IDEAL CLASSES AND SL,

KEITH CONRAD

1. INTRODUCTION

A standard group action in complex analysis is the action of GL2(C) on the Riemann
sphere C U {oo} by linear fractional transformations (Mébius transformations):

a b az+b
1.1 = —.
(1.1) ( c d > T +d
We need to allow the value oo since ¢z + d might be 0. (If that happens, az + b # 0 since
(2%) is invertible.) When z = oo, the value of (1.1) is a/c € C U {oo}.

It is easy to see this action of GL2(C) on the Riemann sphere is transitive (that is, there
is one orbit): for every a € C,

(1.2) (‘1‘ “I1>oo:a,

so the orbit of oo passes through all points. In fact, since (¢ aII) has determinant 1, the
action of SLg(C) on C U {oo} is transitive.

However, the action of SLa(R) on the Riemann sphere is not transitive. The reason is
the formula for imaginary parts under a real linear fractional transformation:

Im az+b\  (ad— bc)Im(z)
cz+d) ez +d?

when (25) € GLy(R). Thus, z and (2%)z have the same imaginary part when (¢ %) has

determinant 1. The action of SLy(R) on the Riemann sphere has three orbits: R U {o0},
the upper half-plane h = {x + iy : y > 0}, and the lower half-plane. To see that the action
of SLy(R) on b is transitive, pick = + iy with y > 0. Then

<\6§ T;\%g)z:x—i-zy

and the matrix here is in SLo(R). (This action of SLa(R) on the upper half-plane is
essentially one of the models for the isometries of the hyperbolic plane.)

The action (1.1) makes sense with C replaced by any field K, and gives a transitive group
action of GL2(K) on the set K U{oo}. Just as over the complex numbers, the formula (1.2)
shows the action of SLy(K) on K U {oco} is transitive.

Now take K to be a number field, and replace the group SLo(K) with the subgroup
SL2(Ok). We ask: how many orbits are there for the action of the group SL2(Og) on
K U {oo}?

Theorem 1.1. For a number field K, the number of orbits for SLa(Ok) on K U {oco} is

the class number of K.
1
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Therefore there are finitely many orbits, and moreover this finiteness is a non-trivial
statement!

In Section 2, we will prove SLa(Og) acts transitively on K U {oo} if and only if K has
class number 1. This is the simplest case of Theorem 1.1. As preparation for the general
case, in Section 3 we will change our language from K U {oo} to the projective line over K,
whose relevance (among other things) is that it removes the peculiar status of co. (It seems
useful to treat the special case of class number 1 without mentioning the projective line, if
only to underscore what it is one is gaining by using the projective line in the general case.)
In Section 4 we prove Theorem 1.1 in general. This theorem is particularly important for
totally real K (in the context of Hilbert modular forms [1, pp. 36-38], [2, pp. 7-8]), but it
holds for any number field K.

As a further illustration of the link between SLs and classical number theory, we show
in an appendix that the Euclidean algorithm on Z is more or less equivalent to the group
SLy(Z) being generated by the matrices (§1) and (9 ').

The prerequisites we need about number fields are:in any number field all fractional ideals
are invertible, and any fractional ideal has two generators. That only two generators are
needed for fractional ideals in a number field appears as an exercise in several introductory
algebraic number theory books, but it may seem like an isolated fact in such books (I
thought so when I first saw it!). Its use in the proof of Theorem 1.1 shows it is not.

2. TRANSITIVITY AND CLASS NUMBER ONE

As an example of class number one, take K = Q. We will show every rational number
is in the SLa(Z)-orbit of co. Pick a rational number r, and write it in reduced form as
r = a/c, so a and c are relatively prime integers. (If r = 0, use @ = 0 and ¢ = 1.) Since
(a,c) = 1, we can solve the equation ad — bc = 1 in integers b and d, which means we get a
matrix (¢ %) in SLa(Z) whose first column is (£). This matrix sends oo to a/c =r.

Conversely, if we know by some independent means that the SLy(Z)-action on Q U {oc}
is transitive, then for any rational number 7 we can find a matrix (2 Y) € SLy(Z) sending
o0 to r, so r = a/c. Since ad — bc = 1, a and ¢ have no common factors, so we can write r
as a ratio of relatively prime integers. Thus, the fact that the SLa(Z)-action on QU {co} is
transitive is equivalent to the ability to write rational numbers in reduced form over Z.

A similar argument shows the action of SLy(Ox) on K U {co} is transitive if and only
if every element of K can be written in ‘reduced form,’” i.e., as a ratio of relatively prime
algebraic integers from Q.

Theorem 2.1. Every element of K* has the form o/ where (o, 3) = (1) in Ok if and
only if K has class number 1.

Proof. If K has class number 1 then O is a PID, so a UFD, so any ratio of nonzero elements
of O can be put in a reduced form.

