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1. Introduction

A standard group action in complex analysis is the action of GL2(C) on the Riemann
sphere C ∪ {∞} by linear fractional transformations (Möbius transformations):

(1.1)
(
a b
c d

)
z =

az + b

cz + d
.

We need to allow the value ∞ since cz + d might be 0. (If that happens, az + b 6= 0 since
( a b

c d ) is invertible.) When z =∞, the value of (1.1) is a/c ∈ C ∪ {∞}.
It is easy to see this action of GL2(C) on the Riemann sphere is transitive (that is, there

is one orbit): for every a ∈ C,

(1.2)
(
a a− 1
1 1

)
∞ = a,

so the orbit of ∞ passes through all points. In fact, since ( a a−1
1 1 ) has determinant 1, the

action of SL2(C) on C ∪ {∞} is transitive.
However, the action of SL2(R) on the Riemann sphere is not transitive. The reason is

the formula for imaginary parts under a real linear fractional transformation:

Im
(
az + b

cz + d

)
=

(ad− bc) Im(z)
|cz + d|2

when ( a b
c d ) ∈ GL2(R). Thus, z and ( a b

c d )z have the same imaginary part when ( a b
c d ) has

determinant 1. The action of SL2(R) on the Riemann sphere has three orbits: R ∪ {∞},
the upper half-plane h = {x+ iy : y > 0}, and the lower half-plane. To see that the action
of SL2(R) on h is transitive, pick x+ iy with y > 0. Then( √

y x/
√
y

0 1/
√
y

)
i = x+ iy,

and the matrix here is in SL2(R). (This action of SL2(R) on the upper half-plane is
essentially one of the models for the isometries of the hyperbolic plane.)

The action (1.1) makes sense with C replaced by any field K, and gives a transitive group
action of GL2(K) on the set K ∪{∞}. Just as over the complex numbers, the formula (1.2)
shows the action of SL2(K) on K ∪ {∞} is transitive.

Now take K to be a number field, and replace the group SL2(K) with the subgroup
SL2(OK). We ask: how many orbits are there for the action of the group SL2(OK) on
K ∪ {∞}?

Theorem 1.1. For a number field K, the number of orbits for SL2(OK) on K ∪ {∞} is
the class number of K.

1



2 KEITH CONRAD

Therefore there are finitely many orbits, and moreover this finiteness is a non-trivial
statement!

In Section 2, we will prove SL2(OK) acts transitively on K ∪ {∞} if and only if K has
class number 1. This is the simplest case of Theorem 1.1. As preparation for the general
case, in Section 3 we will change our language from K ∪ {∞} to the projective line over K,
whose relevance (among other things) is that it removes the peculiar status of∞. (It seems
useful to treat the special case of class number 1 without mentioning the projective line, if
only to underscore what it is one is gaining by using the projective line in the general case.)
In Section 4 we prove Theorem 1.1 in general. This theorem is particularly important for
totally real K (in the context of Hilbert modular forms [1, pp. 36–38], [2, pp. 7–8]), but it
holds for any number field K.

As a further illustration of the link between SL2 and classical number theory, we show
in an appendix that the Euclidean algorithm on Z is more or less equivalent to the group
SL2(Z) being generated by the matrices ( 1 1

0 1 ) and ( 0 −1
1 0 ).

The prerequisites we need about number fields are:in any number field all fractional ideals
are invertible, and any fractional ideal has two generators. That only two generators are
needed for fractional ideals in a number field appears as an exercise in several introductory
algebraic number theory books, but it may seem like an isolated fact in such books (I
thought so when I first saw it!). Its use in the proof of Theorem 1.1 shows it is not.

2. Transitivity and Class Number One

As an example of class number one, take K = Q. We will show every rational number
is in the SL2(Z)-orbit of ∞. Pick a rational number r, and write it in reduced form as
r = a/c, so a and c are relatively prime integers. (If r = 0, use a = 0 and c = 1.) Since
(a, c) = 1, we can solve the equation ad− bc = 1 in integers b and d, which means we get a
matrix ( a b

c d ) in SL2(Z) whose first column is
(
a
c

)
. This matrix sends ∞ to a/c = r.

