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Lecture 1

Norms.

Definition 1.1. Let K be a field. A norm on K is a function | · | :
K → R≥0 satisfying

(1) ∀x, y ∈ K, |x+ y| ≤ |x|+ |y|.
(2) ∀x, y ∈ K, |xy| = |x||y|.
(3) ∀x ∈ K, |x| = 0⇔ x = 0.

We will refer to the pair (K, | · |) as a normed field. Sometimes we
will refer to K itself as a normed field, leaving | · | implicit.

Standard examples are the fields Q, R and C with the usual (Eu-
clidean) norm. Alternatively, any field has the trivial norm that takes
any non-zero element to 1. We will suppose in the following that all
our norms are in fact non-trivial.

Definition 1.2. Fix a prime p. Let x be a non-zero rational number.
We can write x = pn a

b
, where a, b are coprime to p. We then define

ordp(x) = n, |x|p = p− ordp(x),

to be the p-adic valuation and norm of x respectively.

Definition 1.3. We say that two norms | · |1, | · |2 on K are equivalent
if there exists α > 0 such that

| · |α1 = | · |2.
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The following theorem will serve as a warm-up for using field norms.

Theorem 1.4. Any norm | · | on Q is equivalent to either the usual
norm or a p-adic norm | · |p.

Recall that we are assuming all of our norms are non-trivial; other-
wise the trivial norm would give a third possibility in the statement of
the theorem above.

Proof. Let a, b > 1 be integers, and write bn in base a as follows:

bn = cma
m + cm−1a

m−1 + · · ·+ c0,

where for each i we have 0 ≤ ci ≤ a− 1.
Let M = sup(|1|, . . . , |a− 1|). It follows that

|bn| ≤ |cm||am|+ · · ·+ |c0| ≤ (m+ 1)M max(|am|, . . . , 1)

≤ (n loga(b) + 1)M sup(1, |a|n loga(b)).

Taking the nth root and letting n→∞ gives

|b| ≤ sup(1, |a|loga(b)).

At this point we divide into two cases. Suppose first that there exists
an integer b such that |b| > 1. It follows that |a| > 1 for any integer
a > 1. Reversing the roles of a and b in the inequality above gives

|b| ≤ |a|loga(b), |a| ≤logb(a),

and hence
|b|1/ log(b) ≤ |a|1/ log(a) ≤ |b|1/ log(b).

Thus equality holds and |a| = aµ for any integer a > 1. Thus | · | is
equivalent to the standard Euclidean norm.

Now suppose instead that for all integers b, we have |b| ≤ 1, hence
|b| < 1 for some b (as otherwise |·| would be the trivial norm). It follows
that there exists a prime p with |p| < 1 (take a prime factorization of
b and use multiplicativity). We’ll be done if we can show that for all
other primes q, we have |q| = 1.

Suppose there exists q with |q| < 1. Then we can find n,m such that

|pm| < 1

2
, |qn| < 1

2
.

Since p, q are distinct primes, we can find integers x, y with xpn +
yqm = 1. (For example, one could apply Euclid’s algorithm). Then the
triangle inequality gives

1 = |1| ≤ |x||pn|+ |y||qm| < 1.

This contradiction concludes the proof. �
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The dichotomy in the proof above is important enough that we give
it a name.

Definition 1.5. Let K be a normed field. If | · | satisfies the following
stronger ultra-metric triangle inequality:

∀x, y ∈ K, |x+ y| ≤ sup(|x|, |y|)
then we say that K is non-Archimedean. Otherwise, we say that K is
Archimedean.

Thus the usual norm on Q is Archimedean, whilst the p-adic norms
are all non-Archimedean. More generally, one has the following.

Theorem 1.6. Let K be an Archimedean normed field. Then there
exists an embedding ι : K → C of normed fields (i.e. | · |K is equivalent
to the pullback of the usual absolute value from C).

The ultra-metric triangle inequality underlies many of the interesting
differences between real and p-adic analysis.

Completeness. The following definition is hopefully familiar.

Definition 1.7. Let K be a normed field. A Cauchy sequence in K is
a sequence (xn) such that for all ε > 0, there exists N > 0 such that
for all n,m ≥ N , we have

|xn − xm| < ε.

