
Math 5211 - Abstract Algebra II Due by email
Problem Set 2 2/17/14 at 5 PM

Often the significance of a mathematical theorem becomes clear only when looked at from
above – that is to say, from the standpoint of a more advanced theory. But the meaning
is always there. This is a vitally important point. Were it not for this, mathematics
would degenerate into a collection of unrelated formalisms and parlor tricks.

E. Beckenbach and R. Bellman

Read §10.1–10.3 (skip pp. 421-422) and handouts on Noetherian modules and dual modules.
To be handed in: 1, 2, 3, 4

1. Let d be a nonsquare integer. In Z[
√
d], let a be the ideal (a, b + c

√
d), where a, b, and c are

integers and a and c are not 0. So as a Z[
√
d]-module,

a = Z[
√
d]a+ Z[

√
d](b+ c

√
d),

while as a Z-module

a = Za+ Za
√
d+ Z(b+ c

√
d) + Z(cd+ b

√
d).

There are two Z[
√
d]-module generators (by definition) and four Z-module generators. It is

natural to ask: when does a = Za + Z(b + c
√
d)? That is, when are the given Z[

√
d]-module

generators also Z-module generators?

a) Show a = Za+ Z(b+ c
√
d) if and only if the following three conditions are all satisfied:

• c|a,

• c|b,

• d ≡ (b/c)2 mod a/c.

(In particular, when a = (a, b±
√
d) then a = Za+ Z(b+

√
d) if and only if d ≡ b2 mod a.)

b) Let’s put part a to work. In Z[
√
−5], find an element of the ideal (3, 1 + 2

√
−5) that is

not a Z-linear combination of 3 and 1 + 2
√
−5. (So 3 and 1 + 2

√
−5 span the ideal as a

Z[
√
−5]-module but not as a Z-module.) Then find a pair of elements that generates the ideal

(3, 1 + 2
√
−5) as both a Z[

√
−5]-module and as a Z-module.

c) Show the ideal (7, 2 + 3
√
−5) is not generated as a Z-module by 7 and 2 + 3

√
−5 by finding

an explicit element of the ideal that is not in their Z-span, and then find a pair of elements in
the ideal that generate it as both a Z-module and a Z[

√
−5]-module.

2. Let R be an integral domain with fraction field K, and I and J be nonzero ideals in R.

a) Show every R-linear map f : I → J has the form f(x) = cx where c ∈ K such that cI ⊂ J .

b) Use the work in part a to show HomR(I, J) ∼= {c ∈ K : cI ⊂ J} as R-modules.



3. Let V be a finite-dimensional vector space over a field F and A : V → V be an F -linear operator
on V . Treat V as an F [T ]-module by setting f(T )(v) = f(A)v for all f(T ) ∈ F [T ] and v ∈ V .
For each v ∈ V , set the annihilator ideal of v to be I(v) = {f(T ) ∈ F [T ] : f(T )v = 0}, so
F [T ]v ∼= F [T ]/I(v) as F [T ]-modules. The ideal I(v) has a generator, and its relation to v is
analogous to the order of an element in an abelian group.

a) Let F = R, V = R2, and A = ( 1 2
3 2 ). Compute the ideal I(v) for v =

(
1
0

)
and

(
2
3

)
.

b) If I(v) = (n), show for any factor d of n in F [T ] that I(dv) = (n/d). This is the analogue
of gd having order n/d in an abelian group if g has order n and d is a positive factor of n.

c) If I(v) = (n) and m is relatively prime to n in F [T ], show I(mv) = I(v). This is the
analogue of gm having order n in an abelian group if g has order n and m is relatively prime
to n.

d) Set I(v) = (m) and I(w) = (n). If m and n are relatively prime in F [T ], show I(v + w) =
(mn). This is the analogue of the order of the product being the product of the orders in a
finite abelian group when the orders are relatively prime.

