
CHARACTERS OF FINITE ABELIAN GROUPS (SHORT VERSION)

KEITH CONRAD

1. Introduction

The theme we will study is an analogue on finite abelian groups of Fourier analysis on
R. A Fourier series on the real line is the following type of series in sines and cosines:

f(x) =
∑
n≥0

an cos(nx) +
∑
n≥1

bn sin(nx).

This is 2π-periodic. Since einx = cos(nx) + i sin(nx) and e−inx = cos(nx) − i sin(nx), a
Fourier series can also be written in terms of complex exponentials:

f(x) =
∑
n∈Z

cne
inx,

where the summation runs over all integers (c0 = a0, cn = 1
2(an − bni) for n > 0, and

cn = 1
2(a|n| + b|n|i) for n < 0). The convenient algebraic property of einx, which is not

shared by sines and cosines, is that it is a group homomorphism from R to the unit circle
S1 = {z ∈ C : |z| = 1}:

ein(x+x
′) = einxeinx

′
.

We now replace the real line R with a finite abelian group. Here is the analogue of the
functions einx.

Definition 1.1. A character of a finite abelian group G is a homomorphism χ : G→ S1.

We will usually write abstract groups multiplicatively, so χ(g1g2) = χ(g1)χ(g2) and
χ(1) = 1.

Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1
for all g ∈ G.

Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of
G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once
χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j .
So we get four characters, whose values can be placed in a table. See Table 1.

1 γ γ2 γ3

1G 1 1 1 1
χ1 1 −1 1 −1
χ2 1 i −1 −i
χ3 1 −i −1 i

Table 1.
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WhenG has size n and g ∈ G, for any character χ ofG we have χ(g)n = χ(gn) = χ(1) = 1,
so the values of χ lie among the nth roots of unity in S1. More precisely, the order of χ(g)
divides the order of g (which divides |G|).

Characters on finite abelian groups were first studied in number theory, since number
theory is a source of many interesting finite abelian groups. For instance, Dirichlet used
characters of the group (Z/(m))× to prove that when (a,m) = 1 there are infinitely many
primes p ≡ a mod m. The quadratic reciprocity law of elementary number theory is con-
cerned with a deep property of a particular character, the Legendre symbol. Fourier series
on finite abelian groups have applications in engineering: signal processing (the fast Fourier
transform [1, Chap. 9]) and error-correcting codes [1, Chap. 11].

To provide a context against which our development of characters on finite abelian groups
can be compared, Section 2 discusses classical Fourier analysis on the real line. In Section
3 we will run through some properties of characters of finite abelian groups and introduce
their dual groups. Section 4 uses characters of a finite abelian group to develop a finite
analogue of Fourier series.

Our notation is completely standard, but we make two remarks about it. For a complex-
valued function f(x), the complex-conjugate function is usually denoted f(x) instead of

f(x) to stress that conjugation creates a new function. (We sometimes use the overline
notation also to mean the reduction g into a quotient group.) For n ≥ 1, we write µn for
the group of nth roots of unity in the unit circle S1. It is a cyclic group of size n.

Exercises.

1. Make a character table for Z/(2)× Z/(2), with columns labeled by elements of the
group and rows labeled by characters, as in Table 1.

2. Let G be a finite nonabelian simple group. (Examples include An for n ≥ 5.) Show
the only group homomorphism χ : G→ S1 is the trivial map.

2. Classical Fourier analysis

This section on Fourier analysis on R serves as motivation for our later treatment of
finite abelian groups, where there will be no delicate convergence issues (just finite sums!),
so we take a soft approach and sidestep the analytic technicalities that a serious treatment
of Fourier analysis on R would demand.

Fourier analysis for periodic functions on R is based on the functions einx for n ∈ Z. Any
“reasonably nice” function f : R → C that has period 2π can be expanded into a Fourier
series

f(x) =
∑
n∈Z

cne
inx,

where the sum runs over Z and the nth Fourier coefficient cn can be recovered as an integral:

(2.1) cn =
1

2π

∫ 2π

0
f(x)e−inx dx.

