
SOME PARI COMMANDS IN ALGEBRAIC NUMBER THEORY

KEITH CONRAD

The free computer algebra package PARI is designed for computations in number theory.
A copy can be downloaded by searching on the internet for “PARI download”.

The following list provides some commands in PARI that are useful in algebraic number
theory, and after listing command we will work through some examples.

Primes and Factoring
factor(n) factors the integer n into primes. (This works on rational numbers also and

will give prime factorizations with negative exponents.)
gcd(a,b) is the greatest common divisor of a and b.
isprime(n) returns 1 if n is prime and 0 otherwise.
prime(n) returns the nth prime.
primes(n) is a vector whose components are the first n primes.

Polynomials
factor(f(x)) factors f(x) into (monic) irreducibles in Q[x]. (This is the same command

as for integers. PARI treats it as a polynomial when there is a variable appearing. If any
coefficient has a decimal point then the factorization is done in C[x].)

factormod(f(x),p) factors f(x) mod p.
poldisc(f(x)) gives the discriminant of the polynomial f(x).
polgalois(f(x)) gives the Galois group of the splitting field of f(x) over Q. The output

is a vector whose first component is the size of the Galois group and other components
describe the group structure.

polisirreducible(f(x)) returns 1 if f(x) is irreducible in Q[x] and 0 otherwise.
polroots(f(x)) is a vector whose components are the roots of f(x) in C.
subst(F,x,a) returns the value of F when the variable x in F is replaced by a. Here

F can be any algebraic object involving the variable x: a polynomial (in several variables),
matrix, vector, and so on.

Linear Algebra
A = [1,2;4,9] defines A to be the 2 × 2 matrix ( 1 2

4 9 ). Larger matrices can be defined
in the same way, using a semicolon to end each row.

charpoly(A) is the characteristic polynomial det(xI −A).
matdet(A) is the determinant of the matrix A.
trace(A) is the trace of the matrix A.
v = [1,2,3,6] defines v as a row vector with components 1, 2, 3, and 6.
v = [1,2,3,6]∼ defines v as a column vector with components 1, 2, 3, and 6. This is

important if you want to multiply a matrix and vector in the usual way, where vectors are
written in column form.
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v[n] is the nth component of a vector v. For example, polroots(f(x)) is the vector
whose components are the roots of f(x) and polroots(f(x))[1] is the first component of
the vector of roots of f(x).

Number Fields
Now f(x) is an irreducible polynomial in Q[x] and Kf below will denote the number field

Q(α) where α is a root of f(x). Algebraically, this is Q[x]/(f(x)). (If you use a reducible
polynomial for f(x), some of the commands will give answers, so make sure your polynomial
is irreducible.)

abs(z), real(z), imag(z) are the absolute value, real part, and imaginary part of the
complex number z.

algdep(z,n) is the polynomial in Z[x] of degree at most n which is most likely to have
the complex number z as a root. (If z is not of degree at most n over Q the answer will be
useless, so use of this command requires judgment.)

bnfclgp(f(x)) gives the ideal class group of Kf . The output is a vector whose first
component is the class number and the second component is the cyclic decomposition of
the class group.

bnfinit(f(x)) is a long vector containing information about Kf which is used in unit
and class group computations. It is best to assign this a name right away, e.g., B =

bnfinit(f(x));. The semicolon stops PARI from outputting the data on the screen all at
once.

bnfinit(f(x)).fu gives the fundamental units of Kf , expressed as polynomials in x mod
f(x).

bnfreg(f(x)) gives the regulator of Kf .
dirzetak(nfinit(f(x)),N) gives the coefficients of the first N terms in the Dirichlet

series for Kf when it is written as a sum over positive integers. That is, if ζK(s) =∑
n≥1 an/n

s then this command returns [a1, a2, . . . , aN ].

idealfactor(nfinit(f(x)),p) gives the prime ideal factorization of p in Kf . (If you
have already given the vector nfinit(f(x)) a name, you can use that label in the first
component, and you can use bnfinit(f(x)) there too.) The answer is an array where each
row is associated to a different prime ideal. A row has the form [[p, v, e, f, w] e],
where e and f are the ramification index and residue field degree for that prime ideal. The
vector v is related to a second generator γ such that the prime ideal being described is (p, γ)
and w is related to the inverse of the prime ideal.

nfbasis(f(x)) gives a Z-basis of Kf .
nfdisc(f(x)) gives the discriminant of the number field Kf .
nfinit(f(x)) is a long vector containing information about the number field Kf . It

starts off as [f(x),[r1,r2],d, I,...] where r1 and r2 are the number of real embeddings
and half the number of complex (no real) embeddings. d is disc(K), and I is the index
[OK : Z[α]] for α a root of f(x). As with bnfinit, it is best to use this command as a
definition, say v = nfinit(f(x)); with the semi-colon at the end.