We say that K is complete if every Cauchy sequence has a limit in
K.

The rational numbers Q are not complete with respect to the Eu-
clidean absolute value. One reason for passing to the completion (a.k.a.
the real numbers R) is so that the intermediate value theorem becomes
true.

The following example shows that Q is not complete with respect
to its p-adic absolute value and suggests, analogously, why a number
theorist might be interested in passing to the p-adic completion of Q.

Example (Teichmüller digits). Let 1 ≤ a ≤ p − 1 be an integer, and
consider the sequence (xn) = (ap

n
). This is a Cauchy sequence: for

example, we have

xn+1 − xn = ap
n+1 − apn = ap

n

(ap
n(p−1) − 1),

and the term in brackets is divisible by pn, by the Fermat-Euler theo-
rem. Hence

|xn+1 − xn|p < p−n.
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If the sequence (xn) had a limit x in Q, then we would have xp = x
and |x−a|p < 1. It follows that if a 6= 1 or p− 1 then a is a non-trivial
(p− 1)st root of unity in Q, a contradiction.

When we referred to ‘passing to the completion’ above, we were
implicitly invoking the following theorem.

Theorem 1.8. Let (K, | · |) be a normed field. Then there exists a field
K̂ equipped with a norm, also denoted | · |, and a map ι : K → K̂ such
that

(1) K̂ is complete.
(2) ι is an isometry with dense image.
(3) Any isometry φ : K → E to a complete field factors uniquely

through K̂.
Moreover, any isometry of normed fields ψ : K → L extends uniquely
to an isometry ψ̂ : K̂ → L̂.

We leave the proof for next time. With this we can finally define the
p-adic rational numbers.

Definition 1.9. Let p be a prime. The field of p-adic rationals, denoted
Qp, is by definition the completion of Q with respect to the p-adic norm.

p-adic expansions. We now indicate one way to get a handle on p-
adic numbers for the purpose of computation, inspired by the theory
of decimal expansions for elements of R.

Proposition 1.10. Let a ∈ Qp. Then there exists a unique sequence
of integers 0 ≤ ai ≤ p− 1, ai = 0 for i sufficiently negative such that

a =
∞∑

i>>−∞

aip
i.

(To be more precise, the partial sums form a Cauchy sequence and a is
the limit of this sequence). Thus for example if |a|p ≤ 1 then one can
write

a = a0 + a1p+ a2p
2 + . . .

Proof. After multiplying by pM , we can suppose that |a| ≤ 1. We
prove by induction that there are unique integers 0 ≤ ai ≤ p − 1 for
i = 0, . . . , N such that

|a−
N∑
i=0

aip
i|p < p−N .
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In fact, it’s enough to show that for any a ∈ Qp, |a|p ≤ 1, there exists
a unique integer 0 ≤ b ≤ p− 1 such that

|a− b|p < 1.

To see this, we can suppose that |a|p = 1. Choose a rational number
c such that |a − c|p < 1, and write c = d/e in lowest terms. One sees
that e is prime to p, hence there exist integers x, y such that

xe+ yp = 1.

Hence

|a− xd|p = |a− (1− yp)c|p ≤ sup(|a− c|p, |ypc|p) < 1.

We then subtract multiples of p from xd so that it lies in the range
0, . . . , p− 1 and this gives the desired integer b. �

We refer to the output of the proposition as the ‘p-adic expansion’
of a.

Example. Extracting
√

6 by hand, 1/(1− p).

Exercises to lecture 1.
(1) Let (xn) be a sequence in a non-Archimedean normed field K.

Show that it is a Cauchy sequence if and only if |xn+1−xn| → 0
as n→∞. (This has the useful corollary that a sum converges
if and only if the individual terms tend to zero. In particular,
there are no problems with conditional convergence).

(2) Let K be a normed field. Show that it is non-Archimedean if
and only if |Z| is bounded.

