CHARACTERS OF FINITE ABELIAN GROUPS (SHORT VERSION)

KEITH CONRAD

1. INTRODUCTION

The theme we will study is an analogue on finite abelian groups of Fourier analysis on
R. A Fourier series on the real line is the following type of series in sines and cosines:

f(z) = Z an cos(nz) + Z by, sin(nzx).
n>0 n>1
This is 2m-periodic. Since e™* = cos(nz) + isin(nz) and e~ = cos(nx) — isin(nz), a
Fourier series can also be written in terms of complex exponentials:

f(fl‘) _ cheinx7

nez

where the summation runs over all integers (co = ag, ¢, = %(an — byi) for n > 0, and

Cn = %(aw + bjpyi) for n < 0). The convenient algebraic property of ¢*, which is not
shared by sines and cosines, is that it is a group homomorphism from R to the unit circle
St={zeC:|z|=1}:

nx

) , ) .,
ezn(x—l—:r) — einx gina’

We now replace the real line R with a finite abelian group. Here is the analogue of the
functions e**.

Definition 1.1. A character of a finite abelian group G is a homomorphism x: G — S?.

We will usually write abstract groups multiplicatively, so x(g192) = x(91)x(g92) and
x(1) =1.

Example 1.2. The trivial character of G is the homomorphism 1 defined by 15(g) = 1
for all g € G.

Example 1.3. Let G be cyclic of order 4 with generator ~. Since 4* = 1, a character y of
G has x(7)* = 1, so x takes only four possible values at v, namely 1, —1, i, or —i. Once
x(7) is known, the value of x elsewhere is determined by multiplicativity: x(7/) = x (7).
So we get four characters, whose values can be placed in a table. See Table 1.

1y ¥ A
o1 1 1 1
i1 -1 1 -1
Yo |1 i —1 —i
s |l —i —1 i
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When G has size n and g € G, for any character x of G we have x(¢)" = x(¢") = x(1) =1,
so the values of x lie among the nth roots of unity in S*. More precisely, the order of x(g)
divides the order of ¢ (which divides |G]).

Characters on finite abelian groups were first studied in number theory, since number
theory is a source of many interesting finite abelian groups. For instance, Dirichlet used
characters of the group (Z/(m))* to prove that when (a,m) = 1 there are infinitely many
primes p = a mod m. The quadratic reciprocity law of elementary number theory is con-
cerned with a deep property of a particular character, the Legendre symbol. Fourier series
on finite abelian groups have applications in engineering: signal processing (the fast Fourier
transform [1, Chap. 9]) and error-correcting codes [1, Chap. 11].

To provide a context against which our development of characters on finite abelian groups
can be compared, Section 2 discusses classical Fourier analysis on the real line. In Section
3 we will run through some properties of characters of finite abelian groups and introduce
their dual groups. Section 4 uses characters of a finite abelian group to develop a finite
analogue of Fourier series.

Our notation is completely standard, but we make two remarks about it. For a complex-
valued function f(zx), the complex-conjugate function is usually denoted f(x) instead of

f(z) to stress that conjugation creates a new function. (We sometimes use the overline
notation also to mean the reduction g into a quotient group.) For n > 1, we write p, for
the group of nth roots of unity in the unit circle S*. It is a cyclic group of size n.

Exercises.

1. Make a character table for Z/(2) x Z/(2), with columns labeled by elements of the
group and rows labeled by characters, as in Table 1.

2. Let G be a finite nonabelian simple group. (Examples include A,, for n > 5.) Show
the only group homomorphism y: G — S is the trivial map.

2. CLASSICAL FOURIER ANALYSIS

This section on Fourier analysis on R serves as motivation for our later treatment of
finite abelian groups, where there will be no delicate convergence issues (just finite sums!),
so we take a soft approach and sidestep the analytic technicalities that a serious treatment
of Fourier analysis on R would demand.