nfisincl(f(x),g(x)) is a vector whose components describe the roots of f(x) as poly-
nomials in a root of g(x) if this possible (that is, if the number field defined by a root of
f(x) has an embedding into the number field defined by a root of g(x)). When g(x) = f(x)
and a root of f(x) generates a Galois extension of Q, the output provides formulas for the
Galois group acting on a root of f(x).

nfrootsof1(nfinit(f(x))) is the number of roots of unity in Kf .
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zetak(zetakinit(f(x)),s) is ζKf
(s), where s is a complex number. (The output may

not be accurate if s is unreasonably chosen.)

There are many further commands (e.g., , to add and multiply ideals or test if an ideal
is principal), but the above is a basic list to get started.

Note: PARI does arithmetic with fractions exactly. If you want PARI to treat a rational
number as a decimal approximation, multiply it by 1.0, e.g., 3/7*1.0. The numbers π and
i are entered in PARI as Pi and I, and ez is exp(z). Make sure to include multiplication
operations explicitly: 2x and 2i are entered into PARI as 2*x and 2*I, not as 2x and 2I.

The meaning of any PARI command can be found by typing ? followed by the command,
e.g., ?nfbasis tells you what nfbasis does. Of course this only helps if you know the name
of the command. To get a complete list of all PARI commands, type ?, and a list of the
number field commands is ?6.

For the most part, the PARI commands above receive exact input (e.g., nfbasis expects
an integral polynomial). The only command where the input is an approximation and
the output is expected to be exact, rather than another approximation, is the minimal
polynomial command algdep. This command produces good answers under reasonable
conditions, but when the correct minimal polynomial has very large coefficients there can
be errors.

Example 1. In PARI, set f(x) = x^3 + 453603*x^2 + 51438694443*x - 51247953119

and then type v = polroots(f(x)). The answer is a vector of length three whose first
coordinate is 0.9962831179067027346685176802 + 0.E-28*I. This is (approximately) the
unique real root of f(x). If you now type algdep(v[1],3) to find the minimal polynomial
over Q of the first coordinate of v, knowing it should have degree at most 3, the answer
is not f(x). Instead it is 287542*x^3 + 101724*x^2 - 365673*x - 21003 (which is very
small at that number, roughly 10−19). If you type algdep(v[1],10) the answer turns out
to be (x− 1)9(x+ 1), which is wrong in an even worse way.

As practice with these commands, let’s run through PARI computations on the quartic
field K = Q( 4

√
65). (This will be much more meaningful if you download PARI and follow

the steps yourself.)

(1) What is a Z-basis of OK?
Type nfbasis(x^4-65) and we get the answer

[1, x, 1/2*x^2 + 1/2, 1/4*x^3 + 1/4*x^2 + 1/4*x + 1/4].

which means {1, 4
√

65,
√
65+1
2 ,

4√653+
√
65+ 4√65+1
4 } is a Z-basis.

(2) What is a polynomial over Q for the fourth term in the Z-basis?
Set r = polroots(x^4-65)[1], which is
-2.839411514433677444082262939 + 0.E-28*I.
(This is − 4

√
65, so setting r = real(polroots(x^4-65)[1]) will remove the

imaginary part.) The command algdep(r^3/4 + r^2/4 + r/4 + 1/4,4) returns
x^4 - x^3 - 24*x^2 - 256*x - 1024.
(It would have been more efficient to set b = nfbasis(x^4-65); in the first

question and then compute algdep(subst(b[4],x,r)) to avoiding having to type
the polynomial expression in r inside algdep.)

(3) What is the discriminant of K?
Type d = nfdisc(x^4 - 65) and we get
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-1098500.
Its factorization is found with factor(d):
[-1 1]

[2 2]

[5 3]

[13 3]

which means disc(K) = −22 · 53 · 133. The ramified primes in K are 2, 5, and 13.
(4) What is [OK : Z[ 4

√
65]]?

This can be found in two ways. First, the discriminant of x4 − 65 is found with
poldisc(x^4-65) and it is

-70304000

whose factorization is −28 · 53 · 133. This discriminant divided by disc(K) is 26 =
82, so [OK : Z[ 4

√
65]] = 8. As an alternate solution, the fourth component of

nfinit(x^4-65) is this index, so we can find it by computing nfinit(x^4-65),
which is

[x^4 - 65, [2, 1], -10985000, 8, ...]

and looking at the fourth component, or type nfinit(x^4-65)[4] directly.
(5) What is the shape of the prime ideal factorizations of 2, 3, 5, and 7 in K?