Conversely, if we know by some independent means that the SL2(Z)-action on Q ∪ {∞}
is transitive, then for any rational number r we can find a matrix ( a b

c d ) ∈ SL2(Z) sending
∞ to r, so r = a/c. Since ad− bc = 1, a and c have no common factors, so we can write r
as a ratio of relatively prime integers. Thus, the fact that the SL2(Z)-action on Q∪{∞} is
transitive is equivalent to the ability to write rational numbers in reduced form over Z.

A similar argument shows the action of SL2(OK) on K ∪ {∞} is transitive if and only
if every element of K can be written in ‘reduced form,’ i.e., as a ratio of relatively prime
algebraic integers from OK .

Theorem 2.1. Every element of K× has the form α/β where (α, β) = (1) in OK if and
only if K has class number 1.

Proof. If K has class number 1 then OK is a PID, so a UFD, so any ratio of nonzero elements
of OK can be put in a reduced form.

Conversely, suppose each ratio of nonzero elements of OK can be put in reduced form.
To show every ideal is principal, pick an ideal a. We may suppose a 6= (0), so a = (x, y)
where x and y are in OK and neither is 0. By hypothesis we can write x/y = α/β where
(α, β) = (1). Then xβ = yα, so (x)(β) = (y)(α). The ideals (α) and (β) are relatively
prime, so (α)|(x). Thus α|x, so x = αγ for some γ ∈ OK . Then αγβ = yα, so y = βγ. It
follows that a = (x, y) = (αγ, βγ) = (α, β)(γ) = (1)(γ) = (γ) is principal. �

Thus, the number of orbits for SL2(OK) on K ∪ {∞} is 1 if and only if K has class
number 1.
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3. The Projective Line

In this section, K is any field.
The set of numbers K ∪ {∞} can be thought of as the possible slopes of different lines

through the origin inK2. Rather than determine such lines by their slopes, we can determine
such lines by naming a representative point (x, y) on the line, excluding (0, 0) (which lies
on all such lines). But we face the issue: when do two non-zero points (x, y) and (x′, y′)
lie on the same line through the origin? Since a line through the origin is the set of scalar
multiples of any non-zero point on that line, (x, y) and (x′, y′) lie on the same line through
the origin when (x′, y′) = λ(x, y) for some λ ∈ K×.

Definition 3.1. The projective line over K is the set of points in K2 − {(0, 0)} modulo
scaling by K×. That is, we set (x, y) ∼ (x′, y′) if and only if there is some λ ∈ K× such
that x′ = λx and y′ = λy. The equivalence classes for ∼ form the projective line over K.

We denote the projective line over K by P1(K). (Strictly speaking, the projective line
over K is a richer geometric object than merely the set of equivalence classes P1(K), but
our definition will be adequate for our purposes.) The equivalence class of (x, y) in P1(K) is
denoted [x, y] and is called a point of P1(K). For instance, in P1(R), [2, 3] = [4, 8] = [1, 3/2].
Provided x 6= 0, we have [x, y] = [1, y/x], and [1, a] = [1, b] if and only if a = b. We have
[0, y] = [x′, y′] if and only if x′ = 0, and in this case [0, y] = [0, 1]. Thus, every point of
P1(K) equals [1, y] for a unique y ∈ K or is the point [0, 1]. By an analogous argument,
every point of P1(K) is [x, 1] for a unique x ∈ K or is the point [1, 0]. For the points [x, y]
with neither x nor y equal to 0, we can write them either as [1, y/x] or [x/y, 1]. (To change
between the two coordinates amounts to t↔ 1/t on K×.)

The passage from [x, y] to the ratio y/x, with the exceptional case x = 0, corresponds
to the idea of recovering a line’s slope as a number in K ∪ {∞}. In other words, the
correspondence between P1(K) and K ∪ {∞} comes about from

[x, y] 7→

{
y/x, if x 6= 0,
∞, if x = 0.

Since [x, y] = [x′, y′] if and only if (x, y) and (x′, y′) are non-zero scalar multiples, the ratio
y/x (provided x 6= 0) is a well-defined number in terms of the point [x, y] even though the
coordinates x and y themselves are not uniquely determined from [x, y].