This formula for cn can be explained by replacing f(x) in (2.1) by its Fourier series and in-
tegrating termwise (for “reasonably nice” functions this termwise integration is analytically
justifiable), using the formula

1

2π

∫ 2π

0
eimxe−inx dx =

{
1, if m = n,

0, if m 6= n.
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Rather than working with functions f : R → C having period 2π, formulas look cleaner
using functions f : R→ C having period 1. The basic exponentials become e2πinx and the
Fourier series and coefficients for f are

(2.2) f(x) =
∑
n∈Z

cne
2πinx, cn =

∫ 1

0
f(x)e−2πinx dx.

Note cn in (2.2) is not the same as cn in (2.1).
In addition to Fourier series there are Fourier integrals. The Fourier transform of a

function f that decays rapidly at ±∞ is the function f̂ : R → C defined by the integral
formula

f̂(y) =

∫
R
f(x)e−2πixy dx.

The analogue of the expansion (2.2) of a periodic function into a Fourier series is the Fourier

inversion formula, which expresses f in terms of its Fourier transform f̂ :

f(x) =

∫
R
f̂(y)e2πixy dy.

Example 2.1. A Gaussian is a function of the form ae−bx
2
, where b > 0. For example, the

Gaussian (1/
√

2π)e−(1/2)x
2

is important in probability theory. The Fourier transform of a
Gaussian is another Gaussian:

(2.3)

∫
R
ae−bx

2
e−2πixy dx =

√
π

b
ae−π

2y2/b.

This formula shows that a highly peaked Gaussian (large b) has a Fourier transform that is
a spread out Gaussian (small π2/b) and vice versa. More generally, there is a sense in which
a function and its Fourier transform can’t both be highly localized; this is a mathematical
incarnation of Heisenberg’s uncertainty principle from physics.

There are several conventions for where 2π appears in the Fourier transform. Table 2
collects three different 2π-conventions. The first column of Table 2 is a definition and the
second column is a theorem (Fourier inversion).

f̂(y) f(x)∫
R f(x)e−2πixy dx

∫
R f̂(y)e2πixy dy∫

R f(x)e−ixy dx 1
2π

∫
R f̂(y)eixy dy

1√
2π

∫
R f(x)e−ixy dx 1√

2π

∫
R f̂(y)eixy dy

Table 2.

A link between Fourier series and Fourier integrals is the Poisson summation formula:
for a “nice” function f : R→ C that decays rapidly enough at ±∞,

(2.4)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n),
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where f̂(y) =
∫
R f(x)e−2πixy dx. For example, when f(x) = e−bx

2
(with b > 0), the Poisson

summation formula says ∑
n∈Z

e−bn
2

=
∑
n∈Z

√
π

b
e−π

2n2/b,

To prove the Poisson summation formula, we use Fourier series. Periodize f(x) as

F (x) =
∑
n∈Z

f(x+ n).

Since F (x+ 1) = F (x), write F as a Fourier series: F (x) =
∑

n∈Z cne
2πinx. Then

cn =

∫ 1

0
F (x)e−2πinx dx

=

∫ 1

0

(∑
m∈Z

f(x+m)

)
e−2πinx dx

=
∑
m∈Z

∫ 1

0
f(x+m)e−2πinx dx

=
∑
m∈Z

∫ m+1

m
f(x)e−2πinx dx

=

∫
R
f(x)e−2πinx dx

= f̂(n).

Therefore the expansion of F (x) into a Fourier series is equivalent to

(2.5)
∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx,

which becomes the Poisson summation formula (2.4) by setting x = 0.

Exercises.

1. Without dwelling on analytic subtleties, check from Fourier inversion that
̂̂
f(x) =

f(−x) (if the Fourier transform is defined suitably).
2. For a function f : R → C and c ∈ R, let g(x) = f(x + c). Define the Fourier

transform of a function h by ĥ(y) =
∫
R h(x)e−2πixy dx. If f has a Fourier transform,

show g has Fourier transform ĝ(y) = e2πicyf̂(y).
3. Assuming the Fourier inversion formula holds for a definition of the Fourier trans-

form as in Table 2, check that for all α and β in R× that if we set

(Ff)(y) = α

∫
R
f(x)e−iβxy dx

for all x then

f(x) =
β

2πα

∫
R

(Ff)(y)eiβxy dy.