Fourier analysis for periodic functions on R is based on the functions € for n € Z. Any
“reasonably nice” function f: R — C that has period 27 can be expanded into a Fourier

series
f(.%') _ cheinx’
neZz
where the sum runs over Z and the nth Fourier coefficient ¢,, can be recovered as an integral:
1 2w

(2.1) Cn = — f(z)e ™ dz.
27 0

This formula for ¢, can be explained by replacing f(z) in (2.1) by its Fourier series and in-
tegrating termwise (for “reasonably nice” functions this termwise integration is analytically
justifiable), using the formula

2 .
i " eimxe—inx dr = 17 if m= n,
2m Jo 0, ifm#n.
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Rather than working with functions f: R — C having period 27, formulas look cleaner
using functions f: R — C having period 1. The basic exponentials become €*™™* and the
Fourier series and coefficients for f are

(22) Z Cneé 27Tznx7 Cp = / f 727r'mx da.

neZ

Note ¢, in (2.2) is not the same as ¢, in (2.1).
In addition to Fourier series there are Fourier integrals. The Fourier transform of a
function f that decays rapidly at oo is the function f: R — C defined by the integral

formula
:/ f(z)e 2™ dg.
R

The analogue of the expansion (2.2) of a periodic function into a Fourier series is the Fourier
inversion formula, which expresses f in terms of its Fourier transform f:

— [ Fwyemiray,
R

Example 2.1. A Gaussian is a function of the form ae_bIQ, where b > 0. For example, the

Gaussian (1/v/27)e~(1/27* ig important in probability theory. The Fourier transform of a
Gaussian is another Gaussian:

(2.3) / ae b 2Ty (0 — \/Fae_WQyZ/b.
R b

This formula shows that a highly peaked Gaussian (large b) has a Fourier transform that is
a spread out Gaussian (small 72 /b) and vice versa. More generally, there is a sense in which
a function and its Fourier transform can’t both be highly localized; this is a mathematical
incarnation of Heisenberg’s uncertainty principle from physics.

There are several conventions for where 27w appears in the Fourier transform. Table 2
collects three different 27-conventions. The first column of Table 2 is a definition and the
second column is a theorem (Fourier inversion).

fw) - e
fR ) —2mizy dzx fR 27riacy dy
fR (w)e™™ do o fR ( eV dy

f f(z)e Y g \ﬁ fRJ? ey dy
TABLE 2.

ﬁ\

A link between Fourier series and Fourier integrals is the Poisson summation formula:
for a “nice” function f: R — C that decays rapidly enough at 400,

(2.4) Yo fm)y =3 fn)

neZ neZ
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where f = [g f(z)e” ™Y dz. For example, when f(z) = e~ (with b > 0), the Poisson
summatlon formula says

_bn Z \/> -7 nz/b

nGZ neZ

To prove the Poisson summation formula, we use Fourier series. Periodize f(z) as

=> fla+n)

neZ

Since F(z + 1) = F(z), write F as a Fourier series: F(z) =Y, .z ¢,e*™*. Then

1
cn = /F(x)e_%””xdx
0

= / (Zf T+m ) e 2T qy;

meZ
_ Z/f1'+m —27r7,n:cd
meZ
m+1
— Z/ f(x)e—%rina:dx
meZ ™

— / f('%)efQﬂ'mz dz
,\R
f(n)

Therefore the expansion of F'(z) into a Fourier series is equivalent to

(2.5)

Zf(x_'_n Zf 27T’LTL.73

neZz nez

which becomes the Poisson summation formula (2.4) by setting x = 0.

Exercises.

1.

2.

Without dwelling on analytic subtleties, check from Fourier inversion that f(x) =
f(—x) (if the Fourier transform is defined suitably).

For a function f: R — C and c € R, let g(z) = f(z + ¢). Define the Fourier
transform of a function h by h fR Ye 2™ dg. If f has a Fourier transform,

show ¢ has Fourier transform g(y) = 627”03/ f (y)

. Assuming the Fourier inversion formula holds for a definition of the Fourier trans-

form as in Table 2, check that for all « and 8 in R* that if we set

(FH(y) = a /R f(@)e= v dg

for all  then
B

2ra Jr

flx) = (FF)(y)e™™ dy.

(If B = 2ma? then these two equations are symmetric in the roles of f and Ff except
for a sign in the exponential term.)
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3. FINITE ABELIAN GROUP CHARACTERS

We leave the real line and turn to the setting of finite abelian groups G. Our interest shifts
from the functions ™ to characters: homomorphisms from G — S'. The construction of
characters of these groups begins with the case of cyclic groups.

