
DIRICHLET SERIES

KEITH CONRAD

The Riemann zeta-function ζ(s) and Dirichlet L-functions L(s, χ) are special cases of
functions of the form

f(s) =
∑
n≥1

an
ns

= a1 +
a2
2s

+
a3
3s

+ · · · ,

where the an are complex numbers and s is a complex variable. Such functions are called
Dirichlet series. We call a1 the constant term.

A Dirichlet series will often be written as
∑
ann

−s, with the index of summation un-
derstood to start at n = 1. Similarly,

∑
app
−s runs over the primes, and

∑
apkp

−ks runs
over the prime powers excluding 1. (Not counting 1 as a prime power in that notation is
reasonable in light of the way Dirichlet series that run over prime powers arise in practice,
without a constant term.) A Dirichlet series over the prime powers that excludes the primes
will be written

∑
p,k≥2 apkp

−ks.
The use of s as the variable in a Dirichlet series goes back to Dirichlet, who took s to

be real and positive. Riemann emphasized the importance of letting s be complex. The
convention of using σ and t for the real and imaginary parts of s seems to have become
common at the beginning of the 20th century,1 and was universally adopted through the
influence of Landau’s Handbuch [6] (1909).

Example 1. If an = 1 for all n then f(s) = ζ(s), which converges for σ > 1. It does not
converge at s = 1.

Example 2. If an = χ(n) for a Dirichlet character χ, f(s) is the L-function L(s, χ) and
converges absolutely for σ > 1. Note L(s, χ4) converges for real s > 0 since the Dirichlet
series is then an alternating series. A general Dirichlet character does not take alternating
values ±1, but we’ll see that as long as χ is not a trivial Dirichlet character, L(s, χ) also
converges (though not absolutely) when 0 < Re(s) ≤ 1.

Example 3. The series
∑
χ4(p)p

−s, running over the primes, converges for σ > 1. Al-
though χ4 is an alternating function on consecutive odd integers, it is not alternating on
consecutive odd primes, so it is not clear whether or not it converges if 0 < σ < 1. Conver-
gence at s = 1 is known, but is still unknown for any real s < 1, and will probably never be
known by a straightforward method since it would lead to a major advance in the Riemann
hypothesis for L(s, χ4).

Example 4. For a Dirichlet series
∑
ann

−s we can consider
∑
χ(n)ann

−s for some Dirichlet
character χ. We call the latter function a twist of the former, by χ. So L(s, χ) is a twist of
the zeta-function.

Example 5. If an = nk for an integer k, then f(s) = ζ(s− k) converges for σ > k + 1.

1This notation is not due to Riemann.

1
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Example 6. If an = 1/nn then f(s) converges for all s. Unlike power series, no Dirichlet
series that arises naturally converges on the whole complex plane, so you should not regard
examples of this sort as important.

Example 7. A nonconstant polynomial function c0 + c1s + · · · + cms
m (m > 0) is not

expressible as a Dirichlet series, since it doesn’t satisfy the condition of Exercise 10a.

Theorem 8. If
∑
ann

−s0 converges absolutely at a complex number s0 then
∑
ann

−s con-
verges absolutely for all s with Re(s) ≥ Re(s0).

Proof. Use the comparison test. �

Our next task is to show Theorem 8 remains true when we weaken absolute convergence
to convergence, except the inequality in the conclusion will become strict.

Theorem 9 (Jensen–Cahen). If {an} is a sequence such that the partial sums a1 + a2 +
· · ·+ an are bounded then the series

∑
ann

−s converges and is an analytic function on the
half-plane σ > 0, with its derivative there computable termwise. Convergence of the series
is absolute on the half-plane σ > 1.

More generally, if the partial sums of the series
∑
ann

−s at s0 = σ0 + it0, are bounded
then the series

∑
ann

−s converges and is analytic for σ > σ0, with its derivative there
computable termwise. Convergence is absolute on the half-plane σ > σ0 + 1.

Unless otherwise specified, the undecorated term “half-plane” always refers to a right
half-plane of the form σ > σ0 or σ ≥ σ0.