(If β = 2πα2 then these two equations are symmetric in the roles of f and Ff except
for a sign in the exponential term.)
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3. Finite Abelian Group Characters

We leave the real line and turn to the setting of finite abelian groups G. Our interest shifts
from the functions einx to characters: homomorphisms from G → S1. The construction of
characters of these groups begins with the case of cyclic groups.

Theorem 3.1. Let G be a finite cyclic group of size n with a chosen generator γ. There
are exactly n characters of G, each determined by sending γ to the different nth roots of
unity in C.

Proof. We mimic Example 1.3, where G is cyclic of size 4. Since γ generates G, a character
is determined by its value on γ and that value must be an nth root of unity (not necessarily
of exact order n, e.g., 1G(γ) = 1), so there are at most n characters. We now write down
n characters.

Let ζ be any nth root of unity in C. Set χ(γj) = ζj for j ∈ Z. This formula is well-
defined (if γj = γk for two different integer exponents j and k, we have j ≡ k mod n so
ζj = ζk), and χ is a homomorphism. Of course χ depends on ζ. As ζ changes, we get
different characters (their values at γ are changing), so in total we have n characters. �

To handle characters of non-cyclic groups, the following lemma is critical.

Lemma 3.2. Let G be a finite abelian group and H ⊂ G be a subgroup. Any character of
H can be extended to a character of G in [G : H] ways.

Proof. We will induct on the index [G : H] and we may suppose H 6= G. Pick a ∈ G with
a 6∈ H, so

H ⊂ 〈H, a〉 ⊂ G.

Let χ : H → S1 be a character of H. We will extend χ to a character χ̃ of 〈H, a〉 and count
the number of possible χ̃. Then we will use induction to lift characters further from 〈H, a〉
all the way up to G.

What is a viable choice for χ̃(a)? Since a 6∈ H, χ̃(a) is not initially defined. But some
power ak is in H for k ≥ 1 (e.g., k = [G : H]), and therefore χ̃(ak) is defined: χ̃(ak) = χ(ak).
Pick k ≥ 1 minimal with ak ∈ H. That is, k is the order of a in G/H, so k = [〈H, a〉 : H].
If χ̃ is going to be a character then χ̃(a) must be an k-th root of χ(ak). That is our clue:
define χ̃(a) ∈ S1 to be a solution to zk = χ(ak):

(3.1) χ̃(a)k = χ(ak).

Every number in S1 has k different k-th roots in S1, so there are k potential choices for
χ̃(a). We will show they all work.

Once we have chosen χ̃(a) to satisfy (3.1), define χ̃ on 〈H, a〉 by

χ̃(hai) := χ(h)χ̃(a)i.

This formula does cover all possible elements of 〈H, a〉, but is χ̃ well-defined? Perhaps H
and 〈a〉 overlap nontrivially, so the expression of an element of 〈H, a〉 in the form hai is not
unique. We have to show this doesn’t lead to an inconsistency in the value of χ̃. Suppose
hai = h′ai

′
. Then ai−i

′ ∈ H, so i′ ≡ i mod k since k is denoting the order of a in G/H.
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Write i′ = i+ kq, so h = h′ai
′−i = h′akq. The terms h, h′, and ak are in H, so

χ(h′)χ̃(a)i
′

= χ(h′)χ̃(a)iχ̃(a)kq

= χ(h′)χ̃(a)iχ(ak)q since χ̃(a)k = χ(ak)

= χ(h′akq)χ̃(a)i

= χ(h)χ̃(a)i.

Therefore χ̃ : 〈H, a〉 → S1 is a well-defined function and it is easily checked to be a homo-
morphism. It restricts to χ on H. The number of choices of χ̃ extending χ is the number
of choices for χ̃(a), which is k = [〈H, a〉 : H]. Since [G : 〈H, a〉] < [G : H], by induction on
the index there are [G : 〈H, a〉] extensions of each χ̃ to a character of G, so the number of
extensions of a character on H to a character on G is [G : 〈H, a〉][〈H, a〉 : H] = [G : H]. �

Theorem 3.3. If g 6= 1 in a finite abelian group G then χ(g) 6= 1 for some character χ of
G. The number of characters of G is |G|.

