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The Minkowski bound says, for a number field K, that any ideal class contains an integral
ideal with norm bounded above by

n!

nn

(
4

π

)r2√
|disc(K)|.

In particular, the ideal class group is generated by the prime ideals with norm not exceeding
this bound.

We will use the Minkowski bound to compute class groups of various quadratic fields.
(The computation of class numbers, rather than class groups, can be obtained by analytic
methods. If the class number is prime, then of course the class group is cyclic, but we
don’t know the class group right away from knowing the class number is, say, 4.) For

real quadratic fields, n = 2 and r2 = 0, so the Minkowski bound is (1/2)
√
|disc(K)|. For

imaginary quadratic fields, n = 2 and r2 = 1, so the bound is (2/π)
√
| disc(K)|.

For any nonzero ideal a in OK , its ideal class will be denoted [a] and we write ∼ for
the equivalence relation on ideals that leads to the class group: a ∼ b means b = γa for
some γ ∈ K×. We’ll usually write a ∼ (1) as a ∼ 1. Keep in mind the distinction between
equality of ideals and equality of ideal classes. For example, if a2 ∼ 1 and ab ∼ 1, this
implies a ∼ b (so a = γb for some γ), not a = b.

Example 1. When the Minkowski bound is less than 2, the class group is trivial. For
the real quadratic case, the bound is less than 2 when |disc(K)| < 16. For the imaginary
quadratic case, the bound is less than 2 when |disc(K)| < π2.

This tells us the following quadratic fields have class number 1: Q(
√

2), Q(
√

3), Q(
√

5),
Q(
√

13), Q(i), Q(
√
−2), Q(

√
−3), and Q(

√
−7). There are other real and imaginary

quadratic fields with class number 1, but the Minkowski bound in the other cases is not less
than 2, so we need extra work to show the class number is 1.

Example 2. Let K = Q(
√

82). We will show the class group is cyclic of order 4.
Here n = 2, r2 = 0, disc(K) = 4 · 82, so the Minkowski bound is ≈ 9.055. We look at the

primes lying over 2, 3, 5, and 7.
The following table describes how (p) factors from the way T 2 − 82 factors modulo p.

p T 2 − 82 mod p (p)
2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

5 irred. prime
7 irred. prime

Thus, the class group of Q(
√

82) is generated by [p2] and [p3], with p22 = (2) ∼ (1) and

p′3 ∼ p−13 .

Since NK/Q(10 +
√

82) = 18 = 2 · 32, and 10 +
√

82 is not divisible by 3, (10 +
√

82)

is divisible by just one of p3 and p′3. Let p3 be that prime, so (10 +
√

82) = p2p
2
3. Thus
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p2 ∼ p−23 , so the class group of K is generated by [p3] and we have the formulas

[p2]
2 = 1, [p3]

2 = [p2].

Therefore [p3] has order dividing 4.
We will show p2 is nonprincipal, so [p3] has order 4, and thus K has a class group

〈[p3]〉 ∼= Z/4Z.
If p2 = (a + b

√
82), then a2 − 82b2 = ±2, so 2 or −2 is ≡ � mod 41. This is no

contradiction, since 2 ≡ 172 mod 41. We need a different idea.
The idea is to use the known fact that p22 is principal. If p2 = (a + b

√
82), then (2) =

p22 = ((a+ b
√

82)2), so

2 = (a+ b
√

82)2u,

where u is a unit.
Taking norms here N(u) must be positive, so N(u) = 1. The unit group of Z[

√
82] is

±(9 +
√

82)Z, with 9 +
√

82 having norm −1. Therefore the positive units of norm 1 are the
integral powers of (9 +

√
82)2, which are all squares. A unit square can be absorbed into

the (a + b
√

82)2 term, so we have to be able to solve 2 = (a + b
√

82)2 in integers a and b.
This is absurd: it implies

√
2 lies in Z[

√
82]. Thus, p2 is not principal.

Example 3. Let K = Q(
√
−14). We will show the class group is cyclic of order 4.