Proof. Set An = a1 + · · · + an for n ≥ 1 and A0 = 0, so {An} is a bounded sequence and
an = An −An−1 for n ≥ 1. By partial summation

N∑
n=1

an
ns

=
N∑
n=1

An −An−1
ns

=
AN
N s
−
N−1∑
n=1

An

(
1

(n+ 1)s
− 1

ns

)
.

For any real numbers a and b, ∫ b

a

dx

xs+1
= −1

s

(
1

bs
− 1

as

)
,

so
N∑
n=1

an
ns

=
AN
N s
−
N−1∑
n=1

An(−s)
∫ n+1

n

dx

xs+1
.

For x ≥ 1, set A(x) = A[x], e.g.,A(9.7) = A9. Then A(x) is a piecewise continuous (step)
function and

N∑
n=1

an
ns

=
AN
N s
−
N−1∑
n=1

(−s)
∫ n+1

n

A(x)

xs+1
dx

=
AN
N s

+ s
N−1∑
n=1

∫ n+1

n

A(x)

xs+1
dx

=
AN
N s

+ s

∫ N

1

A(x)

xs+1
dx.(1)
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Letting |An| ≤ C for all n, when σ > 0 we have |AN/N s| ≤ C/Nσ → 0 as N → ∞ and∫∞
1 (A(x)/xs+1)dx is absolutely convergent. Thus when we let N →∞ in (1) we get

(2)
∑
n≥1

an
ns

= s

∫ ∞
1

A(x)

xs+1
dx.

Since An is a bounded sequence, the numbers an = An−An−1 are bounded, so the series∑
|an/ns| =

∑
|an|/nσ converges for all σ > 1. Thus

∑
ann

−s is absolutely convergent if
σ > 1.

To prove
∑
an/n

s is analytic for σ > 0, set

f(s) =
∑
n≥1

an
ns
, fN (s) =

N∑
n=1

an
ns
.

We just showed fN → f pointwise when σ > 0. We will show fN → f uniformly on compact
subsets of the half-plane {s : σ > 0}, so by basic complex analysis the analyticity of fN
implies both analyticity of f and f ′N → f ′ uniformly on compact subsets.

Using (1) and (2), for σ > 0

f(s)− fN (s) = s

∫ ∞
1

A(x)

xs+1
dx−

(
AN
N s

+ s

∫ N

1

A(x)

xs+1
dx

)
= s

∫ ∞
N

A(x)

xs+1
dx− AN

N s
,

so

|f(s)− fN (s)| ≤ |s|
∫ ∞
N

C

xσ+1
dx+

C

Nσ
=
|s|C
σNσ

+
C

Nσ
.

Let K be a compact subset of {s : σ > 0}, so for some b > 0 and B > 0 we have σ ≥ b and
|s| ≤ B for all s ∈ K. Then

s ∈ K =⇒ |f(s)− fN (s)| ≤ BC

bN b
+

C

N b
,

and this upper bound tends to 0 as N →∞.
Since f ′N → f ′ uniformly on compact subsets of {s : σ > 0}, and thus in particular

pointwise,

f ′(s) = lim
N→∞

f ′N (s) = lim
N→∞

N∑
n=1

an(− log n)

ns

In the general case where the partial sums of the series
∑
an/n

s0 are bounded, set
bn = an/n

s0 so the partial sums b1 + · · · + bn are bounded and
∑
bn/n

s =
∑
an/n

s+s0 .
Conclusions that we have proved for

∑
bn/n

s when Re(s) > 0 transfer to
∑
an/n

s when
Re(s) > Re(s0). �

Example 10. The zeta-function is analytic for σ > 1, with

ζ ′(s) = −
∑
n≥2

log n

ns
, ζ ′′(s) =

∑
n≥2

(log n)2

ns
.

The contribution of Jensen (1884) to Theorem 9 was a proof that convergence at s0 implies
convergence on the half-plane to the right of s0. Cahen (1894) weakened the hypothesis to
permit bounded partial sums at s0, and also proved analyticity. (For a discussion of the
development of convergence theorems for Dirichlet series, see [2].) Dirichlet did not have



4 KEITH CONRAD

the full strength of Theorem 9 back in 1837 when he used L-functions in his proof on primes
in arithmetic progression. He looked at L-functions only for real s > 0, not complex s, and
he proved their convergence and continuity using real analysis.