Theorem 3.1. Let G be a finite cyclic group of size n with a chosen generator v. There
are exactly n characters of G, each determined by sending v to the different nth roots of
unity in C.

Proof. We mimic Example 1.3, where G is cyclic of size 4. Since ~ generates (G, a character
is determined by its value on 7 and that value must be an nth root of unity (not necessarily
of exact order n, e.g., 1g(y) = 1), so there are at most n characters. We now write down
n characters.

Let ¢ be any nth root of unity in C. Set x(77) = ¢/ for j € Z. This formula is well-
defined (if 79 = ~* for two different integer exponents j and k, we have j = k mod n so
¢ = ¢¥), and x is a homomorphism. Of course x depends on (. As ¢ changes, we get
different characters (their values at v are changing), so in total we have n characters. [

To handle characters of non-cyclic groups, the following lemma is critical.

Lemma 3.2. Let G be a finite abelian group and H C G be a subgroup. Any character of
H can be extended to a character of G in [G : H| ways.

Proof. We will induct on the index [G : H| and we may suppose H # G. Pick a € G with
a ¢ H, so

HcC (H,a) CG.

Let x: H — S' be a character of H. We will extend  to a character X of (H,a) and count
the number of possible Y. Then we will use induction to lift characters further from (H,a)
all the way up to G.

What is a viable choice for x(a)? Since a ¢ H, X(a) is not initially defined. But some
power a* is in H for k > 1 (e.g., k = [G : H]), and therefore X (a*) is defined: Y(a*) = x(a*).
Pick k£ > 1 minimal with a¥ € H. That is, k is the order of a in G/H, so k = [(H,a) : H].
If ¥ is going to be a character then X(a) must be an k-th root of x(a*). That is our clue:
define Y (a) € S to be a solution to z¥ = x(a*):

(3.1) X(a)* = x(d®).

Every number in S has k different k-th roots in S!, so there are k potential choices for
X(a). We will show they all work.
Once we have chosen X(a) to satisfy (3.1), define X on (H,a) by

X(ha') == x(h)X(a)".

This formula does cover all possible elements of (H,a), but is Y well-defined? Perhaps H
and (a) overlap nontrivially, so the expression of an element of (H, a) in the form ha® is not
unique. We have to show this doesn’t lead to an inconsistency in the value of Y. Suppose
ha' = h'a”. Then a'~" € H, so i’ = i mod k since k is denoting the order of a in G/H.
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Write i’ = i + kq, so h = a” ~% = h/ak®. The terms h, ', and a* are in H, so
x(W)x(@)" = x(h)x(a)'X(a)"

= X(h)X(a)’x(a")? since X(a)" = x(a")

= x(Wa")X(a)’

= x(h)x(a)".
Therefore X: (H,a) — S is a well-defined function and it is easily checked to be a homo-
morphism. It restricts to xy on H. The number of choices of X extending x is the number
of choices for X(a), which is k = [(H,a) : H]. Since [G : (H,a)] < [G : H], by induction on
the index there are [G : (H,a)] extensions of each X to a character of G, so the number of
extensions of a character on H to a character on G is [G : (H,a)|[(H,a) : H| =[G : H]. O

Theorem 3.3. If g # 1 in a finite abelian group G then x(g) # 1 for some character x of
G. The number of characters of G is |G]|.

Proof. The cyclic group (g) is nontrivial, say of size n, so n > 1. The group u, of n-th
roots of unity in S* is also cyclic of order n, so there is an isomorphism (g) = p,. This
isomorphism can be viewed as a character of the group (g). By Lemma 3.2 it extends to a
character of G and does not send ¢ to 1.

To show G has |G| characters, apply Lemma 3.2 with H the trivial subgroup. O

We have used two important features of S' as the target group for characters: for any
k > 1 the kth power map on S! is k-to-1 (proof of Lemma 3.2) and for each k > 1 there is
a cyclic subgroup of order k in S' (proof of Theorem 3.3).

Corollary 3.4. If G is a finite abelian group and g1 # g2 in G then there is a character of
G that takes different values at g1 and go.

Proof. Apply Theorem 3.3 to g = g19, L g

Corollary 3.4 shows the characters of G “separate” the elements of G: different elements
of the group admit a character taking different values on them.