Proof. The cyclic group 〈g〉 is nontrivial, say of size n, so n > 1. The group µn of n-th
roots of unity in S1 is also cyclic of order n, so there is an isomorphism 〈g〉 ∼= µn. This
isomorphism can be viewed as a character of the group 〈g〉. By Lemma 3.2 it extends to a
character of G and does not send g to 1.

To show G has |G| characters, apply Lemma 3.2 with H the trivial subgroup. �

We have used two important features of S1 as the target group for characters: for any
k ≥ 1 the kth power map on S1 is k-to-1 (proof of Lemma 3.2) and for each k ≥ 1 there is
a cyclic subgroup of order k in S1 (proof of Theorem 3.3).

Corollary 3.4. If G is a finite abelian group and g1 6= g2 in G then there is a character of
G that takes different values at g1 and g2.

Proof. Apply Theorem 3.3 to g = g1g
−1
2 . �

Corollary 3.4 shows the characters of G “separate” the elements of G: different elements
of the group admit a character taking different values on them.

Corollary 3.5. If G is a finite abelian group and H ⊂ G is a subgroup and g ∈ G with
g 6∈ H then there is a character of G that is trivial on H and not equal to 1 at g.

Proof. We work in the group G/H, where g 6= 1. By Theorem 3.3 there is a character of
G/H that is not 1 at g. Composing this character with the reduction map G→ G/H yields
a character of G that is trivial on H and not equal to 1 at g. �

It is easy to find functions on G that separate elements without using characters. For
g ∈ G, define δg : G→ {0, 1} by

(3.2) δg(x) =

{
1, if x = g,

0, if x 6= g.

These functions separate elements of the group, but characters do this too and have better
algebraic properties: they are group homomorphisms.

Our definition of a character makes sense on nonabelian groups, but there will not be
enough such characters for Theorem 3.3 to hold if G is finite and nonabelian: any homomor-
phism χ : G → S1 must equal 1 on the commutator subgroup [G,G], which is a nontrivial
subgroup, so such homomorphisms can’t distinguish elements in [G,G] from each other. If
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g 6∈ [G,G] then in the finite abelian group G/[G,G] the coset of g is nontrivial so there
is a character G/[G,G] → S1 that’s nontrivial on g. Composing this character with the
reduction map G→ G/[G,G] produces a homomorphism G→ S1 that is nontrivial on g.

Definition 3.6. For a character χ on a finite abelian group G, the conjugate character is
the function χ : G→ S1 given by χ(g) := χ(g).

Since any complex number z with |z| = 1 has z = 1/z, χ(g) = χ(g)−1 = χ(g−1).

Definition 3.7. The dual group of a finite abelian group G is the set of homomorphisms
G → S1 with the group law of pointwise multiplication of functions: (χψ)(g) = χ(g)ψ(g).

The dual group of G is denoted Ĝ.

The trivial character of G is the identity in Ĝ and the inverse of a character is its conjugate

character. Note Ĝ is abelian since multiplication in C× is commutative.
Theorem 3.3 says in part that

(3.3) |G| = |Ĝ|.

In fact, the groups G and Ĝ are isomorphic. First let’s check this on cyclic groups.

Theorem 3.8. If G is cyclic then G ∼= Ĝ as groups.

Proof. We will show Ĝ is cyclic. Then since G and Ĝ have the same size they are isomorphic.
Let n = |G| and γ be a generator of G. Set χ : G→ S1 by χ(γj) = e2πij/n for all j. For

any other character ψ ∈ Ĝ, we have ψ(γ) = e2πik/n for some integer k, so ψ(γ) = χ(γ)k.
Then

ψ(γj) = ψ(γ)j = χ(γ)jk = χ(γj)k,

which shows ψ = χk. Therefore χ generates Ĝ. �

Lemma 3.9. If A and B are finite abelian groups, there is an isomorphism Â×B ∼= Â×B̂.

