fraction field F. Let E/F be a finite Galois extension and B be the integral closure of A in E. Set $G = \operatorname{Gal}(E/F)$, choose a prime ideal \mathfrak{P} in B, and let $\mathfrak{p} = \mathfrak{P} \cap A$ be the prime below \mathfrak{P} in A and $D(\mathfrak{P}|\mathfrak{p})$ be the decomposition group at \mathfrak{P} in G. We want to show the natural homomorphism $D(\mathfrak{P}|\mathfrak{p}) \to \operatorname{Aut}_{A/\mathfrak{p}}(B/\mathfrak{P})$ is onto. That is, for any $\tau \in \operatorname{Aut}_{A/\mathfrak{p}}(B/\mathfrak{P})$, we want to show some $\sigma \in G$ satisfies

(1)
$$\sigma(x) = \tau(\overline{x})$$

for all $x \in B$, where \overline{t} means $t \mod \mathfrak{P}$. (Then $\sigma(\mathfrak{P}) = \mathfrak{P}$, so σ is in $D(\mathfrak{P}|\mathfrak{p})$ and reduces to τ .)

Since B is a finitely generated A-module, we can write

$$B = \sum_{j=1}^{n} A\omega_j$$

for some $n \ge 1$. (Note A need not be a PID, so the ω_j 's need not be an A-basis and n need not be [E:F].) We will find $\sigma \in G$ such that (1) holds for $x = \omega_1, \ldots, \omega_n$. Then (1) holds for all $x \in B$ by A-linearity.

Consider the following multivariable polynomial in $B[Y, X_1, \ldots, X_n]$:

(2)
$$\varphi(Y, X_1, \dots, X_n) = \prod_{\sigma \in G} (Y - \sigma(\omega_1) X_1 - \dots - \sigma(\omega_n) X_n)$$

By symmetry, the coefficients of $\varphi(Y, X_1, \ldots, X_n)$ are in $B \cap F = A$. Substituting $\omega_1 X_1 + \cdots + \omega_n X_n$ for Y kills the polynomial:

 $\varphi(\omega_1 X_1 + \dots + \omega_n X_n, X_1, \dots, X_n) = 0$

in $B[X_1,\ldots,X_n]$. Reducing coefficients modulo \mathfrak{P} ,

(3)
$$\overline{\varphi}(\overline{\omega}_1 X_1 + \dots + \overline{\omega}_n X_n, X_1, \dots, X_n) = \overline{0}$$

in $(B/\mathfrak{P})[X_1,\ldots,X_n]$, noting $\overline{\varphi}(Y,X_1,\ldots,X_n)$ lies in $(A/\mathfrak{p})[Y,X_1,\ldots,X_n]$.

Extend τ from an automorphism of B/\mathfrak{P} to an automorphism of $(B/\mathfrak{P})[X_1, \ldots, X_n]$ by acting on coefficients (fixing the X_j 's, that is). Applying this automorphism to both sides of (3) gives

(4)
$$\overline{\varphi}(\tau(\overline{\omega}_1)X_1 + \dots + \tau(\overline{\omega}_n)X_n, X_1, \dots, X_n) = \overline{0}$$

in $(B/\mathfrak{P})[X_1,\ldots,X_n]$ since the coefficients of $\overline{\varphi}$ (as a polynomial in n+1 variables) are in A/\mathfrak{p} and thus are fixed by τ .

Recalling the definition of φ in (2), equation (4) says that in $(B/\mathfrak{P})[X_1,\ldots,X_n]$,

$$\prod_{\sigma \in G} ((\tau(\overline{\omega}_1) - \overline{\sigma(\omega_1)})X_1 + \dots + (\tau(\overline{\omega}_n) - \overline{\sigma(\omega_n)})X_n) = \overline{0}.$$

Since $(B/\mathfrak{P})[X_1,\ldots,X_n]$ is a domain, one of the factors must be zero. That means some $\sigma \in G$ satisfies $\overline{\sigma(\omega_j)} = \tau(\overline{\omega_j})$ in B/\mathfrak{P} for all j. This σ is what we were seeking.