
CYCLOTOMIC EXTENSIONS

KEITH CONRAD

1. Introduction

For any field K, a field K(ζn) where ζn is a root of unity (of order n) is called a cyclotomic
extension of K. The term cyclotomic means circle-dividing, and comes from the fact that the
nth roots of unity divide a circle into equal parts. We will see that the extensions K(ζn)/K
have abelian Galois groups and we will look in particular at cyclotomic extensions of Q and
finite fields. There are not many general methods known for constructing abelian extensions
of fields; cyclotomic extensions are essentially the only construction that works for all base
fields. (Other constructions of abelian extensions are Kummer extensions, Artin-Schreier-
Witt extensions, and Carlitz extensions, but these all require special conditions on the base
field and thus are not universally available.)

We start with an integer n ≥ 1 such that n 6= 0 in K. (That is, K has characteristic 0 and
n ≥ 1 is arbitrary or K has characteristic p and n is not divisible by p.) The polynomial
Xn − 1 is relatively prime to its deriative nXn−1 6= 0 in K[X], so Xn − 1 is separable
over K: it has n different roots in splitting field over K. These roots form a multiplicative
group of size n. In C we can write down the nth roots of unity analytically as e2πik/n for
0 ≤ k ≤ n− 1 and see they form a cyclic group with generator e2πi/n. What about the nth
roots of unity in other fields?

Theorem 1.1. The group of nth roots of unity in a field is cyclic. More generally, any
finite subgroup of the nonzero elements of a field form a cyclic group.

Proof. Let F be a field and G be a finite subgroup of F×. From the general theory of
abelian groups, if there are elements in G with orders n1 and n2 then there is an element
of G with order the least common multiple [n1, n2]. Letting n be the maximal order of all
the elements of G, the order of every element in G divides n: if g ∈ G has order n and
g′ ∈ G has order n′, then there is an element of G with order [n, n′] ≥ n. Since n is the
maximal order, [n, n′] ≤ n, so [n, n′] = n, which implies n′ divides n. Since all orders divide
the maximal order n, every element of G is a root of Xn − 1, which implies #G ≤ n (the
number of roots of a polynomial in a field does not exceed its degree). At the same time,
since all orders divide the size of the group we have n|#G. Hence n = #G, which means
some element of G has order #G, so G is cyclic. �

Example 1.2. For any prime p, the group (Z/(p))× is cyclic since these are the nonzero
elements in the field Z/(p) and they form a finite group. The theorem does not say (Z/(pr))×

is cyclic for r > 1, since Z/(pr) is not a field for r > 1. In fact, (Z/(8))× is not cyclic.

The roots of Xn−1 in a splitting field of characteristic not dividing n form a cyclic group,
denoted µn. For instance, in C we have µ2 = {1,−1} and µ4 = {1,−1, i,−i}. A generator
of µn is denoted ζn. That is, ζn denotes a root of unity of exact order n. Any element of µn
is an nth root of unity, while the generators of µn are called primitive nth roots of unity.
(For example, −1 is a 4th root of unity but not a primitive 4th root of unity.) For a ∈ Z,
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the order of ζan is n/(a, n), so ζan is a primitive nth root of unity if and only if (a, n) = 1.
Therefore the number of primitive nth roots of unity is ϕ(n) = #(Z/(n))×. There is no
unique generator of µn when n > 2 (e.g., if ζn is one generator then ζ−1n is another one), so
writing ζn involves making an ad hoc choice of generator.

Since any two primitive nth root of unity in a field are powers of each other, the extension
K(ζn) is independent of the choice of ζn. We will usually write this field as K(µn): adjoining
one primitive nth root of unity is the same as adjoining a full set of nth roots of unity.

2. Embedding the Galois group

When n 6= 0 in K, the cyclotomic extension K(µn)/K is Galois since Xn−1 is separable
in K[X].

Lemma 2.1. For σ ∈ Gal(K(µn)/K) there is an a ∈ Z relatively prime to n such that
σ(ζ) = ζa for all nth roots of unity ζ.

Proof. Let ζn be a generator of µn (that is, a primitive nth root of unity), so ζnn = 1 and

ζjn 6= 1 for 1 ≤ j < n. Then σ(ζn)n = 1 and σ(ζn)j 6= 1 for 1 ≤ j < n, so σ(ζn) is a primitive
nth root of unity. This means σ(ζn) = ζan where (a, n) = 1. Any ζ ∈ µn has the form ζkn for
some k, so

σ(ζ) = σ(ζkn) = σ(ζn)k = (ζan)k = (ζkn)a = ζa.