Conversely, suppose each ratio of nonzero elements of O can be put in reduced form.
To show every ideal is principal, pick an ideal a. We may suppose a # (0), so a = (z,y)
where z and y are in Og and neither is 0. By hypothesis we can write z/y = «/ where
(o, 5) = (1). Then zf = ya, so (z)(8) = (y)(«). The ideals («) and () are relatively
prime, so («)|(z). Thus a|z, so © = ay for some v € Og. Then ayf = yo, so y = [y. It
follows that a = (x,y) = (o, 87) = (o, 8)(7) = (1)(y) = (7) is principal. O

Thus, the number of orbits for SLy(Ox) on K U {oco} is 1 if and only if K has class
number 1.
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3. THE PROJECTIVE LINE

In this section, K is any field.

The set of numbers K U {oo} can be thought of as the possible slopes of different lines
through the origin in K2. Rather than determine such lines by their slopes, we can determine
such lines by naming a representative point (z,y) on the line, excluding (0,0) (which lies
on all such lines). But we face the issue: when do two non-zero points (z,y) and (z/,y")
lie on the same line through the origin? Since a line through the origin is the set of scalar
multiples of any non-zero point on that line, (z,y) and (2,%') lie on the same line through
the origin when (2/,3) = \(x,y) for some \ € K*.

Definition 3.1. The projective line over K is the set of points in K2 — {(0,0)} modulo
scaling by K*. That is, we set (z,y) ~ (2/,4') if and only if there is some A € K* such
that 2’ = Az and 3’ = \y. The equivalence classes for ~ form the projective line over K.

We denote the projective line over K by P'(K). (Strictly speaking, the projective line
over K is a richer geometric object than merely the set of equivalence classes P1(K), but
our definition will be adequate for our purposes.) The equivalence class of (z,%) in P!(K) is
denoted [z, y] and is called a point of P! (K). For instance, in P*(R), [2,3] = [4,8] = [1, 3/2].
Provided x # 0, we have [z,y] = [1,y/z], and [1,a] = [1,0] if and only if a = b. We have
[0,y] = [«/,y/] if and only if 2/ = 0, and in this case [0,y] = [0,1]. Thus, every point of
P!(K) equals [1,y] for a unique y € K or is the point [0,1]. By an analogous argument,
every point of P1(K) is [z, 1] for a unique 2 € K or is the point [1,0]. For the points [x, ]
with neither x nor y equal to 0, we can write them either as [1,y/x] or [z/y,1]. (To change
between the two coordinates amounts to ¢ <> 1/t on K*.)

The passage from [z,y] to the ratio y/x, with the exceptional case x = 0, corresponds
to the idea of recovering a line’s slope as a number in K U {oo}. In other words, the
correspondence between P1(K) and K U {co} comes about from

yjz, iz A0,
[z,y] — :
00, if x =0.
Since [z,y] = [2/,y/] if and only if (z,y) and (2/,y’) are non-zero scalar multiples, the ratio
y/x (provided x # 0) is a well-defined number in terms of the point [x,y] even though the
coordinates = and y themselves are not uniquely determined from [z, y].
We get another correspondence between P!(K) and K U{co} by associating [z, y] to x/y
or oo:

x/y, ify#0,
(3.1) [x,y}H{oQ ify = 0.

Now we describe an action of GLa(K) on P1(K) which corresponds to (1.1). For an
invertible matrix A € GLy(K), and a non-zero vector v € K2, the product Av is non-zero
and

A(M) = Mo

for any A € K. Therefore A sends all points on one line through the origin in K? to all

points on another line through the origin in K2. (No such line collapses under A since A

is invertible.) This means the usual action of A = (2%) on column vectors in K? lets us
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define A as a transformation of P!(K):

s (0 h) )= (ST (8 ) e =l s b+l

When y # 0, let z = z/y. Then the element of K U {oc} corresponding by (3.1) to

[az + by, cx + dy] is

ar+by az+b

cx+dy cz+d
interpreted as co when the denominator is 0. Writing [z, y] as [z, 1], we see that the action
of GL2(K) on K U{oo} given by (1.1), with the peculiar role of co, is the same as the action
of GLg(K) on P(K) given by the right side of (3.2). And now, in P!(K), there is no more
mysterious co. Everything is homogeneous.

4. ORBITS AND IDEAL CLASSES

For z,y € K, not both zero, we write [z, ] for a point in P!(K) and (z,y) = 20k +yOk
for a fractional ideal. Since every fractional ideal has two generators, (z,y) is a completely
general fractional ideal as x and y vary (avoiding x =y = 0).

Now we are ready to prove Theorem 1.1 in general.

Proof. Step 1: If [x,y] and [u,v] are in the same SLa(Ox)-orbit, then the fractional ideals
(z,y) and (u,v) are in the same ideal class.
Being in the same orbit means

a b x Au
@ (ea)(5)-(3)
for some (%) € SLy(Ox) and A € K*. Thus

ar +by = Au,
cx+dy = v,

so we have an inclusion of O g-modules (Au, \v) C (x,y). Multiplying both sides of (4.1) by
the inverse (¢ %)~ € SLy(Ok) gives the reverse inclusion, so (z,y) = (Au, \v) = A(u,v).

As far as Step 1 is concerned, the matrix (¢ %) could have been in GLy(O) rather than
SLQ(OK).