(3) Find the p-adic expansion of 1/p! in Qp for p = 3, 5.
(4) In Qp, let a = a0 +a1p+ . . . be the p-adic expansion of a. What

is the p-adic expansion of −a?
(5) Show that an element of Qp lies in Q if and only if its p-adic

expansion is eventually periodic.
(6) Let K be a field equipped with norms | · |1, | · |2. Show that

these norms are equivalent if and only if they define the same
topology on K, if and only if |x|1 < 1⇒ |x|2 < 1.

(7) Let | · |∞ denote the Euclidean norm on Q. Show that for any
x ∈ Q, we have ∏

p≤∞

|x|p = 1.

(The validity of this formula is one reason for choosing the nor-
malization of | · |p that we did).
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(8) Let K be a field with norms | · |1, . . . , | · |n which are mutually
inequivalent. Suppose x1, . . . , xn ∈ K. Show that for every
ε > 0, there exists x ∈ K such that |x − xi|i < ε for each
i = 1, . . . , n. (If you get stuck, look in the references for the
Artin-Whaples approximation theorem).

How is this statement related to the Chinese Remainder The-
orem when K = Q?

(9) (For those who know the Baire category theorem): In the lec-
ture we saw that Q is not p-adically complete, i.e. Q 6= Qp.
Show that in fact no countable normed field is complete (disre-
garding the case of the trivial norm).

Lecture 2

Completions. Last time we stated the following theorem.

Theorem 2.1. Let (K, | · |) be a normed field. Then there exists a field
K̂ equipped with a norm, also denoted | · |, and a map ι : K → K̂ such
that

(1) K̂ is complete.
(2) ι is an isometry with dense image.
(3) Any isometry φ : K → E to a complete field factors uniquely

through K̂.
Moreover, any isometry of normed fields ψ : K → L extends uniquely
to an isometry ψ̂ : K̂ → L̂.

Proof. We just show existence, the uniqueness properties being easy.
Let C be the set of all Cauchy sequences in K. This is ring under
component-wise addition and multiplication. Let I ⊂ C be the set of
sequences which tend to zero. I is in fact an ideal.

Moreover, the quotient ring C/I is a field (as sequences not in I are
eventually bounded away from 0, hence invertible in C/I). We define
a norm on C by

|(xn)| = lim
n→∞

|xn|.

This descends to C/I and the natural map K → C/I is an isometry
with dense image. We take K̂ = C/I. �

p-adic integers.

Definition 2.2. We write

Zp = {x ∈ Qp with |x| ≤ 1} = {x ∈ Qp with ordp x ≥ 0}.
This is called the ring of p-adic integers. (We are writing ordp here for
the natural extension of the function ordp defined on Q× last lecture
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to Qp. This extension is given by − logp | · |p. We define formally
ordp 0 =∞).

We note that this is indeed a ring. It is the closure of Z in Qp (i.e. the
set of elements of Qp which are limits of Cauchy sequences contained
in Z). In terms of p-adic extensions

∑∞
i=−∞ aip

i, Zp consists of those
elements with ai = 0 when i < 0. We now investigate the structure of
Zp, beginning by introducing some basic p-adic functions.

Consider the following power series, with coefficients viewed as lying
in Qp:

log(1 + x) = x− x2

2
+
x3

3
− . . .

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ . . . .

Suppose for the rest of this section that p is odd.

Lemma 2.3. log(1 + x) and exp(x) both converge in the disk |x| < 1.

Proof. Only the claim about the exponential needs proof. We need to
show that when ordp x > 0, ordp x

n/n!→∞ as n→∞. But we have

ordp n! =
∞∑
i=0

bn/pic ≤
∞∑
i=0

n/pi = n/(p− 1),

and hence

ordp x
n/n! ≥ n(ordp x−

1

p− 1
),

giving the result. �

Theorem 2.4. We have a topological group isomorphism

Z×p ∼= Zp × F×p .

Recall that Fp is the field with p elements.

Proof. We recall that in real analysis, the identities

exp(log(1 + x)) = log(1 + x) and log(exp(x)) = x

hold whenever these expressions make sense. It follows that the same
identities hold for the formal power series written above, hence for the
p-adic functions they define. (If you are unconvinced by this, see [K],
exercise 21 to IV.1). Similarly, we have

exp(x+y) = exp(x) exp(y), log((1+x)(1+y)) = log(1+x)+log(1+y).
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It follows that these functions induce isomorphisms

1 + pZp

log //
pZp,

exp
oo

where the left hand side is a group under multiplication and the right
hand side under addition.