Corollary 3.5. If G is a finite abelian group and H C G is a subgroup and g € G with
g & H then there is a character of G that is trivial on H and not equal to 1 at g.

Proof. We work in the group G/H, where g # 1. By Theorem 3.3 there is a character of
G/H that is not 1 at g. Composing this character with the reduction map G — G/H yields
a character of G that is trivial on H and not equal to 1 at g. U

It is easy to find functions on G that separate elements without using characters. For
g € G, define §,: G — {0,1} by

1, ifz=yg,
3.2 K} —
(3:2) g(w) {0, ifx #g.

These functions separate elements of the group, but characters do this too and have better
algebraic properties: they are group homomorphisms.

Our definition of a character makes sense on nonabelian groups, but there will not be
enough such characters for Theorem 3.3 to hold if G is finite and nonabelian: any homomor-
phism y: G — S! must equal 1 on the commutator subgroup [G,G], which is a nontrivial
subgroup, so such homomorphisms can’t distinguish elements in [G, G| from each other. If
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g € |G,G] then in the finite abelian group G/[G, G| the coset of g is nontrivial so there
is a character G/[G,G] — S! that’s nontrivial on g. Composing this character with the
reduction map G — G/[G, G] produces a homomorphism G — S that is nontrivial on g.

Definition 3.6. For a character y on a finite abelian group G, the conjugate character is
the function Y: G — S given by X(g) := x(9g).

Since any complex number z with |2| =1 has z = 1/z, X(9) = x(9)' = x(¢7 ).

Definition 3.7. The dual group of a finite abelian group G is the set of homomorphisms
G — S! with the group law of pointwise multiplication of functions: (x¥)(g9) = x(9)%(g).
The dual group of G is denoted G.

The trivial character of G is the identity in G and the inverse of a character is its conjugate
character. Note G is abelian since multiplication in C* is commutative.
Theorem 3.3 says in part that

(3:3) G| =1Gl.
In fact, the groups G and G are isomorphic. First let’s check this on cyclic groups.
Theorem 3.8. If G is cyclic then G = G as groups.

Proof. We will show G is cyclic. Then since G and G have the same size they are isomorphic.
Let n = |G| and 7 be a generator of G. Set x: G — S by x(79) = €2™/" for all j. For

any other character v € G, we have () = e*™*/™ for some integer k, so ¥(v) = x (7).
Then

(V) = vy = x()* = x()",
which shows 1 = x*. Therefore y generates G. U

Lemma 3.9. If A and B are finite abelian groups, there is an isomorphism Ax B~ AxB.

Proof. Let x be a character on A x B. Identify the subgroups A x {1} and {1} x B of
A x B with A and B in the obvious way. Let x4 and xp be the restrictions of x to A and
B respectively, i.e., xa(a) = x(a,1) and xp(b) = x(1,b). Then x4 and xp are characters
of A and B and x(a,b) = x((a,1)(1,0)) = x(a,1)x(1,b) = xa(a)xp(b). So we get a map

(3.4) AxB—>AxB

by sending x to (x4, xB). It is left to the reader to check (3.4) is a group homomorphism.
Its kernel is trivial since if x4 and yp are trivial characters then x(a,b) = xa(a)x5(b) =1,
so x is trivial. Both sides of (3.4) have the same size by (3.3), so (3.4) is an isomorphism. [J

Theorem 3.10. If G is a finite abelian group then G is isomorphic to G.

Proof. The case when G is cyclic was Theorem 3.8. Lemma 3.9 extends easily to several
factors in a direct product:

(3.5) (Hlx---xHT)A%ﬁlxn-xﬁr.

When H; is cyclic, f[z & H;, so (3.5) tells us that that character group of Hy X -+ x H, is
isomorphic to itself. Every finite abelian group is isomorphic to a direct product of cyclic
groups, so the character group of any finite abelian group is isomorphic to itself. (|
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Although G and G are isomorphic groups, there is not any kind of natural isomorphism
between them, even when G is cyclic. For instance, to prove G = G when G is cyclic we
had to choose a generator. If we change the generator, then the isomorphism changes.!