We get another correspondence between P1(K) and K ∪{∞} by associating [x, y] to x/y
or ∞:

(3.1) [x, y] 7→

{
x/y, if y 6= 0,
∞, if y = 0.

Now we describe an action of GL2(K) on P1(K) which corresponds to (1.1). For an
invertible matrix A ∈ GL2(K), and a non-zero vector v ∈ K2, the product Av is non-zero
and

A(λv) = λAv

for any λ ∈ K. Therefore A sends all points on one line through the origin in K2 to all
points on another line through the origin in K2. (No such line collapses under A since A
is invertible.) This means the usual action of A = ( a b

c d ) on column vectors in K2 lets us
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define A as a transformation of P1(K):

(3.2)
(
a b
c d

)(
x

y

)
=
(
ax+ by

cx+ dy

)
 

(
a b
c d

)
[x, y] := [ax+ by, cx+ dy].

When y 6= 0, let z = x/y. Then the element of K ∪ {∞} corresponding by (3.1) to
[ax+ by, cx+ dy] is

ax+ by

cx+ dy
=
az + b

cz + d
,

interpreted as ∞ when the denominator is 0. Writing [x, y] as [z, 1], we see that the action
of GL2(K) on K∪{∞} given by (1.1), with the peculiar role of∞, is the same as the action
of GL2(K) on P1(K) given by the right side of (3.2). And now, in P1(K), there is no more
mysterious ∞. Everything is homogeneous.

4. Orbits and Ideal Classes

For x, y ∈ K, not both zero, we write [x, y] for a point in P1(K) and (x, y) = xOK +yOK

for a fractional ideal. Since every fractional ideal has two generators, (x, y) is a completely
general fractional ideal as x and y vary (avoiding x = y = 0).

Now we are ready to prove Theorem 1.1 in general.

Proof. Step 1: If [x, y] and [u, v] are in the same SL2(OK)-orbit, then the fractional ideals
(x, y) and (u, v) are in the same ideal class.

Being in the same orbit means

(4.1)
(
a b
c d

)(
x
y

)
=
(
λu
λv

)
for some ( a b

c d ) ∈ SL2(OK) and λ ∈ K×. Thus

ax+ by = λu,

cx+ dy = λv,

so we have an inclusion of OK-modules (λu, λv) ⊂ (x, y). Multiplying both sides of (4.1) by
the inverse ( a b

c d )−1 ∈ SL2(OK) gives the reverse inclusion, so (x, y) = (λu, λv) = λ(u, v).
As far as Step 1 is concerned, the matrix ( a b

c d ) could have been in GL2(OK) rather than
SL2(OK).

Step 2: If (x, y) and (u, v) are in the same ideal class, then the points [x, y] and [u, v] in
P1(K) are in the same SL2(OK)-orbit.

Write (x, y) = λ(u, v) = (λu, λv) for some λ ∈ K×. We want to show [x, y] and [u, v] are
in the same orbit of SL2(OK). Since [λu, λv] = [u, v] in P1(K), we may take λ = 1, i.e., we
may assume the fractional ideals (x, y) and (u, v) are equal. In other words, we are aiming
at a relation between pairs of generators for the same fractional ideal.

Let a = (x, y). The inverse ideal a−1 has two generators, say a−1 = (r, s). From the
equation (1) = (x, y)(r, s) = (xr, xs, yr, ys), there are α, β, γ, δ ∈ OK such that

1 = αxr + βxs+ γry + δys

= (αr + βs)x+ (γr + δs)y.

Note y′ := αr+βs and x′ := −(γr+δs) are in a−1. Thus, we can form a matrix M = ( x x′

y y′ )
in M2(K) with determinant xy′ − yx′ = 1 where the second column has entries in a−1.
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Similarly, there is a matrix N = ( u u′

v v′ ) ∈ M2(K) with determinant 1 where the second
column has entries in a−1.

Since x′, y′, u′, v′ ∈ a−1, the product

MN−1 =
(
x x′

y y′

)(
v′ −u′
−v u

)
has determinant 1 and entries in OK . Therefore MN−1 is in SL2(K)∩M2(OK) = SL2(OK).