Step 2: If (z,y) and (u,v) are in the same ideal class, then the points [z, y] and [u,v] in
P!(K) are in the same SLy (O )-orbit.

Write (z,y) = AMu,v) = (Au, Av) for some A € K*. We want to show [z,y] and [u,v] are
in the same orbit of SLa(Of). Since [Au, ] = [u,v] in P}(K), we may take A = 1, i.e., we
may assume the fractional ideals (z,y) and (u,v) are equal. In other words, we are aiming
at a relation between pairs of generators for the same fractional ideal.

Let a = (z,y). The inverse ideal a~! has two generators, say a=! = (r,5). From the
equation (1) = (x,y)(r,s) = (zr,xs,yr,ys), there are a, 3,7, € O such that

1 = axr+ Bxs+yry+ dys

= (ar+Bs)z+ (yr +4ds)y.
vy
in M(K) with determinant 2y’ — yx’ = 1 where the second column has entries in a=!.

Note ' := ar+ s and 2’ := —(yr+3Js) are in a~!. Thus, we can form a matrix M = (
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Similarly, there is a matrix N = (¥ Z:) € My(K) with determinant 1 where the second
column has entries in a~1.

Since 2/,%/,u/,v" € a=!, the product

[z 2 v =
i _<y y’)(—v U>
has determinant 1 and entries in O. Therefore M N ! is in SLo(K)NMa(Of) = SLa(O k).

As MI[1,0] = [z,3] and N[1,0] = [u, v}, MN~[u, 0] = M[1,0] = [z,y], 50 [,y] and [u,]
are in the same SLy (O )-orbit of P1(K). O

Our bijection between SLa(O g )-orbits and ideal classes of K associates the identity ideal
class (r = 1,y = 0) with the orbit of [1,0] = oo in P1(K).

Everything we have done here carries over to a general Dedekind domain, with identical
proofs. We will just state the result.

Theorem 4.1. Let R be a Dedekind domain and F' be its fraction field. The orbits for
SLa(R) on F'U{co} are in bijection with the ideal class group of R. In particular, SLa(R)
acts transitively on F U {oo} if and only if R is a PID.

APPENDIX A. GENERATORS FOR SLj(Z)

There are two important matrices in SLy(Z):

0 -1 11
=(0 ) r=(on)
It is left to the reader to check that S? = —I, so S has order 4, while 7% = (} ¥) for any
k € Z, so T has infinite order.

Theorem A.1. The group SLa(Z) is generated by S and T'.

Proof. As the proof will reveal, this theorem is the Euclidean algorithm in disguise.
First we check how S and any power of T' change the entries in a matrix. Verify that

a b —c —d
s(ea)=( 3",
k(@ b\ _ [(a+ck b+dk
c d | c d ’

Thus, up to a sign change, multiplying by S on the left interchanges the rows. Multiplying
by a power of T" on the left adds a multiple of the second row to the first row and does not
change the second row. Given a matrix (¢%) in SLy(Z), we can carry out the Euclidean
algorithm on a and ¢ by using left multiplication by S and powers of T'. We use the power
of T to carry out the division (if @ = ¢q + r, use k = —¢q) and use S to interchange the
roles of a and ¢ to guarantee that the larger of the two numbers (in absolute value) is in
the upper-left corner. (Multiplication by S will cause a sign change, but this has no serious
effect on the algorithm.)

Since ad — bc = 1, a and c are relatively prime, so the last step of Euclid’s algorithm
will have a remainder of 1. This means, after suitable multiplication by S’s and T’s, we
will have transformed the matrix (2 %) into a matrix with first column (%1) or ( 381). Left-
multiplying by S interchanges the rows up to a sign, so we can suppose the first column

is (%1). Any matrix of the form (§%) in SLz(Z) must have y = 1 (the determinant is 1),

and
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and then it is (§%) = T%. A matrix ( y) in SLa(Z) must have y = —1, so the matrix
is (o %) = (=L)T~*. Since —Iy = S?, we can finally unwind and express our original
matrix in terms of S’s and 1s. O

Example A.2. Take A = (3Y7). Since 26 = 11 -2+ 4, we want to subtract 11 -2 from 26:

o, (41
T A‘(n 3)'

Now we want to switch the roles of 4 and 11. Multiply by S:

o, -11 =3
sraa- (1)

Dividing —11 by 4, we have —11 =4 - (=3) + 1, so we want to add 4 - 3 to —11. Multiply

by T°3:
_ 10
3 24 _
srsan (19)
Once again, multiply by S two switch the entries of the first column (up to sign):

g2, _ ( —4 -1
ST>ST A_<1 E

Our final division is: —4 = 1(—4) + 0. We want to add 4 to —4, so multiply by T*:
rsrisT2a=( Y 1) =g
1 0
Left-multiplying by the inverses of all the S’s and T’s on the left side, we obtain
A=T?S7 17387718,
Since S* = I, we can write S™! as S? if we wish to use a positive exponent on S.
However, a similar idea does not apply to the negative powers of T'.

Remark A.3. Since ST = ({ 7}') has order 6, we can write SLy(Z) = (S, ST), which is a
generating set of elements with finite order.
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