The double-dual group G is the dual group of G. Since G and G are isomorphic, G and
G are isomorphic. However, while there isn’t a natural isomorphism from G to é»’, there is

a natural isomorphism from G to G. The point is that there is a natural way to map G to
its double-dual group: associate to each g € G the function “evaluate at g,” which is the
function G — S* given by x + x(g). Here g is fixed and x varies. This is a character of G,

since (x1x2)(9) = x1(9)x2(g) by definition.

Theorem 3.11. Let G be a finite abelian group. The homomorphism G —~G associating
to g € G the function “evaluate at g” is an isomorphism.

Proof. Since a finite abelian group and its dual group have the same size, a group and its
double-dual group have the same size, so it suffices to show this homomorphism is injective.
If g € G is in the kernel then every element of G is 1 at g, so g = 1 by Theorem 3.3. U

Theorem 3.11 is called Pontryagin duality. This label actually applies to a more general
result about characters of locally compact abelian groups. Finite abelian groups are a
special case, where difficult analytic techniques can be replaced by counting arguments.
The isomorphism between G and its double-dual group given by Pontryagin duality lets us
think about any finite abelian group G as a dual group (namely the dual group of @)

The isomorphism in Pontryagin duality is natural: it does not depend on any ad hoc
choices (unlike the isomorphism between a finite abelian group and its dual group).

Exercises.

1. Let’s find the characters of the additive group (Z/(m))", an r-fold direct product.
(a) For k € Z/(m), let xx: Z/(m) — S' by

Xk(]) _ eQm’jk/m’

2mik/m - Show X0, X1,---sXm—1 are all the characters of Z/(m) and

so xk(1) = e
XkXl = Xk+I-
(b) Let » > 1. For r-tuples a, b in (Z/(m))", let

a-b=abj+---+ab. €Z/(m)

be the usual dot product. For k € (Z/(m))", let xi(j) = €>™UR/™  Show the
functions yx are all the characters of (Z/(m))” and xkx1 = Xk+1-

2. Show the following are equivalent properties of a character x: x(g) = %1 for all g,
X(9) = x(g) for all g, and x* = 1¢.

3. Describe the error in the following bogus proof of Lemma 3.2. Let m = [G : H] and
pick a set of coset representatives gi,...,gm for G/H. Given a character xy on H,
define ¥ on G by first picking the m (= [G : H]) values X(g;) for 1 < i < m and
then writing any ¢ € G in the (unique) form g;h and defining x(g9) = x(gi)x(h).
This defines ¥ on G, and since we had to make m choices there are m characters.

1 G is trivial or of order 2, then it has a unique generator, so in that case we could say the isomorphism
G = G is canonical.
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4. For finite nonabelian G, show the characters of G' (that is, homomorphisms G — S*)

separate elements modulo [G,G]: x(g1) = x(g2) for all x if and only if g; = g2 in
G/|G,G].

. This exercise will give an interpretation of characters as eigenvectors. For a finite

abelian group G and g € G, let Ty: L(G) — L(G) by (T, f)(x) = f(gz).

(a) Show the Tj’s are commuting linear transformations and any character of G
is an eigenvector of each Tj.

(b) If f is a simultaneous eigenvector of all the T,’s, show f(1) # 0 (if f(1) =0
conclude f is identically zero, but the zero vector is not an eigenvector) and then
after rescaling f so f(1) = 1 deduce that f is a character of G. Thus the characters
of G are the simultaneous eigenvectors of the T},’s, suitably normalized.

(c) Show the T}’s are each diagonalizable. Deduce from this and parts (a) and
(b) that G is a basis of L(G), so |G| = dim L(G) = |G|. (This gives a different proof
that G and G have the same size.)

. For a subgroup H of a finite abelian group G, let

H ={xeG:x=1onH}.
These are the characters of G that are trivial on H. For example, G+ = {15} and
{1} = G. Note H*+ C G and H* depends on H and G.

Show H= is a subgroup of G, it is isomorphic to CT/?I, and é/(HL) ~ H. In
particular, |[H*| = [G : H].

. Let G be finite abelian and H C G be a subgroup.

(a) Viewing H*+ = (HY)* in G using Pontryagin duality, show H++ = H.
(Hint: The inclusion in one direction is easy. Count sizes for the other inclusion.)
(b) Show for each m dividing |G| that

HH CG:|Hl =m}=|{HCG:[G:H =m)

by associating H to H* and using a (fixed) isomorphism of G' with G.