Set K = nfinit(x^4-65); and type idealfactor(K,2). We get
[[2, [-1, 0, 0, 1] , 1, 1, [0, 0, 0, 1] ] 1]

[[2, [0, 1, -1, 0] , 2, 1, [1, 1, 0, 0] ] 2]

[[2, [2, 0, 1, 1] , 1, 1, [1, 0, 1, 1] ] 1]

so 2OK = p2p
′2
2 p
′′
2. Similarly, idealfactor(K,3) returns

[[3, [0, -1, 2, 0] , 1, 2, [0, 1, -1, 0] ] 1]

[[3, [0, 1, 2, 0] , 1, 2, [0, -1, -1, 0] ] 1]

so 3OK = p9p
′
9. Typing idealfactor(K,5) and idealfactor(K,7) returns

[[5, [0, 1, 0, 0] , 4, 1, [2, -1, 2, -1] ] 4]

and
[[7, [5, 1, 0, 0] , 1, 1, [-2, 3, -1, -3] ] 1]

[[7, [9, 1, 0, 0] , 1, 1, [-1, 3, -2, -3] ] 1]

[[7, [-2, 0, 2, 0] , 1, 2, [-3, 0, 2, 0] ] 1]

so 5OK = p45 and 7OK = p7p
′
7p49.

For the primes 3 and 7, which don’t divide disc(x4 − 65), we can also obtain the
shape of their factorization in K from the degree types of factorizations of x4 − 65
mod 3 and 5: factormod(x^4-65,3) and factormod(x^4-65,5) return

[Mod(1, 3)*x^2 + Mod(1, 3)*x + Mod(2, 3) 1]

[Mod(1, 3)*x^2 + Mod(2, 3)*x + Mod(2, 3) 1]

and
[Mod(1, 7)*x + Mod(2, 7) 1]

[Mod(1, 7)*x + Mod(5, 7) 1]

[Mod(1, 7)*x^2 + Mod(4, 7) 1].

(6) What is the class group of K?
Type bnfclgp(x^4 - 65) and we get
[4, [2, 2], ...]

where only the first two components of the answer are given here. This tells us
h(K) = 4 and Cl(K) is a product of two cyclic groups of order 2.

(7) What is a system of fundamental units of K?
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Since r1 = 2 and r2 = 1, the unit group has rank 2 by the unit theorem and
bnfinit(x^4 - 65).fu returns the answer

[Mod(x^2 + 8, x^4 - 65),

Mod(1096*x^3 - 3112*x^2 + 8836*x - 25089, x^4 - 65]

which is giving us numbers in Q( 4
√

65) as elements of Q[x]/(x4 − 65). The unit

group (modulo ±1) is generated by
√

65 + 8 and 1096 4
√

65
3−3112

√
65 + 8836 4

√
65−

25089.
(8) What is the regulator of K?

The command R = bnfreg(x^4-65) returns
63.95045279242670975008629269.

(9) How does ζK(s) begin?
Recalling that K = nfinit(x^4-65), typing dirzetak(K,10) returns
[1, 3, 0, 6, 1, 0, 2, 10, 2, 3] so

ζK(s) = 1 +
3

2s
+

6

4s
+

1

5s
+

2

7s
+

10

8s
+

2

9s
+

3

10s
+ · · · .

(10) What is ζK(2)?
Set Z = zetakinit(x^4-65); and then zetak(Z,2) has value
2.678953090570608822993611623.

(11) Let’s numerically check the leading term formulas

ζK(s) =
2r1(2π)r2hR

w
√
|disc(K)|

1

s− 1
+ · · · for s near 1

and

ζK(s) = −hR
w
sr1+r2−1 + · · · for s near 0.

Since r1 > 0, w = 2 and 2^2*(2*Pi)*4*R/(2*sqrt(abs(d))) is
3.066997687380715729991228380.

This is supposed to be the limit of ζK(s)(s−1) as s→ 1. Set g(x) = zetak(Z,x)*(x-1)

and evaluate this for x close to 1: g(1.000001) is
3.066996540925845051253102276

which matches the previous computation to 5 digits after the decimal point.
Turning to behavior at s = 0, -4*R/2 has value
-127.9009055848534195001725854.

This is the limit of ζK(s)/s2 as s → 0. Set G(x) = zetak(Z,x)/x^2 and evaluate
it at a small value of x: G(1/10^10) is

-127.9009055352882202088191797,

which matches the computation of −hR/w to 7 digits after the decimal point.