Corollary 11. If σ0 ≥ 0 and A(x) :=
∑

n≤x an/n
s0 satisfies A(x) = O(xσ0), or even

A(x) = O(xσ0+ε) for all ε > 0, then for Re(s) > σ0∑
n≥1

an
ns

= s

∫ ∞
1

A(x)

xs+1
dx,

where
∫∞
1 = limT→∞

∫ T
1 .

In the estimate A(x) = O(xσ0+ε), the implicit constant in the estimate may depend on
ε.

Proof. Exercise 6. �

Example 12. For real s > 0, the alternating series L(s, χ4) converges, so it converges
and is analytic for complex s with Re(s) > 0. Alternatively, we have convergence on this
half-plane since the partial sums of the Dirichlet coefficients are bounded, being only 0 or
1. For σ > 0,

L(s, χ4) = s

∫ ∞
1

A(x) dx

xs+1
,

where A(x) = 0 or 1.

Although

L

(
1

2
, χ4

)
=
∑
n≥1

χ4(n)√
n

and L′
(

1

3
, χ4

)
= −

∑
n≥2

χ4(n) log n
3
√
n

,

these sums are not absolutely convergent, and this marks a striking difference with power
series. A power series is absolutely convergent on the interior of its disc of convergence, but
a Dirichlet series can converge nonabsolutely on a vertical strip.

Theorem 13. Let χ : (Z/(m))× → C be a nontrivial Dirichlet character, so χ(a) 6= 1 for
some unit a mod m. Set χ(n) = 0 if (n,m) > 1. The Dirichlet series

L(s, χ) =
∑
n≥1

χ(n)

ns

converges for σ > 0. It converges absolutely for σ > 1.

Proof. Absolute convergence on σ > 1 is clear. To get convergence for σ > 0, we show the
partial sums χ(1) + χ(2) + · · ·+ χ(n) are all bounded, so Theorem 9 applies.

Since χ is periodic, it suffices to show the sum over a full period vanishes:

N+m−1∑
k=N

χ(k) =
∑

k∈(Z/(m))×

χ(k) = 0.

Let S be this sum. Choosing a unit a mod m so that χ(a) 6= 1,

χ(a)S =
∑

k∈(Z/(m))×

χ(ak) =
∑

k∈(Z/(m))×

χ(k) = S,

so S = 0. �
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It is instructive to compare properties of functions defined by a power series and by
a Dirichlet series. Both such series can be taken as special cases of series of the type∑

n≥1 ane
−λns; Dirichlet series are the case λn = log n and power series (in e−s) are the

case λn = n− 1. We will not pursue such a unification (for that, see [1], [3], [7], or [8]), but
instead list a few properties that power series and Dirichlet series share and don’t share.

For a power series
∑
cn(z − a)n, convergence at at point z0 implies convergence on the

disc |z − a| < |z0 − a|, a bounded region. But if a Dirichlet series
∑
ann

−s converges at
a point s0 then there is convergence on the half-plane σ > Re(s0), which is an unbounded
region. This illustrates the inherently nonlocal nature of a Dirichlet series, unlike the tool
of local power series expansions that pervades complex function theory. For this reason
Dirichlet series are not a general purpose tool in complex analysis.

• Without worrying about boundary behavior, a power series has a maximal open
disc of convergence |z − a| < R. By Theorem 9, a Dirichlet series has a maximal
open half-plane of convergence σ > σc for some real number σc. The number σc is
called the abscissa of convergence of the Dirichlet series.
• Power series and Dirichlet series are uniform limits of partial sums on compact sub-

sets of the interior of the region of convergence, with derivatives being computable
termwise.
• A power series converges absolutely on the interior of its disc of convergence, but a

Dirichlet series need not converge absolutely on the whole interior of σ > σc.
For every Dirichlet series, there is a maximal open half-plane of absolute conver-

gence σ > σa for some number σa, called the abscissa of absolute convergence. By
Theorem 9, σc ≤ σa ≤ σc + 1. For ζ(s), σa = σc = 1, while for L(s, χ4), σa = 1 and
σc = 0. It can happen that σc < σa < σc + 1.
• A Dirichlet series that converges at s0 converges uniformly on regions larger than

compact subsets of σ > Re(s0), such as sectors{
s : σ ≥ σ0, |Arg(s− s0)| ≤

π

2
− ε
}

for 0 < ε < π/2. For a proof, see [7, Chap. VI, Prop. 6]. Compact sets of uniform
convergence, which we established in Theorem 9, will suffice for us.
• A power series

∑
cn(z−a)n has radius of convergence given by Hadamard’s formula

1

R
= lim |cn|1/n.