Note that pZp = (p) is an ideal of Zp, and we have a ring homomor-
phism

Fp = Z/(p)→ Zp/(p).

In fact this is an isomorphism, and 1 + pZp is just the kernel of the
‘reduction modulo p’ map

r : Z×p → F×p .
The theorem will be proved if we can find a splitting of this homomor-
phism, i.e. a map

i : F×p → Z×p
such that r ◦ i = 1. This is given by the Teichmüller digits defined in
the first lecture. Given an integer a > 1, let

[a] = lim
n→∞

ap
n

.

Exercise: this depends only on the residue class of a modulo p, so
defines a homomorphism F×p → Z×p with the desired properties. �

Corollary 2.5. We have Q×p ∼= Z× Zp × F×p .

Proof. We have Zp = {|x| ≤ 1}, hence Z×p = {|x| = 1}. Thus every
element of Q×p has a unique expression as a power of p times an element
of Z×p . �

We now understand the algebraic structure of Zp quite well. The
corollary shows that the only non-trivial ideals of Zp are the (pn), n
a positive integer. In particular, Zp is a UFD with a unique prime
element. Such rings are called discrete valuation rings - more on this
soon.

The most important thing to come out of the proof is the reduction
map Zp → Fp. A general principle in number theory is that if you can
do something modulo p, then there should exist a ‘p-adic interpolation’
over Zp, that reduces back to the original construction when you apply
the reduction map. One example for those who know about such things:
mod p congruences between the coefficients of modular forms can often
be interpolated to p-adic analytic families of modular forms.

Corollary 2.6. Qp has exactly 3 non-isomorphic quadratic extensions.
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Proof. By elementary Galois theory, the non-trivial quadratic exten-
sions of a field K of characteristic zero correspond to non-trivial ele-
ments of K×/(K×)2. Now apply the above corollary. �

Extensions of Qp. We take this as our cue to investigate some of the
structures associated to field extensions of Qp.

Theorem 2.7. Let (K, | · |) be a complete non-Archimedean normed
field, and let L be a finite extension of degree d. Then there exists
exactly one norm | · |L on L extending | · |, and L is complete with
respect to this norm. For any x ∈ L, we have

|x|L = |NL/K(x)|1/d.

We’ll prove this when K = Qp.

Definition 2.8. Let K be a non-Archimedean normed field, and let
V be a K-vector space. A norm on V is a function ‖ · ‖ : V → R≥0

satisfying
(1) ∀x, y ∈ V, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
(2) ∀λ ∈ K, x ∈ V, ‖λx‖ = |λ|‖x‖.
(3) ∀x ∈ V, ‖x‖ = 0⇔ x = 0.

We say that two norms ‖ · ‖1, ‖ · ‖2 on V are equivalent if there exist
c, C > 0 such that for all x ∈ V we have

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.

Proposition 2.9. Let K be a complete non-Archimedean normed field,
V a finite-dimensional K-vector space. Then all norms on V are equiv-
alent.

Proof when K = Qp. Choose a basis v1, . . . , vd of V . We define the sup
norm on V by

‖λ1v1 + · · ·+ λdvd‖sup = sup
i
|λ|.

We show that any other norm ‖ · ‖ on V is equivalent to ‖ · ‖sup. We
have

‖λ1v1 + · · ·+ λdvd‖ ≤ (sup
i
λi)(sup

i
‖vi‖),

so we can take C = supi ‖vi‖ above. Now we just need to find c such
that for all x ∈ V ,

c‖x‖sup ≤ ‖x‖.
Let B = {x ∈ V |‖x‖sup = 1}. Then there exists ε > 0 such that for
every x ∈ B, we have ‖x‖ ≥ ε. Suppose for contradiction that there
existed a sequence (xn) in B with ‖xn‖ → 0 as n→∞.
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B is sequentially compact with respect to ‖ · ‖sup (i.e. it satisfies the
conclusion of the Bolzano-Weierstrass theorem), so after passing to a
subsequence we may suppose that xn → x ∈ B for some x. But then
for every n we have

‖x‖ ≤ sup(‖x− xn‖, ‖xn‖) ≤ sup(C‖x− xn‖sup, ‖xn‖).
By hypothesis both terms on the right hand side tend to zero as n→∞,
hence x = 0. This is a contradiction as x ∈ B.