Proof. Let χ be a character on A × B. Identify the subgroups A × {1} and {1} × B of
A×B with A and B in the obvious way. Let χA and χB be the restrictions of χ to A and
B respectively, i.e., χA(a) = χ(a, 1) and χB(b) = χ(1, b). Then χA and χB are characters
of A and B and χ(a, b) = χ((a, 1)(1, b)) = χ(a, 1)χ(1, b) = χA(a)χB(b). So we get a map

(3.4) Â×B → Â× B̂

by sending χ to (χA, χB). It is left to the reader to check (3.4) is a group homomorphism.
Its kernel is trivial since if χA and χB are trivial characters then χ(a, b) = χA(a)χB(b) = 1,
so χ is trivial. Both sides of (3.4) have the same size by (3.3), so (3.4) is an isomorphism. �

Theorem 3.10. If G is a finite abelian group then G is isomorphic to Ĝ.

Proof. The case when G is cyclic was Theorem 3.8. Lemma 3.9 extends easily to several
factors in a direct product:

(3.5) (H1 × · · · ×Hr)
̂ ∼= Ĥ1 × · · · × Ĥr.

When Hi is cyclic, Ĥi
∼= Hi, so (3.5) tells us that that character group of H1 × · · · ×Hr is

isomorphic to itself. Every finite abelian group is isomorphic to a direct product of cyclic
groups, so the character group of any finite abelian group is isomorphic to itself. �
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Although G and Ĝ are isomorphic groups, there is not any kind of natural isomorphism

between them, even when G is cyclic. For instance, to prove G ∼= Ĝ when G is cyclic we
had to choose a generator. If we change the generator, then the isomorphism changes.1

The double-dual group
̂̂
G is the dual group of Ĝ. Since G and Ĝ are isomorphic, G and̂̂

G are isomorphic. However, while there isn’t a natural isomorphism from G to Ĝ, there is

a natural isomorphism from G to
̂̂
G. The point is that there is a natural way to map G to

its double-dual group: associate to each g ∈ G the function “evaluate at g,” which is the

function Ĝ→ S1 given by χ 7→ χ(g). Here g is fixed and χ varies. This is a character of Ĝ,
since (χ1χ2)(g) = χ1(g)χ2(g) by definition.

Theorem 3.11. Let G be a finite abelian group. The homomorphism G → ̂̂
G associating

to g ∈ G the function “evaluate at g” is an isomorphism.

Proof. Since a finite abelian group and its dual group have the same size, a group and its
double-dual group have the same size, so it suffices to show this homomorphism is injective.

If g ∈ G is in the kernel then every element of Ĝ is 1 at g, so g = 1 by Theorem 3.3. �

Theorem 3.11 is called Pontryagin duality. This label actually applies to a more general
result about characters of locally compact abelian groups. Finite abelian groups are a
special case, where difficult analytic techniques can be replaced by counting arguments.
The isomorphism between G and its double-dual group given by Pontryagin duality lets us

think about any finite abelian group G as a dual group (namely the dual group of Ĝ).
The isomorphism in Pontryagin duality is natural: it does not depend on any ad hoc

choices (unlike the isomorphism between a finite abelian group and its dual group).

Exercises.

1. Let’s find the characters of the additive group (Z/(m))r, an r-fold direct product.
(a) For k ∈ Z/(m), let χk : Z/(m)→ S1 by

χk(j) = e2πijk/m,

so χk(1) = e2πik/m. Show χ0, χ1, . . . , χm−1 are all the characters of Z/(m) and
χkχl = χk+l.

(b) Let r ≥ 1. For r-tuples a, b in (Z/(m))r, let

a · b = a1b1 + · · ·+ arbr ∈ Z/(m)

be the usual dot product. For k ∈ (Z/(m))r, let χk(j) = e2πi(j·k)/m. Show the
functions χk are all the characters of (Z/(m))r and χkχl = χk+l.

2. Show the following are equivalent properties of a character χ: χ(g) = ±1 for all g,
χ(g) = χ(g) for all g, and χ2 = 1G.