Here n = 2, r2 = 1, and disc(K) = −56. The Minkowski bound is ≈ 4.764, so the class
group is generated by primes dividing (2) and (3). The following table shows how (2) and
(3) factor in OK based on how T 2 + 14 factors modulo 2 and modulo 3.

p T 2 + 14 mod p (p)
2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

Since p22 ∼ 1, p2 ∼ p−12 . Since p3p
′
3 ∼ 1, p′3 ∼ p−13 . Therefore the class group of K is

generated by [p2] and [p3].
Both p2 and p3 are nonprincipal, since the equations a2 + 14b2 = 2 and a2 + 14b2 = 3

have no integral solutions.
To find relations between p2 and p3, we use NK/Q(2 +

√
−14) = 18 = 2 · 32. The ideal

(2 +
√
−14) is divisible by only one of p3 and p′3, since 2 +

√
−14 is not a multiple of 3.

Without loss of generality, we may let p3 be the prime of norm 3 dividing (2+
√
−14). Then

p2p
2
3 ∼ 1, so

p23 ∼ p−12 ∼ p2,

so the class group of K is generated by [p3]. Since p2 is nonprincipal and p22 ∼ 1, [p3] has
order 4. Thus, the class group of K is cyclic of order 4.

Example 4. Let K = Q(
√
−30). We will show the class group is a product of two cyclic

groups of order 2.
Here n = 2, r2 = 1, and disc(K) = −120. The Minkowski bound is ≈ 6.97, so the class

group is generated by primes dividing 2, 3, and 5.
The following table shows how these primes factor into prime ideals.

p T 2 + 30 mod p (p)
2 T 2 p22
3 T 2 p23
5 T 2 p25
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For a, b ∈ Z, NK/Q(a+ b
√
−30) = a2 + 30b2 is never 2, 3, or 5. Therefore [p2], [p3], and

[p5] each have order 2 in the class group of K. Moreover, since NK/Q(
√
−30) = 30 = 2 ·3 ·5,

(
√
−30) = p2p3p5. Thus, in the class group, p2p3p5 ∼ 1, so [p2] and [p3] generate the class

group.
The relation p2p3p5 ∼ 1 in the class group can be rewritten as

[p2][p3] = [p5]
−1 = [p5].

Since p5 is nonprincipal and [p2] and [p3] have order 2 in the class group, [p2] 6= [p3].
Therefore the class group of K is a product of two cyclic groups of order 2.

Example 5. Let K = Q(
√

79). We will show the class group is cyclic of order 3. (This is

the first real quadratic field Q(
√
d), ordered by squarefree d, with a class number greater

than 2.)
Here n = 2, r2 = 0, and disc(K) = 4 · 79. The Minkowski bound is ≈ 8.88, so the class

group is generated by primes dividing 2, 3, 5, and 7. The following table shows how these
primes factor in OK .

p T 2 − 79 mod p (p)
2 (T − 1)2 p22
3 (T + 1)(T − 1) p3p

′
3

5 (T + 2)(T − 2) p5p
′
5

7 (T + 3)(T − 3) p7p
′
7

Therefore the class group is generated by [p2], [p3], [p5], and [p7].
Here is a table which factors |NK/Q(a+

√
79)| for a running from 1 to 10.

a |NK/Q(a+
√

79)|
1 2 · 3 · 13
2 3 · 52
3 2 · 5 · 7
4 32 · 7
5 2 · 33
6 43
7 2 · 3 · 5
8 3 · 5
9 2
10 3 · 7

From a = 9, we see p2 = (9 +
√

79) ∼ 1. From a = 8 and a = 10, [p5] and [p7] are equal
to [p3] or [p3]

−1. Therefore the class group of K is generated by p3.
Consider now a = 5. Since 5 +

√
79 has absolute norm 2 · 27 and is not divisible by 3,

(5 +
√

79) is only divisible by one of p3 or p′3. Without loss of generality, let p3 be that

prime, so (5 +
√

79) = p2p
3
3 ∼ p33. Thus, the class group is either trivial or cyclic of order 3.