As M [1, 0] = [x, y] and N [1, 0] = [u, v], MN−1[u, v] = M [1, 0] = [x, y], so [x, y] and [u, v]
are in the same SL2(OK)-orbit of P1(K). �

Our bijection between SL2(OK)-orbits and ideal classes of K associates the identity ideal
class (x = 1, y = 0) with the orbit of [1, 0] =∞ in P1(K).

Everything we have done here carries over to a general Dedekind domain, with identical
proofs. We will just state the result.

Theorem 4.1. Let R be a Dedekind domain and F be its fraction field. The orbits for
SL2(R) on F ∪ {∞} are in bijection with the ideal class group of R. In particular, SL2(R)
acts transitively on F ∪ {∞} if and only if R is a PID.

Appendix A. Generators for SL2(Z)

There are two important matrices in SL2(Z):

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
.

It is left to the reader to check that S2 = −I2, so S has order 4, while T k = ( 1 k
0 1 ) for any

k ∈ Z, so T has infinite order.

Theorem A.1. The group SL2(Z) is generated by S and T .

Proof. As the proof will reveal, this theorem is the Euclidean algorithm in disguise.
First we check how S and any power of T change the entries in a matrix. Verify that

S

(
a b
c d

)
=
(
−c −d
a b

)
,

and

T k

(
a b
c d

)
=
(
a+ ck b+ dk
c d

)
.

Thus, up to a sign change, multiplying by S on the left interchanges the rows. Multiplying
by a power of T on the left adds a multiple of the second row to the first row and does not
change the second row. Given a matrix ( a b

c d ) in SL2(Z), we can carry out the Euclidean
algorithm on a and c by using left multiplication by S and powers of T . We use the power
of T to carry out the division (if a = cq + r, use k = −q) and use S to interchange the
roles of a and c to guarantee that the larger of the two numbers (in absolute value) is in
the upper-left corner. (Multiplication by S will cause a sign change, but this has no serious
effect on the algorithm.)

Since ad − bc = 1, a and c are relatively prime, so the last step of Euclid’s algorithm
will have a remainder of 1. This means, after suitable multiplication by S’s and T ’s, we
will have transformed the matrix ( a b

c d ) into a matrix with first column
(±1

0

)
or
(

0
±1

)
. Left-

multiplying by S interchanges the rows up to a sign, so we can suppose the first column
is
(±1

0

)
. Any matrix of the form ( 1 x

0 y ) in SL2(Z) must have y = 1 (the determinant is 1),
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and then it is ( 1 x
0 1 ) = T x. A matrix (−1 x

0 y ) in SL2(Z) must have y = −1, so the matrix
is (−1 x

0 −1 ) = (−I2)T−x. Since −I2 = S2, we can finally unwind and express our original
matrix in terms of S’s and T ’s. �

Example A.2. Take A = ( 26 7
11 3 ). Since 26 = 11 · 2 + 4, we want to subtract 11 · 2 from 26:

T−2A =
(

4 1
11 3

)
.

Now we want to switch the roles of 4 and 11. Multiply by S:

ST−2A =
(
−11 −3

4 1

)
.

Dividing −11 by 4, we have −11 = 4 · (−3) + 1, so we want to add 4 · 3 to −11. Multiply
by T 3:

T 3ST−2A =
(

1 0
4 1

)
.

Once again, multiply by S two switch the entries of the first column (up to sign):

ST 3ST−2A =
(
−4 −1
1 0

)
.

Our final division is: −4 = 1(−4) + 0. We want to add 4 to −4, so multiply by T 4:

T 4ST 3ST−2A =
(

0 −1
1 0

)
= S.

Left-multiplying by the inverses of all the S’s and T ’s on the left side, we obtain

A = T 2S−1T−3S−1T−4S.

Since S4 = I2, we can write S−1 as S3 if we wish to use a positive exponent on S.
However, a similar idea does not apply to the negative powers of T .

Remark A.3. Since ST = ( 0 −1
1 1 ) has order 6, we can write SL2(Z) = 〈S, ST 〉, which is a

generating set of elements with finite order.

References

[1] E. B. Freitag, “Hilbert Modular Forms,” Springer-Verlag, 1990.
[2] P. B. Garrett, “Holomorphic Hilbert Modular Forms,” Wadsworth & Brooks/Cole, 1990.