3. Describe the error in the following bogus proof of Lemma 3.2. Let m = [G : H] and
pick a set of coset representatives g1, . . . , gm for G/H. Given a character χ on H,
define χ̃ on G by first picking the m (= [G : H]) values χ̃(gi) for 1 ≤ i ≤ m and
then writing any g ∈ G in the (unique) form gih and defining χ̃(g) = χ̃(gi)χ(h).
This defines χ̂ on G, and since we had to make m choices there are m characters.

1If G is trivial or of order 2, then it has a unique generator, so in that case we could say the isomorphism

G ∼= Ĝ is canonical.
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4. For finite nonabelian G, show the characters of G (that is, homomorphisms G→ S1)
separate elements modulo [G,G]: χ(g1) = χ(g2) for all χ if and only if g1 = g2 in
G/[G,G].

5. This exercise will give an interpretation of characters as eigenvectors. For a finite
abelian group G and g ∈ G, let Tg : L(G)→ L(G) by (Tgf)(x) = f(gx).

(a) Show the Tg’s are commuting linear transformations and any character of G
is an eigenvector of each Tg.

(b) If f is a simultaneous eigenvector of all the Tg’s, show f(1) 6= 0 (if f(1) = 0
conclude f is identically zero, but the zero vector is not an eigenvector) and then
after rescaling f so f(1) = 1 deduce that f is a character of G. Thus the characters
of G are the simultaneous eigenvectors of the Tg’s, suitably normalized.

(c) Show the Tg’s are each diagonalizable. Deduce from this and parts (a) and

(b) that Ĝ is a basis of L(G), so |Ĝ| = dimL(G) = |G|. (This gives a different proof

that G and Ĝ have the same size.)
6. For a subgroup H of a finite abelian group G, let

H⊥ = {χ ∈ Ĝ : χ = 1 on H}.

These are the characters of G that are trivial on H. For example, G⊥ = {1G} and

{1}⊥ = Ĝ. Note H⊥ ⊂ Ĝ and H⊥ depends on H and G.

Show H⊥ is a subgroup of Ĝ, it is isomorphic to Ĝ/H, and Ĝ/(H⊥) ∼= Ĥ. In
particular, |H⊥| = [G : H].

7. Let G be finite abelian and H ⊂ G be a subgroup.
(a) Viewing H⊥⊥ = (H⊥)⊥ in G using Pontryagin duality, show H⊥⊥ = H.

(Hint: The inclusion in one direction is easy. Count sizes for the other inclusion.)
(b) Show for each m dividing |G| that

|{H ⊂ G : |H| = m} = |{H ⊂ G : [G : H] = m}|

by associating H to H⊥ and using a (fixed) isomorphism of G with Ĝ.
(c) For a finite abelian group G, part b says the number of subgroups of G with

index 2 is equal to the number of elements of G with order 2. Use this idea to count
the number of subgroups of (Z/(m))× with index 2. (The answer depends on the
number of odd prime factors of m and the highest power of 2 dividing m.)

(d) Show, for a prime p, that the number of subspaces of (Z/(p))n with dimension
d equals the number of subspaces with dimension n− d.

8. For a finite abelian group G, let G[n] = {g ∈ G : gn = 1} and Gn = {gn : g ∈ G}.
Both are subgroups of G. Prove G[n]⊥ = (Ĝ)n and (Gn)⊥ = Ĝ[n] in Ĝ.

4. Finite Fourier series

Let G be a finite abelian group. Set

L(G) = {f : G→ C},

the C-valued functions on G. This is a C-vector space of functions. Every f ∈ L(G) can
be expressed as a linear combination of the delta-functions δg from (3.2):

(4.1) f =
∑
g∈G

f(g)δg.
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Indeed, evaluate both sides at each x ∈ G and we get the same value. The functions δg
span L(G) by (4.1) and they are linearly independent: if

∑
g agδg = 0 then evaluating the

sum at x ∈ G shows ax = 0. Thus the functions δg are a basis of L(G), so dimL(G) = |G|.
The next theorem is the first step leading to an expression for each δg as a linear combi-

nation of characters of G, which will lead to a Fourier series expansion of f . It is the first
time we add character values.