�

The exponent a in Lemma 2.1 is well-defined modulo n, since ζan = ζbn ⇒ a ≡ b mod n,
so we can think of it as an element of (Z/(n))×. Since it is determined by σ, we will denote
it a(σ).

Example 2.2. In Gal(Q(µ5)/Q), there is an automorphism σ with the effect σ(ζ) = ζ2

for all ζ ∈ µ5. Note we can also write σ(ζ) = ζ7 since ζ2 = ζ7 for all 5th roots of unity
ζ. The exponent is not well-defined as an integer but it is well-defined as an integer mod 5
and a(σ) = 2 mod 5.

Theorem 2.3. The map σ 7→ a(σ) is an injective group homomorphism Gal(K(µn)/K) ↪→
(Z/(n))×.

Proof. Pick σ and τ in Gal(K(µn)/K). For a primitive nth root of unity ζn,

(στ)(ζn) = σ(τ(ζn)) = σ(ζa(τ)n ) = σ(ζn)a(τ) = (ζa(σ)n )a(τ) = ζa(σ)a(τ)n .

Also (στ)(ζn) = ζ
a(στ)
n , so ζ

a(στ)
n = ζ

a(σ)a(τ)
n . Since ζn has order n, a(στ) ≡ a(σ)a(τ) mod n.

This shows we have a homomorphism from Gal(K(µn)/K) to (Z/(n))×.
When σ is in the kernel, a(σ) ≡ 1 mod n, so σ(ζn) = ζn. Therefore σ is the identity on

K(ζn) = K(µn), so σ is the identity in Gal(K(µn)/K). �

Whenever we view Gal(K(µn)/K) in (Z/(n))×, it will always be understood to be by the
mapping in Theorem 2.3.

Since (Z/(n))× is abelian, Gal(K(µn)/K) is abelian: cyclotomic extensions are abelian
extensions. There is no reason that the embedding of Gal(K(µn)/K) into (Z/(n))× has to
be surjective. For instance, if K = R and n ≥ 3 then K(µn)/K = C/R is a quadratic
extension. The nontrivial R-automorphism of C is complex conjugation, whose effect on
roots of unity in C is to invert them: ζ = ζ−1. Therefore the embedding Gal(C/R) ↪→
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(Z/(n))× for n ≥ 3 has image {±1 mod n}, which is smaller than (Z/(n))× unless n = 2,
3, 4, or 6.

The following corollary will not be used later, but it illustrates how knowing the group
structure of (Z/(n))× can tell us something about Galois groups of cyclotomic extensions.

Corollary 2.4. When p is prime and K does not have characteristic p, K(µp)/K and
K(µp2)/K are cyclic extensions. When p is prime and r ≥ 3, K(µpr)/K is a cyclic extension
if either p 6= 2 or if p = 2 and K contains a square root of −1.

Proof. There is an embedding Gal(K(µp)/K) ↪→ (Z/(p))× and (Z/(p))× is cyclic, so any
subgroup of it is also cyclic.

When r ≥ 2, it is a theorem of elementary number theory that (Z/(pr))× is cyclic
for odd p, so the embedded subgroup Gal(K(µpr)/K) is also cyclic. But at the prime 2
something new happens: (Z/(2r))× is not cyclic for r ≥ 3, so it may or may not be true
that Gal(K(µ2r)/K) is cyclic when r ≥ 3. A theorem from elementary number theory
says {a mod 2r : a ≡ 1 mod 4} is a cyclic group (with 5 as a generator, in fact). So if
i :=

√
−1 ∈ K then K(µ2r)/K is cyclic because any element of the Galois group satisfies

σ(i) = i so the exponent a(σ) must be 1 mod 4: ia = i⇒ a ≡ 1 mod 4. �

Remark 2.5. The composite field K(µm)K(µn) is K(µ[m,n]). Indeed, both K(µm) and
K(µn) lie in K(µ[m,n]), so their composite does too. For the reverse inclusion, a primitive
root of unity of order [m,n] can be obtained by multiplying suitable mth and nth roots
of unity (why?), so µ[m,n] ⊂ K(µm)K(µn), which implies K(µ[m,n]) ⊂ K(µm)K(µn). It
is natural to guess that a counterpart of K(µm)K(µn) = K(µ[m,n]) for intersections is
K(µm)∩K(µn) = K(µ(m,n)). The inclusion ⊃ is easy, but the other inclusion is not always
true! It’s possible for m and n to be relatively prime and K(µm)∩K(µn) to be larger than
K(µ1) = K. M. Emerton pointed out the following simple example. If K = Q(

√
3) then

K(i) = Q(
√

3, i) = Q(
√

3,
√
−3) = K(ζ3) because ζ3 = (−1 +

√
−3)/2. Since K(ζ4) and

K(ζ3) are equal, their intersection is larger than K(ζ(4,3)) = K. When K = Q, it is true
that K(µm) ∩K(µn) = K(µ(m,n)), as we’ll see in Example 3.4.