(Recall that lim simply means “largest limit point.”) For a Dirichlet series that does
not converge at s = 0, the abscissa of convergence σc is given by Cahen’s formula

(3) σc = lim
log |a1 + · · ·+ an|

log n
≥ 0.

A formula for σc that is valid with no restrictions on behavior at 0 is due to Knopp
[4] (for a generalization, see [5]):

σc = lim
log |

∑ex

n=e[x] an|
x

Formulas for σa are the same as these, except an is replaced by |an|. We will have
no use for such abscissa formulae.
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• The coefficients of a power series f(z) =
∑
cn(z − a)n can be recovered by both

Taylor’s formula and Cauchy’s integral formula:

cn =
f (n)(a)

n!
=

1

2πi

∫
|z−a|=r

f(z)

(z − a)n+1
dz.

Here r is less than the radius of convergence of f at z = a.
The coefficients of a Dirichlet series f(s) =

∑
ann

−s can be recovered by integra-
tion along vertical lines. For example, if σ > σc, then Perron’s formula is∑

n≤x
an = lim

T→∞

1

2πi

∫ σ+iT

σ−iT
f(s)

xs

s
ds,

where x is not an integer. The coefficients an are then determined by taking a
difference of consecutive partial sums.

An integration formula that recovers the nth coefficient alone is

an = lim
T→∞

1

2T

∫ T

−T
f(σ + it)nσ+it dt.

Here σ > σc.
Note that these vertically integrated formulas for Dirichlet coefficients are along

noncompact contours, while the Cauchy integral formula for Taylor coefficients is
along a circle.

The Dirichlet coefficients can also be determined by taking limits to the right,
e.g.,

f(s) =
∑
n≥1

an
ns

= a1 +
a2
2s

+
a3
3s

+ · · · =⇒ lim
σ→+∞

f(s) = a1.

See Exercise 10 for an extension to other coefficients.
• A power series with disc of convergence |z| < r that analytically extends to a point
z0 on the boundary |z| = r is represented by a power series on a small disc around
z0. But a Dirichlet series with half-plane of convergence σ > σc that analytically
extends to a point sc on the boundary σ = σc is never represented by a Dirichlet
series on a small disc around sc. Indeed, a Dirichlet series converging on a disc
around sc automatically converges on some half-plane σ > σc − ε, so by uniqueness
of coefficients this must be the original Dirichlet series, which only converges on
σ > σc.

This explains why Dirichlet series are inherently non-local objects, unlike power
series. Another way to think about this state of affairs is that a power series can be
recentered to a point near the boundary of its region of convergence but a Dirichlet
series can’t; all Dirichlet series are “centered” at +∞. (Of course, one can always
replace

∑
ann

−s with
∑
ann

−s+s1 =
∑

(ann
−s1)n−s to shift the half-plane of con-

vergence, but this is not a recentering since the underlying function has changed.)
• A power series must have an analytic singularity at some point on the boundary

of its disc of convergence. (Proof: If we can cover the boundary circle by small
balls where the power series admits analytic continuations, finitely many of these
balls will cover the boundary circle by compactness. Therefore the function extends
analytically to a slightly larger disc, so by complex analysis its series expansion at
the center has a slightly larger radius of convergence, which is a contradiction.) If
we carry over the proof for power series to the case of Dirichlet series, the proof
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fails because (vertical) lines are noncompact. And in fact, a Dirichlet series does
not have to admit any analytic singularities along its abscissa of convergence. For
example, the Dirichlet series for L(s, χ4) converges only on σ > 0, but we’ll see that
L(s, χ4) extends to an entire function.

For the rest of this section, we put the background material about infinite products and
logarithms of analytic functions to work on the Riemann zeta-function.

Theorem 14. For Re(s) > 1,

ζ(s) =
∏
p

1

1− p−s
= exp

∑
p,k

1

kpks

 6= 0.

Proof. To justify expanding∏
p

1

1− p−s
=
∏
p

(
1 +

1

ps
+

1

p2s
+ . . .