Theorem 4.1. Let G be a finite abelian group. Then∑
g∈G

χ(g) =

{
|G|, if χ = 1G,

0, if χ 6= 1G,

∑
χ∈Ĝ

χ(g) =

{
|G|, if g = 1,

0, if g 6= 1.

Proof. Let S =
∑

g∈G χ(g). If χ is trivial on G then S = |G|. If χ is not trivial on G, say

χ(g0) 6= 1. Then χ(g0)S =
∑

g∈G χ(gg0) =
∑

g∈G χ(g) = S, so S = 0.
The second formula in the theorem can be viewed as an instance of the first formula via

Pontryagin duality: the second sum is a sum of the character “evaluate at g” over the group

Ĝ, and this character on Ĝ is nontrivial when g 6= 1 by Pontryagin duality. �

Theorem 4.1 says the sum of a nontrivial character over a group vanishes and the sum
of all characters of a group evaluated at a nontrivial element vanishes, so the sum of the
elements in each row and column of a character table of G is zero except the row for the
trivial character and the column for the identity element. Check this in Table 1.

Corollary 4.2. For characters χ1 and χ2 in Ĝ and g1 and g2 in G,∑
g∈G

χ1(g)χ2(g) =

{
|G|, if χ1 = χ2,

0, if χ1 6= χ2,

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
|G|, if g1 = g2,

0, if g1 6= g2.

Proof. In the first equation of Theorem 4.1 let χ = χ1χ2. In the second equation of Theorem
4.1 let g = g1g

−1
2 . (Alternatively, after proving the first equation for all G we observe that

the second equation is a special case of the first by Pontryagin duality.) �

The equations in Corollary 4.2 are called the orthogonality relations. They say that
the character table of G has orthogonal rows and orthogonal columns when we define
orthogonality of two n-tuples of complex numbers as vanishing of their Hermitian inner
product in Cn: 〈(z1, . . . , zn), (w1, . . . , wn)〉 :=

∑n
k=1 zkwk.

By the second equation in Corollary 4.2 we can express the delta-functions in terms of
characters: ∑

χ∈Ĝ

χ(g)χ(x) = |G|δg(x) =⇒ δg(x) =
1

|G|
∑
χ∈Ĝ

χ(g)χ(x).

Substituting this formula for δg into (4.1) gives

f(x) =
∑
g∈G

f(g)

 1

|G|
∑
χ∈Ĝ

χ(g)χ(x)


=

∑
χ∈Ĝ

∑
g∈G

1

|G|
f(g)χ(g)χ(x)

=
∑
χ∈Ĝ

cχχ(x),(4.2)
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where

(4.3) cχ =
1

|G|
∑
g∈G

f(g)χ(g).

The expansion (4.2) is the Fourier series for f .
Equation (4.3) is similar to the formula for the coefficient cn of einx in (2.1): an integral

over [0, 2π] divided by 2π is replaced by a sum over G divided by #G and f(x)e−inx

is replaced by f(g)χ(g). The number e−inx is the conjugate of einx, which is also the

relation between χ(g) and χ(g). Equation (4.2) shows Ĝ is a spanning set for L(G). Since

|Ĝ| = |G| = dimL(G), Ĝ is a basis for L(G).

Definition 4.3. Let G be a finite abelian group. If f ∈ L(G) then its Fourier transform is

the function f̂ ∈ L(Ĝ) given by

f̂(χ) =
∑
g∈G

f(g)χ(g).

By (4.2) and (4.3),

(4.4) f(x) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(x).

Equation (4.4) is called the Fourier inversion formula since it tells us how to recover f from
its Fourier transform.

Remark 4.4. Classically the Fourier transform of a function R → C is another function
R → C. The finite Fourier transform, however, is defined on the dual group instead of on
the original group. We can also interpret the classical Fourier transform to be a function of

characters. For y ∈ R let χy(x) = eixy. Then χy : R→ S1 is a character and f̂(y) could be

viewed as f̂(χy) =
∫
R f(x)χy(x) dx, so f̂ is a function of characters rather than of numbers.