3. Cyclotomic extensions of the rational numbers

The embedding Gal(K(µn)/K) ↪→ (Z/(n))× is not always surjective, so showing for a
particular K that there is surjectivity for all n requires exploiting a special feature of the
field K. We will prove for base field K = Q that there is surjectivity.

Theorem 3.1. The embedding Gal(Q(µn)/Q) ↪→ (Z/(n))× is an isomorphism.

Proof. The number of primitive nth roots of unity is ϕ(n) = #(Z/(n))×, and the size of
Gal(Q(µn)/Q) is the number of Q-conjugates of a primitive nth root of unity. So proving
that # Gal(Q(µn)/Q) = #(Z/(n))× is the same as showing all primitive nth roots of unity
over Q are Q-conjugate, and that is what we will do.

Let ζn be a primitive nth root of unity. We want to show if (a, n) = 1 that ζn and
ζan are Q-conjugate. Since ζan only depends on a mod n, we can take a > 0, and in fact
a > 1. Write a = p1p2 · · · pr as a product of primes pi, each not dividing n (some pi’s could
coincide). To show ζn and ζan are Q-conjugate, it suffices to show for each prime p not
dividing n that any primitive nth root of unity and its pth power are Q-conjugate, since
then the successive primitive nth roots of unity

ζn, ζp1n , ζp1p2n , ζp1p2p3n , . . . , ζp1p2···prn = ζan
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are all Q-conjugate and each is a prime power of the previous one.
Let f(X) be the minimal polynomial of ζn over Q, where ζn is an arbitrary primitive nth

root of unity. Assume ζn and ζpn are not Q-conjugate for some prime p not dividing n. We
aim to get a contradiction. The Q-conjugates of ζn are the roots of f(X), so f(ζpn) 6= 0. Let
g(X) be the minimal polynomial of ζpn in Q[X], so g(X) 6= f(X). The polynomials f(X)
and g(X) are in Z[X] since they both divide Xn − 1 and any monic factor of Xn − 1 in
Q[X] is in Z[X] by Gauss’ lemma.

Since f(X) and g(X) are different monic irreducible factors of Xn − 1 in Q[X], we have
Xn − 1 = f(X)g(X)k(X) for some k(X) ∈ Q[X], and by Gauss’ lemma k(X) ∈ Z[X].
Reducing this equation modulo p,

(3.1) Xn − 1 = f(X)g(X)k(X)

in Fp[X]. The polynomial Xn − 1 is separable in Fp[X] since p doesn’t divide n, so f(X)
and g(X) are relatively prime in Fp[X].

Since g(ζpn) = 0, g(Xp) has ζn as a root, so f(X)|g(Xp) in Q[X]. Both f(X) and g(Xp)
are monic in Z[X], so f(X)|g(Xp) in Z[X] by comparing the division theorem for monics in
Z[X] and Q[X]. Hence g(Xp) = f(X)h(X) for some h(X) in Z[X]. Reduce this equation
modulo p and use the formula g(Xp) = g(X)p in Fp[X] to get

g(X)p = f(X)h(X)

in Fp[X]. This implies that any irreducible factor of f(X) in Fp[X] is a factor of g(X),

which contradicts relative primality of f(X) and g(X). �

Concretely, Theorem 3.1 says that replacing ζn with ζan in any rational expression for ζn,
where a is relatively prime to n, is an automorphism of Q(µn)/Q.

Remark 3.2. Our proof of Theorem 3.1 goes back to Dedekind [2]. Its appearance in van
der Waerden’s Moderne Algebra in 1930 made it the standard proof in later books. Here
is another proof, due to Landau [5]. Let f(X) be the minimal polynomial of ζn over Q,
so f(X) is monic in Z[X]. We want to show when (a, n) = 1 that f(ζan) = 0. For any
integer k ≥ 1, we can write f(Xk) = f(X)Qk(X) + Rk(X) in Z[X], where Rk(X) = 0 or
degRk < deg f . Since [Q(ζn) : Q] = deg f , the polynomial Rk(X) with degree less than
deg f is determined by its value Rk(ζn) = f(ζkn), so Rk(ζn) only depends on k mod n. In
particular, every Rk(X) is one of R1(X), R2(X), . . . , Rn(X).