)
into a Dirichlet series by multiplying out the infinite product of infinite series and rearrang-
ing terms any way we want, it is sufficient that the series

∑
p 1/ps is absolutely convergent,

which is true for Re(s) > 1. Therefore when Re(s) > 1 we can expand out
∏
p 1/(1− 1/ps)

and obtain
∑

1/ns = ζ(s) by unique factorization in Z.
For Re(s) > 1 the series

∑
p,k 1/(kpks) is absolutely convergent, so continuity of the

exponential function implies

exp

∑
p

∑
k≥1

1

kpks

 =
∏
p

exp

∑
k≥1

1

kpks

 =
∏
p

1

1− 1/ps
.

�

Corollary 15. For Re(s) > 1,

1

ζ(s)
=
∏
p

(
1− 1

ps

)
=
∑
n≥1

µ(n)

ns
,

where µ is the Möbius function.

For the reader’s convenience, we recall the definition of µ(n): µ(1) = 1 and µ(n) = (−1)r

if n is a product of r distinct primes. If n has a multiple prime factor, then µ(n) = 0.

Proof. Since ζ(s) 6= 0 by Theorem 14, we can reciprocate the Euler product:

1

ζ(s)
=
∏
p

(
1− 1

ps

)
.

To write 1/ζ(s) as a Dirichlet series, we give two proofs.
Expanding

∏
(1−p−s) into a series, we get the terms ±n−s where n is squarefree and the

± sign depends on the parity of the numbers of prime factors of n. That parity is exactly
the definition of the Möbius function µ(n). Since the series

∑
µ(n)n−s converges absolutely

on σ > 1, this computation of the product into a series is justified (Exercise 9).
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For a second proof, we begin with the observation that the Dirichlet series
∑
µ(n)n−s

converges absolutely on σ > 1, so by Exercise 7

ζ(s) ·
∑
n≥1

µ(n)

ns
=
∑
n≥1

cn
ns

where cn =
∑

d|n µ(d). It is a basic property of the Möbius function that this sum is 1 for

n = 1 and 0 for n > 1. So the product is 1. �

The proof of Theorem 14 brings out a point that is worth making explicit before we
continue. It is commonly said that the zeta-function is nonvanishing on Re(s) > 1 because
“it has an Euler product.” However, we did not prove the nonvanishing as a consequence
the Euler product, but rather obtained both nonvanishing and representation as an Euler
product simultaneously, as consequences of the representation of the zeta-function as the
exponential of another function. So from the viewpoint we are taking, the zeta-function is
nonvanishing on Re(s) > 1 not because “it has an Euler product,” but because “it is an
exponential,” and exponentials are never zero.

The representation of a function as an infinite product is not by itself an adequate reason
for it to be nonvanishing. Consider an example from Corollary 15:

1

ζ(s)
=
∏
p

(
1− 1

ps

)
= lim

x→∞

∏
p≤x

(
1− 1

ps

)
.

It turns out that this formula for 1/ζ(s) for Re(s) > 1 is valid on the line Re(s) = 1.
However, while the factors in the product for 1/ζ(s) are all nonvanishing on Re(s) ≥ 1, the
product vanishes at s = 1.

The expression of the zeta-function as an exponential or Euler product as in Theorem 14
should be regarded as a basic structural ingredient, in some sense more fundamental than
the usual Dirichlet series definition. Of course the Dirichlet series is important, e.g.,it is
used in proving the analytic continuation of ζ(s). However, some similar types of functions
that are significant for number theory, such as zeta-functions of varieties over finite fields
or Artin L-functions, can only be defined as exponentials or Euler products, not as series.
A series expression in these two cases is possible, but not as a starting point.

Definition 16. For Re(s) > 1, let

log ζ(s) :=
∑
pk

1

kpks
=

1

2s
+

1

3s
+

1

2 · 4s
+

1

5s
+

1

7s
+

1

3 · 8s
+

1

2 · 9s
+ . . . .