Example 4.5. Let f = δg. Then f̂(χ) = χ(g) = χ(g−1).

Since L(G) is spanned by both the characters of G and the delta-functions, any linear
identity in L(G) can be verified by checking it on characters or on delta-functions.

Let’s look at Fourier transforms for functions on a cyclic group. By writing a cyclic
group in the form Z/(m), we can make an isomorphism with the dual group explicit: every

character of Z/(m) has the form χk : j 7→ e2πijk/m for a unique k ∈ Z/(m) (Exercise 3.1).
The Fourier transform of a function f : Z/(m) → C can be regarded as a function not on

Ẑ/(m), but on Z/(m):

(4.5) f̂(k) :=
∑

j∈Z/(m)

f(j)χk(j) =
∑

j∈Z/(m)

f(j)e−2πijk/m.

This is similar to the classical viewpoint of the Fourier transform of a function on R as
another function of R.

Example 4.6. Let f : Z/(8) → C have the periodic values 5, 3, 1, and 1. Both f and its
Fourier transform are in Table 3. This f has frequency 2 (its period repeats twice) and the
Fourier transform vanishes except at 0, 2, 4, and 6, which are multiples of the frequency.
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n 0 1 2 3 4 5 6 7
f(n) 5 3 1 1 5 3 1 1

f̂(n) 20 0 8 + 4i 0 4 0 8− 4i 0
Table 3.

Example 4.7. Consider a function f : Z/(45) → C with the four successive repeating
values 1, 8, 19, 17 starting with f(0) = 1. It is not a periodic function on Z/(45) since 4
does not divide 45, but the sequence 1, 8, 19, 17 repeats nearly 11 times. (The value of

f(44) is 1.) A calculation of |f̂(n)|, the absolute value of the Fourier transform of f , reveals

sharp peaks at n = 0, 11, 22, 23, and 34. A plot of |f̂(n)| is below. The red peaks are cut
off because the lowest red bar would be around three times as tall as the highest black bar.

Peaks in |f̂(n)| occur approximately at multiples of the approximate frequency!

0 11 22 23 34

As Example 4.6 suggests, the Fourier transform of a periodic function on Z/(m) knows
the frequency of the original function by the positions where the Fourier transform has
nonzero values (Exercise 4.2). For nearly periodic functions on Z/(m), the approximate
frequency is reflected in where the Fourier transform takes on its largest values. This idea
is used in Shor’s quantum algorithm for integer factorization [2], [3, Chap. 17].

Exercises.

1. Let f : Z/(8) → C take the four values a, b, c, and d twice in this order. Compute

f̂(n) explicitly and determine some values for a, b, c, and d such that f̂(n) is nonzero

for n = 0, 2, and 6, but f̂(4) = 0.
2. Let H be a subgroup of a finite abelian group G.

(a) Suppose f : G→ C is constant on H-cosets (it is H-periodic). For χ ∈ Ĝ with

χ 6∈ H⊥, show f̂(χ) = 0. Thus the Fourier transform of an H-periodic function on
G is supported on H⊥.
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(b) If f : Z/(m)→ C has period d where d | m, show f̂ : Z/(m)→ C is supported
on the multiples of m/d. (See Example 4.6.)

3. Let G be a finite abelian group and H be a subgroup. For any function f : G→ C,
Poisson summation on G says

1

|H|
∑
h∈H

f(h) =
1

|G|
∑
χ∈H⊥

f̂(χ),

where H⊥ is as in Exercise 3.6. Prove this formula in two ways:
a) Copy the classical proof sketched in Section 2 (start with the function F (x) =∑
h∈H f(xh), which is H-periodic so it defines a function on G/H) to obtain

(4.6)
1

|H|
∑
h∈H

f(xh) =
1

|G|
∑
χ∈H⊥

f̂(χ)χ(x)

for any x ∈ G and then set x = 1.
b) By linearity in f of both sides of the desired identity, verify Poisson summation

directly on the delta-functions of G. (Corollary 3.5 and Example 4.5 will be useful.)
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