For any prime p, Rp(ζn) = f(ζpn) = f(ζpn) − f(ζn)p, so Rp(X) is the remainder when
f(Xp)−f(X)p is divided by f(X). Since f(X)p ≡ f(Xp) mod p, we have f(Xp)−f(X)p ∈
pZ[X], which implies (why?) Rp(X) ∈ pZ[X]. Letting C be the largest absolute value of
any coefficient in R1(X), R2(X), . . . , Rn(X), for any prime p > C the polynomial Rp(X)
must be 0: its coefficients are smaller in absolute value then C and are divisible by p.
Therefore f(Xp) = f(X)Qp(X) when p > C, so f(ζpn) = 0. This implies, by iteration, that

f(ζkn) = 0 for any positive integer k whose prime factors all exceed C. If (a, n) = 1 and
a > 1, set k = a + n

∏
p≤C,(p,a)=1 p. Then k ≡ a mod n, so (k, n) = 1. The two terms in

the sum defining k are relatively prime, so every prime factor of k is larger than C (why?),
which implies 0 = f(ζkn) = f(ζan).

When K is a field such that the natural embedding Gal(K(µn)/K) ↪→ (Z/nZ)× is not
surjective, ζn and ζan are not conjugate over K for some a relatively prime to n.

Example 3.3. From Galois theory for finite fields the automorphisms of the extension
F2(µ7)/F2 are determined by the different 2-power iterates of ζ7: ζ7 7→ ζ7, ζ7 7→ ζ27 , and
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ζ7 7→ ζ47 . The next one would be ζ7 7→ ζ87 = ζ7, so we have returned to the identity. There
are only 3 automorphisms of F2(µ7)/F2. In particular, ζ7 and ζ37 in characteristic 2 are
both primitive 7th roots of unity but they are not conjugate over F2, since ζ37 is not any of
ζ7, ζ

2
7 , or ζ47 . Maybe this seems weird: all the nontrivial 7th roots of unity in characteristic

0 are conjugate over Q, so “why” in characteristic 2 are the nontrivial 7th roots of unity
not all conjugate? What happens is the common minimal polynomial of the nontrivial 7th
roots of unity over Q is reducible in characteristic 2. We’ll see this explicitly in Example
5.5.

By Theorem 3.1, [Q(µN ) : Q] = #(Z/(N))× = ϕ(N) for any positive integer N . There
is a formula for ϕ(N) in terms of the prime factors of N :

(3.2) ϕ(N) = N
∏
p|N

(
1− 1

p

)
.

Example 3.4. Let’s use Theorem 3.1 to prove Q(µm) ∩Q(µn) = Q(µ(m,n)); in particular,
if (m,n) = 1 then Q(µm) ∩Q(µn) = Q.

Since Q(µd) ⊂ Q(µm) when d|m, we have Q(µ(m,n)) ⊂ Q(µm) ∩ Q(µn). To show this
containment is an equality we will show Q(µm)∩Q(µn) and Q(µ(m,n)) have the same degree
over Q.

For any finite Galois extensions L1/K and L2/K inside a common field, [L1L2 : K] =
[L1 : K][L2 : K]/[L1 ∩ L2 : K]. The composite field Q(µm)Q(µn) is Q(µ[m,n]) by Remark
2.5, so

[Q(µ[m,n]) : Q] = [Q(µm)Q(µn) : Q] =
[Q(µm) : Q][Q(µn) : Q]

[Q(µm) ∩Q(µn) : Q]
.

Replacing each [Q(µN ) : Q] with ϕ(N),

(3.3) [Q(µm) ∩Q(µn) : Q] =
ϕ(m)ϕ(n)

ϕ([m,n])
.

Using (3.2), (3.3) becomes

[Q(µm) ∩Q(µn) : Q] =
m
∏
p|m(1− 1/p) · n

∏
p|n(1− 1/p)

[m,n]
∏
p|[m,n](1− 1/p)

.

Since [m,n](m,n) = mn, the ratio mn/[m,n] is (m,n). The prime factors of [m,n] are
those dividing either m or n, so the ratio of products over primes is the product of 1− 1/p
over all primes dividing m and n, which means the prime factors of (m,n). Therefore

[Q(µm) ∩Q(µn) : Q] = (m,n)
∏

p|(m,n)

(
1− 1

p

)
= ϕ((m,n)),

which is [Q(µ(m,n)) : Q], so Q(µm)∩Q(µn) has the same degree over Q as Q(µ(m,n)), hence
the fields are equal since we already saw one is a subfield of the other.