By Theorem 14, the function log ζ(s) is indeed a logarithm of the zeta-function, since its
exponential is ζ(s). Although we can reorder the sum in the definition of log ζ(s) to take the
succinct form log ζ(s) :=

∑
p−Log(1−p−s), it should be kept in mind that the log notation

on the left is a priori only formal; we are not defining log ζ(s) as a composite of “log” and
“ζ”. Still, having checked that log ζ(s) is indeed a logarithm of ζ(s) we can characterize
it among all logarithms of ζ(s) by either of two analytic properties: being real-valued on
(1,∞) (so log ζ(s) = log(ζ(s)) for real s > 1) or tending to 0 as Re(s)→∞.

Taking the derivative of log ζ(s)

(4)
ζ ′(s)

ζ(s)
= −

∑
pk

log p

pks
.
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Exercises.

1. Let h(n) be a polynomial in n of degree d. Show
∑
h(n)n−s converges absolutely

for σ > d+ 1.
2. Show the series

∑
ann

−s converges somewhere if and only if an has at most poly-
nomial growth, i.e., an = O(nd) for some positive number d.

3. If
∑

n≤x an = O(xδ) for some δ ≥ 0, show for Re(s) > δ that the Dirichlet series∑
ann

−s converges. In particular, when δ = 0 we recover Theorem 9, and in
fact your solution to this problem should simply involve making the appropriate
adjustments to the proof of that theorem.

4. Fix σ0 > 0.
a) If an ≥ 0, show the following are equivalent:
i)
∑
ann

−s converges for σ > σ0.
ii)
∑

n≤x an = O(xσ0+ε) for all ε > 0, where the O–constant may depend on ε.

b) Give an example where an ≥ 0,
∑
ann

−s converges for σ > σ0, and
∑

n≤x an 6=
O(xσ0).

5. Let an ≥ 0. Show f(s) =
∑
ann

−s has abscissa of convergence

1 + lim{r : an = O(nr)}.

6. Prove Corollary 11.
7. Let f(s) =

∑
ann

−s, g(s) =
∑
bnn
−s.

If σ > σ0 is a common half-plane of absolute convergence for f(s) and g(s), show
on this half-plane that formal multiplication is valid:∑

n≥1

an
ns
·
∑
n≥1

bn
ns

=
∑
n≥1

cn
ns
,

where cn =
∑

d|n ad · bn/d =
∑

dd′=n adbd′ and
∑
cnn
−s converges absolutely on σ >

σ0. This result extends trivially to products of finitely many absolutely convergent
Dirichlet series.

8. a) Show the exponential of an absolutely convergent Dirichlet series is an absolutely
convergent Dirichlet series. That is, if

∑
bnn
−s converges absolutely when Re(s) >

σ0, then

exp

∑
n≥1

bn
ns

 =
∑
n≥1

an
ns
,

where the right side is absolutely convergent for Re(s) > σ0.
b) Suppose that all bn ≥ 0. Show all an ≥ 0, and in fact bn ≤ an, so

∑
ann

−s

and
∑
bnn
−s have the same open half-plane of absolute convergence.

9. Let F : Z+ → C be “arithmetically multiplicative”: F (mn) = F (m)F (n) for rela-
tively prime m and n in Z+, but possibly F (mn) 6= F (m)F (n) if m and n have a
common factor. Examples include d(n) and ϕ(n). If F (n) grows at most polynomi-
ally in n, prove the product decomposition∑

n≥1

F (n)

ns
=
∏
p

(
1 +

F (p)

ps
+
F (p2)

p2s
+
F (p3)

p3s
+ . . .

)
on a half-plane where the Dirichlet series on the left converges absolutely.
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10. a) Show that

f(s) =
∑
n≥1

an
ns

= a1 +
a2
2s

+
a3
3s

+ · · · =⇒ lim
σ→+∞

f(s) = a1.

b) If in part a) the coefficients a1, . . . , ak−1 have been determined, bring the first
k − 1 terms to the other side and consider a Dirichlet series starting with the kth
term:

g(s) =
ak
ks

+
ak+1

(k + 1)s
+

ak+2

(k + 2)s
+ . . . ,

so

ksg(s) = ak + ak+1

(
k

k + 1

)s
+ ak+2

(
k

k + 2

)s
+ · · · =

∑
n≥k

an

(
k

n

)s
.