(c) For a finite abelian group G, part b says the number of subgroups of G with
index 2 is equal to the number of elements of G with order 2. Use this idea to count
the number of subgroups of (Z/(m))* with index 2. (The answer depends on the
number of odd prime factors of m and the highest power of 2 dividing m.)

(d) Show, for a prime p, that the number of subspaces of (Z/(p))" with dimension
d equals the number of subspaces with dimension n — d.

. For a finite abelian group G, let G[n| = {g € G : ¢" = 1} and G™ = {¢" : g € G}.
G.

Both are subgroups of G. Prove G[n]* = (G)" and (G™)* = G[n] in

4. FINITE FOURIER SERIES

Let G be a finite abelian group. Set

L(G) = {f: G~ C},

the C-valued functions on G. This is a C-vector space of functions. Every f € L(G) can
be expressed as a linear combination of the delta-functions ¢, from (3.2):

(4.1)

f= Z f(9)dg.

geG
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Indeed, evaluate both sides at each x € G' and we get the same value. The functions d,
span L(G) by (4.1) and they are linearly independent: if > g @g0g = 0 then evaluating the
sum at « € G shows a; = 0. Thus the functions ¢, are a basis of L(G), so dim L(G) = |G|.

The next theorem is the first step leading to an expression for each J, as a linear combi-
nation of characters of GG, which will lead to a Fourier series expansion of f. It is the first
time we add character values.

Theorem 4.1. Let G be a finite abelian group. Then

|G|7 ZfX =1g, ’G|a ng =1,
> x(g) = . > xlg) = .
pere) 0, #fx#1q, ot 0, fg#1
Proof. Let S = deG x(g). If x is trivial on G then S = |G|. If x is not trivial on G, say
x(g0) # 1. Then x(g0)S = >_ e x(990) = D _4eq X(9) = 5, s0 S = 0.

The second formula in the theorem can be viewed as an instance of the ﬁrst formula via
Pontryagin duality: the second sum is a sum of the character “evaluate at ¢g” over the group
G and this character on G is nontrivial when g # 1 by Pontryagin duality. O

Theorem 4.1 says the sum of a nontrivial character over a group vanishes and the sum
of all characters of a group evaluated at a nontrivial element vanishes, so the sum of the
elements in each row and column of a character table of G is zero except the row for the
trivial character and the column for the identity element. Check this in Table 1.

Corollary 4.2. For characters x1 and x2 in G and g1 and g3 in G,

ZXl(Q)YQ(Q) = {‘GL Z:fX1 = X2 Z x(91)%(g2) = {|G!, l:f.gl = g2,

geG Oa /Lf X1 7é X2 ~ 07 ngl 7é g2.

xX€G
Proof. In the first equation of Theorem 4.1 let x = x1X5. In the second equation of Theorem
4.11et g = g195 L (Alternatively, after proving the first equation for all G we observe that
the second equation is a special case of the first by Pontryagin duality.) O

The equations in Corollary 4.2 are called the orthogonality relations. They say that
the character table of G has orthogonal rows and orthogonal columns when we define
orthogonality of two n-tuples of complex numbers as vanishing of their Hermitian inner

product in C™: ((z1,...,2n), (Wi,...,wy)) := > p_1 2kWk-
By the second equation in Corollary 4.2 we can express the delta-functions in terms of

characters:
D x(0X(@) = |Gy (@) = y(a) = 1 S X

xe@ x€G
Substituting this formula for ¢, into (4.1) gives

fl@) = Y flg) |G|Z><

9€G X€G

= 2N Gl @)

xe@ QEG

(4.2) = Y oxl@),

xe@
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where

geG

The expansion (4.2) is the Fourier series for f.

Equation (4.3) is similar to the formula for the coefficient ¢, of €"* in (2.1): an integral
over [0,27] divided by 27 is replaced by a sum over G divided by #G and f(x)e "
is replaced by f(g)x(g). The number e "* is the conjugate of ¢™® which is also the
relation between Y(g) and x(g). Equation (4.2) shows G is a spanning set for L(G). Since
|G| = |G| = dim L(G), G is a basis for L(G).

inT
1

Definition 4.3. Let G be a finite abelian group. If f € L(G) then its Fourier transform is
the function f € L(G) given by

By (4.2) and (4.3),
(4.4) f(z) ’G| Z flx

Equation (4.4) is called the Fourier inversion formula since it tells us how to recover f from
its Fourier transform.