Complex conjugation is an automorphism of Q(µn)/Q with order 2. Under the iso-
morphism of Gal(Q(µn)/Q) with (Z/(n))×, complex conjugation corresponds to −1 mod n
since ζ = ζ−1 for any root of unity ζ. The fixed field of complex conjugation on Q(ζn) is
denoted Q(ζn)+. This field is Q(ζn + ζ−1n ) and [Q(ζn) : Q(ζn)+] = 2 when n ≥ 3. We
can now easily create a field K such that K(µm) ∩ K(µn) 6= K for any pair of relatively
prime integers m and n that are at least 3: use K = Q(ζmn)+. Since [Q(ζmn) : K] = 2 and
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K ⊂ R, K(ζm) = Q(ζmn) and K(ζn) = Q(ζmn). Thus K(ζm) ∩K(ζn) = Q(ζmn) is larger
than K. Emerton’s example in Remark 2.5 used m = 4 and n = 3: Q(ζ12)

+ = Q(
√

3).
Knowing the degree of cyclotomic extensions of Q lets us determine which two cyclotomic

fields can coincide. For example, Q(ζ3) = Q(ζ6) since −ζ3 has order 6. Here is the general
result in this direction.

Theorem 3.5. Let m and n be positive integers.

(1) The number of roots of unity in Q(µm) is [2,m].
(2) If m 6= n then Q(µm) = Q(µn) if and only if {m,n} = {k, 2k} for odd k.

Proof. 1) Our argument is adapted from [1, p. 158]. The root of unity −ζm is in Q(µm)
and it has order 2m is m is odd, and m if m is even, hence [2,m] in general. Therefore
µ[2,m] ⊂ Q(µm).

If Q(µm) contains an rth root of unity then Q(µr) ⊂ Q(µm), and taking degrees over
Q shows ϕ(r) ≤ ϕ(m). As r → ∞, ϕ(r) → ∞1 (albeit erratically) so there is a largest r
satisfying µr ⊂ Q(µm). Since µmµr = µ[m,r] is in Q(µm) we have [m, r] ≤ r, so [m, r] = r.
Write r = ms. By (3.2), for any positive integers a and b we have

ϕ(ab) =
ϕ(a)ϕ(b)(a, b)

ϕ((a, b))
,

so

ϕ(r) = ϕ(ms) = ϕ(m)ϕ(s)
(m, s)

ϕ((m, s))
≥ ϕ(m)ϕ(s).

Since Q(µm) = Q(µr) for the maximal r, computing degrees over Q shows ϕ(m) = ϕ(r) ≥
ϕ(m)ϕ(s), so 1 ≥ ϕ(s). Thus ϕ(s) = 1, so s = 1 or 2, so r = m or r = 2m. This shows the
number of roots of unity in Q(µm) is either m or 2m. If m is even then ϕ(2m) = 2ϕ(m) >
ϕ(m), so r 6= 2m. Thus when m is even the number of roots of unity in Q(µm) is m. If m
is odd then −ζm has order 2m, so the number of roots of unity in Q(µm) is 2m. In general
the number of roots of unity in Q(µm) is [2,m].

2) If Q(µm) = Q(µn) and m 6= n then counting roots of unity implies [2,m] = [2, n]. This
becomes m = [2, n] for even m (so n = m/2), and 2m = [2, n] for odd m (so n = 2m). �

Remark 3.6. Theorem 3.5 suggests two ways to parametrize cyclotomic extensions of Q
without duplication: as Q(µm) for m not twice an odd integer (m 6≡ 2 mod 4) or for m
equal to twice an odd integer (m ≡ 2 mod 4). In the first convention, Q(µm) contains 2m
roots of unity. The first convention is commonly used, as certain important results about
these fields take on a simpler appearance.

Theorem 3.7. If E/Q is a finite extension which contains no proper abelian extensions of
Q, Gal(E(µn)/E) ∼= (Z/(n))× for all n ≥ 1, or equivalently [E(µn) : E] = ϕ(n).