4. Let R be a PID with fraction field K. A finitely generated torsion R-module M is an analogue
of a finite abelian group (it is precisely a finite abelian group when R = Z), and we want to
look at an analogue for such modules of characters for finite abelian groups. The R-module
K/R will be our substitute for the roots of unity in C×. When R = Z we have K/R = Q/Z,
which is isomorphic to the complex roots of unity using the function e2πiz.

a) Show every finitely generated R-submodule of K/R is isomorphic to (1/r)I/I for some
nonzero r ∈ R. This is analogous to every finite subgroup of R/Z being (1/n)Z/Z for some
nonzero integer n.

b) Use part a to show every finitely generated R-submodule of K/R is isomorphic to R/I for
a unique nonzero ideal I in R, and for every nonzero ideal I in R show K/R contains a unique
R-submodule isomorphic to R/I. This is analogous to all finite subgroups of C× being cyclic
and C× containing a unique cyclic group of order n for all n ≥ 1.

c) For any finitely generated torsion R-module M , define a character of M to be an R-linear
map χ : M → K/R and set M̂ = HomR(M,K/R).1 For nonzero ideals I in R, show R̂/I ∼= R/I

as R-modules. This is analogous to finite cyclic groups being isomorphic to their dual groups.

d) For any finitely generated torsion R-module M , show M̂ is a finitely generated torsion
R-module. (Hint: An R-linear map out of M is determined by its values on a spanning set.)

e) Let M be a finitely generated torsion R-module and N be a submodule of M . Show every
character of N can be extended to a character of M . The key point is figuring out, if N 6= M

and m ∈ M − N , how to extend a character of N to a character of N + Rm (i.e., how to
extend an R-linear map N → K/R to an R-linear map N +Rm→ K/R).

5. Let V be a vector space over a field K and let ϕ1, . . . , ϕr lie in the dual space V ∨.
1This is different from the dual module of M , which is HomR(M, R) and equals 0 for torsion-modules; it’s like

HomZ(A,Z) being 0 when A is a torsion abelian group.



a) If V is finite-dimensional, show an element ψ in V ∨ lies in the span of ϕ1, . . . , ϕr if and only
if
⋂r
i=1 kerϕi ⊂ kerψ. (You might first try the case when ϕ1, . . . , ϕr are linearly independent

in V ∨, but the result is true without such a restriction.)

b) Show part a is true even without the assumption that V is finite-dimensional: an element
ψ in V ∨ lies in the span of ϕ1, . . . , ϕr if and only if

⋂r
i=1 kerϕi ⊂ kerψ.

6. Let G be a finite group, possibly nonabelian. We will see how to interpret the group homo-
morphisms G→ C× as the “normalized” simultaneous eigenvectors in a space of functions.

Let V = Map(G,C) be the set of all functions f : G → C. Under addition of functions and
C-scaling, this is a complex vector space:

(f1 + f2)(x) = f1(x) + f2(x), (cf)(x) = c · f(x).

One basis of V is the delta-functions δg, where δg(g) = 1 and δg(h) = 0 for h 6= g, so
dimC V = |G|.

For g ∈ G, let Lg : V → V be interior scaling by g on the left: for f ∈ V , Lgf is the function
in V given by (Lgf)(x) = f(gx) for all x ∈ G.

a) Prove each Lg : V → V is C-linear.

b) Prove a group homomorphism f : G→ C×, regarded as an element of V , is an eigenvector
(“eigenfunction”) of every Lg. Remember that, by definition, the zero function in V is not
considered to be an eigenvector.

c) Let G = S3. Listing the elements of G in the order (1), (12), (13), (23), (123), (132), express
L(12) and L(123) as 6 × 6 matrices with respect to the basis {δg : g ∈ S3} and check these
matrices have order 2 and 3, respectively.

d) Express the sign homomorphism S3 → {±1} as a column vector in the basis of V from part
c and check it is an eigenvector of L(12) and L(123), as it must be by part b.

e) Here is a converse to part b: if f ∈ V is an eigenvector of every Lg, prove f(e) 6= 0 (e denotes
the identity in G) and that if we rescale f so that f(e) = 1 then f is a group homomorphism
G→ C×.