We now show p3 is not principal, so the class group is cyclic of order 3. Our method will
be similar to the work with Q(

√
82). In particular, we need knowledge of the unit group.
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Assuming p3 = (α), we have

(α3) = p33

= (5 +
√

79)p−12

= (5 +
√

79)(9 +
√

79)−1

= (−17 + 2
√

79).

Thus

α3 = (−17 + 2
√

79)u,

where u is a unit in Z[
√

79]. Since α can be changed by a unit cube without affecting the
ideal (α3), we may assume u = 1, ε, and ε2, where ε is the fundamental unit of Z[

√
79]:

ε = 80 + 9
√

79.

(Negative signs on units can be absorbed into the cube part of α3.) By a direct calculation,

(−17 + 2
√

79)ε = 64 + 7
√

79, (−17 + 2
√

79)ε2 = 9937 + 1118
√

79.

Writing α = a+ b
√

79 for unknown integers a and b, we have

α3 = a(a2 + 3 · 79b2) + b(3a2 + 79b2)
√

79.

Taking ideal norms in the hypothetical equation (a+ b
√

79) = p3, |a2 − 79b2| = 3, so both
a and b are nonzero. Therefore the coefficient b(3a2 + 79b2) of

√
79 in α3 is, in absolute

value, at least 3 + 79 = 82. Thus, it is impossible to have α3 equal to −17 + 2
√

79 or
(−17 + 2

√
79)ε.

If α3 = 9937 + 1118
√

79, then we must have

b(3a2 + 79b2) = 1118 = 2 · 13 · 43.

Thus b (which must be positive by this equation) has 8 possibilities. For each choice of b, we
try to solve for a as an integer. One possibility works: b = 2 and a = 9. So α = 9 + 2

√
79.

But this number has norm −235, not ±3. We have a contradiction, so p3 is not principal.

Example 6. LetK = Q(
√
−65). We will show its class group is isomorphic to Z/2Z×Z/4Z.

The Minkowski bound is (4/π)
√

65 ≈ 10.26, so we should factor 2, 3, 5, and 7 in OK =
Z[
√
−65]. From the following table, the class group is generated by [p2], [p3], and [p5].

p T 2 + 65 mod p (p)
2 (T + 1)2 p22
3 (T + 1)(T + 2) p3p

′
3

5 T 2 p25
7 T 2 + 65 (7)

If we factor N(a +
√
−65) = a2 + 65 for small a, looking for only factors of 2, 3, and 5,

then we get examples at a = 4 and a = 5.

a a2 + 65
1 3 · 11
2 3 · 23
3 2 · 37
4 34

5 2 · 32 · 5
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Since (4 +
√
−65) is not divisible by (3), the ideal (4 +

√
−65) is divisible by only one of

the prime factors of (3). Choose p3 as that prime, so

(4 +
√
−65) = p43.

Then
(5 +

√
−65) = p2p

′2
3 p5,

so the class group is generated by [p2] and [p3].
Since p22 = (2) and p43 = (4 +

√
−65), [p2]

2 = [1] and [p3]
4 = [1]. The ideal p2 is

nonprincipal, since there is no integral solution to the equation 2 = x2 + 65y2. The only
integral solution to 9 = x2 + 65y2 is x = ±3 and y = 0, so if p23 were principal then
p23 = (3) = p3p

′
3, and that is false (p3 6= p′3). Therefore [p2] has order 2 and [p3] has order 4.

Can [p3]
2 = [p2]? If so, then [p2p

2
3] = [p2]

2 = [1], so p2p
2
3 is principal. But 18 = x2 + 65y2

has no integral solution. Therefore 〈[p2]〉 and 〈[p3]〉 intersect trivially, so the class group is

〈[p2], [p3]〉 ∼= 〈[p2]〉 × 〈[p3]〉 ∼= Z/2Z× Z/4Z.