Proof. From Galois theory, for finite extensions L/K and F/K with L/K Galois, [LF :
F ] = [L : L ∩ F ]. Therefore [E(µn) : E] = [Q(µn)E : E] = [Q(µn) : Q(µn) ∩ E]. The
intersection Q(µn)∩E is an abelian extension of Q since every subfield of Q(µn) is abelian
over Q. Therefore by hypothesis Q(µn)∩E = Q, so [E(µn) : E] = [Q(µn) : Q] = ϕ(n). �

Example 3.8. For any prime p ≥ 3 and integer n ≥ 2, Gal(Q( p
√

2, µn)/Q( p
√

2)) ∼=
(Z/(n))×.

1This follows from using any bound ϕ(r) ≤ B to bound r from above. For any prime power pe dividing
r, ϕ(pe) ≤ B, so pe−1(p − 1) ≤ B. Then 2e−1 ≤ B and p − 1 ≤ B, so we get upper bounds on p and on e,
which gives an upper bound on r by unique factorization.
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Any discussion of cyclotomic extensions of Q would not be complete without at least
mentioning a deep theorem of Kronecker and Weber: every finite abelian extension of Q
lies inside a cyclotomic extension of Q. This is false if the base field is any proper finite
extension of Q: when 1 < [K : Q] < ∞ there exist finite abelian extensions of K which
do not lie in a cyclotomic extension of K. This doesn’t mean the finite abelian extensions
of such fields K can’t be described, but the means to do so are subtle. It is the subject of
class field theory.

4. Cyclotomic extensions of finite fields

The explicit knowledge of Galois groups of finite fields lets us describe Galois groups of
cyclotomic extensions of finite fields.

Theorem 4.1. Let F be a finite field with size q = pr, where p is prime. When n is not
divisible by the prime p, the image of Gal(F(µn)/F) in (Z/(n))× is 〈q mod n〉. In particular,
[F(µn) : F] is the order of q mod n.

Proof. From the general theory of finite fields, Gal(F(µn)/F) is generated by the qth power
map ϕq : x 7→ xq for all x in F(µn). The standard embedding of Gal(F(µn)/F) into (Z/(n))×

associates to ϕq the congruence class q mod n since ϕq has the effect of raising nth roots of
unity to the qth power. Since ϕq generates the Galois group, the image of the Galois group
in (Z/(n))× is 〈q mod n〉, so the size of the Galois group is the order of q in (Z/(n))×. �

Example 4.2. The degree [Fp(µ5) : Fp] is the order of p mod 5. So

[F3(µ5) : F3] = 4, [F11(µ5) : F11] = 1, [F19(µ5) : F19] = 2.

Remark 4.3. Using Theorem 4.1

F3(µ5) ∩ F3(µ7) = F34 ∩ F36 = F32 6= F3.

This is an explicit example where K(µm) ∩K(µn) 6= K(µ(m,n)).

For the standard embedding Gal(F(µn)/F) ↪→ (Z/(n))× to be onto is equivalent to
〈q mod n〉 = (Z/(n))×, so in particular (Z/(n))× must be a cyclic group. The groups
(Z/(n))× are usually not cyclic, so the standard embedding Gal(F(µn)/F) ↪→ (Z/(n))× is
usually not onto.

5. Cyclotomic polynomials

In the complex numbers, the primitive nth roots of unity are Q-conjugate and therefore
have a common minimal polynomial in Q[X]. It is called the nth cyclotomic polynomial
and is denoted Φn(X). The first few are

Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 +X + 1, Φ4(X) = X2 + 1.

For all n ≥ 1, Φn(X) ∈ Z[X], deg Φn = ϕ(n), and Φn(X) is irreducible in Q[X]. Here are
some identities involving these polynomials, where p is a prime:

(1) Xn − 1 =
∏
d|n Φd(X),

(2) Φn(X) = Xϕ(n)Φn(1/X) for n ≥ 2,
(3) Φp(X) = Xp−1 +Xp−2 + · · ·+X + 1,

(4) Φpr(X) = Φp(X
pr−1

),
(5) Φ2n(X) = Φn(−X) for odd n,



8 KEITH CONRAD

(6) Φp
r1
1 ···p

rk
k

(X) = Φp1···pk(Xp
r1−1
1 ···prk−1

k ),

(7) if (p,m) = 1 then Φprm(X) = Φm(Xpr)/Φm(Xpr−1
),

(8) for prime powers pr, Φpr(1) = p, while Φn(1) = 1 for other n ≥ 2,

Except for the first and last formulas, these identities can be checked by showing the
right side has the correct degree and one correct root to be the cyclotomic polynomial on
the left side. (A monic irreducible polynomial is determined by one of its roots.) The first
identity can be regarded as a recursive definition of the cyclotomic polynomials, although
from this identity it is not obvious in advance that the Φn(X)’s lie in Z[X] (instead of just
being in C[X], say) or that they are irreducible in Q[X].