Show that limσ→+∞ k
sg(s) = ak, so all the coefficients are inductively determined

by taking various limits to ∞.
c) Suppose h(s) =

∑
n≥k bnn

−s, where bk 6= 0. Show |h(s)| ≥ (1/2)|bk|/kσ for all
sufficiently large σ. Therefore a Dirichlet series is bounded away from 0 and ∞ on
all vertical lines sufficiently far to the right.

d) If f(sk) = 0 for a sequence sk with Re(sk) → ∞, show all an = 0, so f is
identically zero. (This is due to Dirichlet for real sk and Perron for the general
case.)

e) If an 6= 0 for some n > 1, show for every c ∈ C that f(s) 6= c if Re(s) is
sufficiently large.

11. a) If
∑

n≥1 ann
−s converges on σ > σ0, show −

∑
n≥2(an/ log n)n−s does as well,

so a function on an open half-plane that is represented by a Dirichlet series has
its antiderivative on that half-plane also represented by a Dirichlet series provided
a1 = 0.

b) By part a), the series h(s) =
∑

n≥2 1/(ns log n) converges on σ > 1 and

h′(s) = 1−ζ(s). Since
∑

1/(n log n) diverges (the companion integral
∫∞
2 dx/x log x

diverges), we expect that h(s)→∞ as s→ 1+. Prove this.
12. Let f(s) =

∑
ann

−s with a1 = 1 and an real for all n. If for some real σ0, f(s) is
nonvanishing for σ > σ0, show f(s) is positive for real s > σ0.

13. Show the only rational functions that are represented on some (nonempty) half-plane
by a Dirichlet series are constants.

14. (Dirichlet integral) Let a(x) be an integrable function on each interval [1, T ]. Let

f(s) :=

∫ ∞
1

a(x)

xs
dx = lim

T→∞

∫ T

1

a(x)

xs
dx

when this integral converges. Think of
∫ T
1 a(x)x−s dx as analogous to

∑
n≤x ann

−s.

a) Explain why, for fixed T , the integral
∫ T
1 a(x)x−s dx is analytic in s and can

be differentiated under the integral sign.

b) If for some s0 the integrals A(T ) =
∫ T
1 a(x)x−s0 dx are bounded uniformly in

T ≥ 1, show f(s) converges and is analytic for Re(s) > Re(s0), with

f ′(s) =

∫ ∞
1

−a(x) log x

xs
dx.

(Hint: Reduce to the case Re(s0) = 0 and use integration by parts.)
c) Show f(s) converges absolutely for Re(s) > σ0 + 1.
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15. Let
∑
ann

−s have abscissa of convergence σc. Without using formulas for σc, show∑
ann

−s also has abscissa of convergence σc, so by addition the series
∑

Re(an)n−s

and
∑

Im(an)n−s converge on σ > σc.
Also show the functions

∑
ann

−s and
∑
ann

−s have analytic continuations to the
same half-planes, although these continuations need not be everywhere expressible
as a Dirichlet series.

16. For ε > 0, let

fε(s) =
∑
n≥2

(
1

log n

)1+ε 1

ns
.

Show fε(s) has σa = σc = 1 and the series converges absolutely on σ = 1.
17. Let the partial sums An = a1 + · · ·+ an be bounded, say |An| ≤ C for all n.

a) Prove the following tail end estimate for σ > 0:∣∣∣∣∣∣
∑
n≥M

an
ns

∣∣∣∣∣∣ ≤ C
(
|s|
σ

+ 1

)
1

Mσ
.

In particular, if
∑

n≤x an = O(1) then
∑

n≥x an/n = O(1/x).

b) For real t 6= 0, show that as N →∞,∣∣∣∣∣
N∑
n=1

an
nit

∣∣∣∣∣ ≤ C|t| log(N + 1) + C ∼ C|t| logN.

18. Suppose
∑
|an| converges. Show the series

∑
ann

−s is uniformly continuous on
compact subsets of the closed half-plane σ ≥ 0. (The main point is to check compact
sets containing a piece of the boundary σ = 0.)

19. Let an, bn be sequences of positive numbers, with an ∼ bn as n→∞.
a) For s > 1, show

∑
ann

−s converges if and only if
∑
bnn
−s converges.

b) As s → 1+, show
∑
ann

−s tends to ∞ if and only if
∑
bnn
−s does, in which

case the two Dirichlet series are asymptotic as s→ 1+.
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