Remark 4.4. Classically the Fourier transform of a function R — C is another function
R — C. The finite Fourier transform, however, is defined on the dual group instead of on
the original group. We can also interpret the classical Fourier transform to be a function of
characters. For y € R let xy( ) = €Y. Then x,: R — S! is a character and f(y) could be

viewed as f Xy) fR x)dx, so f is a function of characters rather than of numbers.

Example 4.5. Let f = d,. Then 760 =x(9) = x(g7).

Since L(G) is spanned by both the characters of G and the delta-functions, any linear
identity in L(G) can be verified by checking it on characters or on delta-functions.

Let’s look at Fourier transforms for functions on a cyclic group. By writing a cyclic
group in the form Z/(m), we can make an isomorphism with the dual group explicit: every
character of Z/(m) has the form xj: j — €>™*/™ for a unique k € Z/(m) (Exercise 3.1).
The Fourier transform of a function f: Z/(m) — C can be regarded as a function not on

m), but on Z/(m):
(4.5) Z FOXEG Z £ 727rijk/m'
JEZ/(m) JEZ/(m)

This is similar to the classical viewpoint of the Fourier transform of a function on R as
another function of R.

Example 4.6. Let f: Z/(8) — C have the periodic values 5, 3, 1, and 1. Both f and its
Fourier transform are in Table 3. This f has frequency 2 (its period repeats twice) and the
Fourier transform vanishes except at 0, 2, 4, and 6, which are multiples of the frequency.
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n |O01] 2 |3]4]5] 6 |7

fy[ 5 [3] 1 [1[5(3] 1 |1

fn)[20]0|8+4i|0|4|0|8—4i|0
TABLE 3.

Example 4.7. Consider a function f: Z/(45) — C with the four successive repeating
values 1, 8, 19, 17 starting with f(0) = 1. It is not a periodic function on Z/(45) since 4
does not divide 45, but the sequence 1, 8, 19, 17 repeats nearly 11 times. (The value of

~

f(44) is 1.) A calculation of |f(n)|, the absolute value of the Fourier transform of f, reveals

~

sharp peaks at n = 0,11,22,23, and 34. A plot of |f(n)| is below. The red peaks are cut
off because the lowest red bar would be around three times as tall as the highest black bar.

~

Peaks in |f(n)| occur approximately at multiples of the approximate frequency!

0 11 2223 34

As Example 4.6 suggests, the Fourier transform of a periodic function on Z/(m) knows
the frequency of the original function by the positions where the Fourier transform has
nonzero values (Exercise 4.2). For nearly periodic functions on Z/(m), the approximate
frequency is reflected in where the Fourier transform takes on its largest values. This idea
is used in Shor’s quantum algorithm for integer factorization [2], [3, Chap. 17].

Exercises.

1. Let f: Z/(8) — C take the four values a,b,c, and d twice in this order. Compute

~

f(n) explicitly and determine some values for a, b, ¢, and d such that f(n) is nonzero
for n = 0,2, and 6, but ]?(4) =0.
2. Let H be a subgroup of a finite abelian group G.
(a) Suppose f: G — C is constant on H-cosets (it is H-periodic). For y € G with
x € H*, show f(x) = 0. Thus the Fourier transform of an H-periodic function on

G is supported on H+ .
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(b) If f: Z/(m) — C has period d where d | m, show f: Z/(m) — C is supported
on the multiples of m/d. (See Example 4.6.)

. Let G be a finite abelian group and H be a subgroup. For any function f: G — C,

Poisson summation on G says

1 1 ~
w};ﬂh)—m Z F00,

xeH+

where H' is as in Exercise 3.6. Prove this formula in two ways:
a) Copy the classical proof sketched in Section 2 (start with the function F'(z) =
> ner J(xzh), which is H-periodic so it defines a function on G/H) to obtain

1 1 ~
I };{ f(xh) = il Xezf;i FOOx(x)

for any z € G and then set x = 1.
b) By linearity in f of both sides of the desired identity, verify Poisson summation
directly on the delta-functions of G. (Corollary 3.5 and Example 4.5 will be useful.)
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