Example 5.1. Since Φ2(X) = X + 1, we have Φ8(X) = Φ2(X
4) = X4 + 1. Since Φ3(X) =

X2 + X + 1, Φ6(X) = Φ3(−X) = X2 − X + 1 and Φ24(X) = Φ6(X
4) = Φ3(−X4) =

X12 −X4 + 1.

The sequence of cyclotomic polynomials provide an interesting example where initial data
can be misleading. The first 100 cyclotomic polynomials only have coefficients 0 and ±1,
but this is not true in general! For instance, Φ105(X) has a coefficient −2 for X41 and X7

(the other coefficients are 0 and ±1). Why does it take so long for a coefficient besides 0
and ±1 to occur? Well, the fourth and fifth formulas above show the nonzero coefficients
of cyclotomic polynomials are determined by the coefficients of Φn(X) when n is a product
of distinct odd primes. The polynomial Φp(X) only has coefficient 1 and it can be shown
[4] that Φpq(X) only has coefficients 0 and ±1. Therefore any n with at most 2 odd prime
factors only has coefficients among 0 and ±1. The first positive integer which does not
have at most 2 odd prime factors is 3 · 5 · 7 = 105 > 100, which shows Φ105(X) is the first
cyclotomic polynomial which even has a chance to have a coefficient other than 0 and ±1.
By a theorem of Schur, if n has t odd prime factors then Φn(X) has coefficient −(t − 1)
(thus predicting the coefficient of −2 in Φ105(X)). To produce large coefficients in Φn(X)
we should give n a lot of odd prime factors and numbers below 100 have at most 2 odd
prime factors.

Cyclotomic polynomials for prime-power n, say n = pr, can be written down concretely:

Φpr(X) =
Xpr − 1

Xpr−1 − 1
=

p−1∑
k=0

Xpr−1k.

Theorem 5.2. The polynomial Φpr(X + 1) is Eisenstein with respect to p.

Proof. The constant term of Φpr(X + 1) is

Φpr(1) =

p−1∑
k=0

1p
r−1k = p,

which is divisible by p just once. To show the non-leading coefficients are all multiples of

p, we reduce the coefficients mod p. Since, in Fp[X], Xpr − 1 = (X − 1)p
r

and Xpr−1 − 1 =

(X − 1)p
r−1

, we have (reducing coefficients mod p)

Φpr(X) =
Xpr − 1

Xpr−1 − 1
= (X − 1)p

r−pr−1
in Fp[X],

so

Φpr(X + 1) = Xpr−pr−1
in Fp[X].
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The degree of Φpr(X + 1) is pr − pr−1, so all its non-leading coefficients are 0 in Fp, which
means the coefficients as integers are multiples of p. �

Using the Eisenstein irreducibility criterion, Φpr(X+1) is irreducible in Q[X], so Φpr(X)
is irreducible in Q[X]. Therefore [Q(µpr) : Q] = pr−pr−1 = #(Z/(pr))×, so the embedding
Gal(Q(µpr)/Q) ↪→ (Z/(pr))× is an isomorphism. This is an alternate proof of Theorem 3.1
when n is a prime power which is much simpler than the proof we gave before.

Cyclotomic polynomials can be used to prove some results that don’t appear to be about
roots of unity in the first place. One such result is an elementary proof that for any n > 1
there are infinitely many primes p ≡ 1 mod n [6, Cor. 2.11]. A second result is a proof of
Wedderburn’s theorem that all finite division rings are commutative [3, Thm. 13.1].

Since cyclotomic polynomials are in Z[X], let’s reduce them modulo p and ask how they
factor. It suffices to look at Φn(X) = Φn(X) mod p when (p, n) = 1 since the sixth algebraic
identity above for cyclotomic polynomials, reduced modulo p, becomes

(5.1) Φprm(X) = Φm(X)p
r−pr−1

mod p

in Fp[X] when (p,m) = 1.

Theorem 5.3. When the prime p does not divide n, the monic irreducible factors of
Φn(X) ∈ Fp[X] are distinct and each has degree equal to the order of p mod n.

Proof. Since Φn(X)|(Xn − 1) in Z[X], this divisibility relation is preserved when reducing
modulo p, so Φn(X) is separable in Fp[X] because Xn − 1 is separable in Fp[X]. (Here we
need (p, n) = 1.)

Let α be a root of Φn(X) in an extension of Fp. We will show that α inherits the

expected algebraic property of being a primitive nth root of unity. Since Φn(X)|Xn − 1,
from Φn(α) = 0 we have αn = 1. If α were not of order n then it has some order m which
properly divides n. Then α is a root of Xm − 1 =

∏
d|m Φd(X), so Φd(α) = 0 for some d

properly dividing n. Since d|n, Xn − 1 is divisible by Φn(X)Φd(X), so α is a double root
of Xn − 1, but Xn − 1 has no repeated roots. Therefore we have a contradiction, so α is a
primitive nth root of unity.

Let π(X) be an irreducible factor of Φn(X) in Fp[X] and let α denote a root of π(X).
Then α is a primitive nth root of unity, so deg π = [Fp(α) : Fp] is the order of p mod n by
Theorem 4.1. �

Example 5.4. The polynomial Φ5(X) = X4 + X3 + X2 + X + 1 factors over Fp into
irreducible factors whose degrees equal the order of p mod 5. For example, X4 +X3 +X2 +
X + 1 is irreducible in F3[X], while

X4 +X3 +X2 +X + 1 = (X − 3)(X − 4)(X − 5)(X − 9)

in F11[X] and

X4 +X3 +X2 +X + 1 = (X2 + 5X + 1)(X2 + 15X + 1)

in F19[X]. These are compatible with the formulas for [Fp(µ5) : Fp] in Example 4.2.

Example 5.5. The polynomial Φ7(X) = X6 + X5 + X4 + X3 + X2 + X + 1 factors over
Fp into irreducible factors whose degrees equal the order of p mod 7. For example, since 2
mod 7 has order 3, Φ7(X) factors over F2 into a product of irreducible cubics:

X6 +X5 +X4 +X3 +X2 +X + 1 = (X3 +X + 1)(X3 +X2 + 1)
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in F2[X]. This explains what happened in Example 3.3: if ζ is a primitive 7th root of unity
in characteristic 2, then it and ζ3 are roots of the two different cubics on the right side: one
has roots ζ, ζ2, and ζ4, while the other has roots ζ3, (ζ3)2 = ζ6, and (ζ3)4 = ζ5.

Corollary 5.6. The reduction Φn(X) is irreducible in Fp[X] if and only if (p, n) = 1 and
p mod n is a generator of (Z/(n))×.

Proof. If Φn(X) is irreducible in Fp[X] then (p, n) = 1 by (5.1), so Theorem 5.3 tells us
the order of p mod n is ϕ(n): p mod n generates (Z/(n))×. Conversely, if (p, n) = 1 and
p mod n is a generator of (Z/(n))× then Theorem 5.3 tells us the irreducible factors of
Φn(X) in Fp[X] have degree ϕ(n) = deg(Φn(X)), so Φn(X) is irreducible. �

Thus many cyclotomic polynomials are examples of irreducible polynomials in Z[X] that
factor modulo every prime: if (Z/(n))× is not a cyclic group then there is no generator for
(Z/(n))×, so Corollary 5.6 says there is no prime p such that Φn(X) mod p is irreducible.
In other words, Φn(X) mod p factors for all primes p.

Example 5.7. The least n such that (Z/(n))× is non-cyclic is n = 8, and Φ8(X) = X4 + 1.
This polynomial is reducible mod p for all p. Here are some factorizations:

Φ8(X) ≡ (X + 1)4 mod 2,

Φ8(X) ≡ (X2 +X + 2)(X2 + 2X + 2) mod 3,

Φ8(X) ≡ (X2 + 2)(X2 + 3) mod 5,

Φ8(X) ≡ (X2 + 3X + 1)(X2 + 4X + 1) mod 7,

Φ8(X) ≡ (X2 + 3X + 10)(X2 + 8X + 10) mod 11,

Φ8(X) ≡ (X − 2)(X − 8)(X − 9)(X − 15) mod 17,

Φ8(X) ≡ (X2 + 6X + 18)(X2 + 13X + 18) mod 19,

Φ8(X) ≡ (X2 + 5X + 1)(X2 + 18X + 1) mod 23,

Φ8(X) ≡ (X2 + 12)(X2 + 17) mod 29,

Φ8(X) ≡ (X2 + 8X + 1)(X2 + 23X + 1) mod 31,

Φ8(X) ≡ (X2 + 6)(X2 + 31) mod 37,

Φ8(X) ≡ (X − 3)(X − 14)(X − 27)(X − 38) mod 41.
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