The proposition follows on taking c = 1/ε. �

We can now prove the uniqueness part of the theorem. TakeK = Qp,
and let | · |1, | · |2 be norms on L extending | · |p. Viewing L as a K-vector
space and applying the proposition, we have c, C > 0 such that for all
x ∈ L, n ≥ 0,

c|xn|1 ≤ |xn|2 ≤ C|xn|2.
Taking the nth root and letting n→∞ gives |x|1 = |x|2.

To see the form that this extension must take, we may suppose that
L is Galois over Qp. Write | · | for the norm on L extending | · |p on Qp.
For any σ ∈ Gal(L/Qp), | · | ◦ σ is another such norm, so they must be
equal. It follows that for any x ∈ L, we have

|NL/Qp(x)| =
∏

σ∈Gal(L/Qp)

|σ(x)| = |x|d.

We leave the existence part for the exercises. �

Exercises to lecture 2.
(1) Let L/Qp be a Galois extension. In this situation we will always

endow L with the norm defined above, making it a complete
non-Archimedean normed field.

Show that any σ ∈ Gal(L/Qp) is an isometry.
(2) Find a Galois extension K of Q and a prime p such that | · |p

does not extend uniquely to K. (Hint: a quadratic extension
will do).

(3) Read the proof of the existence of norms on finite extensions of
Qp (Theorem 11 in section III.2 of [K]).

(4) In the lecture we used the estimate ordp n! ≤ n/(p − 1). Show
that in fact ordp n! = (n− Sn)/(p− 1), where Sn is the sum of
the digits in the p-adic expansion of n.

(5) Find the correct statements for the results of this lecture when
p = 2. How many quadratic extensions does Q2 have? (If you
get stuck then e.g. Serre’s Course in Arithmetic has the relevant
statements. But you should make sure you understand how to
prove them using the methods given in the lecture).
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(6) Find generators for the quadratic extensionsK of Q5. Compute
|K×| in each case. What do you notice?

(7) Show that the set B defined in the proof of the proposition is
indeed sequentially compact.

(8) Consider the formal power series

f(x) =
∞∑
n=0

(
1/2

n

)
xn,

where (
a

n

)
=
a(a− 1) . . . (a− n+ 1)

n!
.

Show that it converges in the disk D(0, 1−) ⊂ Zp. Compute
f(7/9) in Q7. (Hint: what power series identity, known to hold
over R, might be useful)?

(9) Write K = C(x) for the field of rational functions in the vari-
able x (thus every element is of the form f/g, where f, g are
polynomials). If f ∈ C(x), define ord0 f to be the order of van-
ishing of f at x = 0, and |f | = 2− ord0 f . Show that this defines
a norm on K. What is the completion of K with respect to this
norm?

(10) (A more algebraic construction of Zp) Show that Zp is the in-
verse limit of the inverse system
. . . // Z/pnZ // Z/pn−1Z // . . . // Z/pZ ,

the maps being the natural reduction maps. (This has a tech-
nical meaning in category theory, but in practical terms means
that Zp is isomorphic to the ring

{(xn) ∈
∏
n

Z/pnZ such that for all m,xm mod pm−1 = xm−1}.)

Does the induced (product) topology agree with the norm topol-
ogy?

Lecture 3

Valuation rings and ramification. Now that we have some more
normed fields to play with, we define some more of the associated
structures.

Definition 3.1. Let K be a field. A valuation on K is a function
v : K× → R such that

(1) ∀x, y ∈ K, v(x+ y) ≥ min(v(x), v(y)).
(2) ∀x, y ∈ K, v(xy) = v(x) + v(y).
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We say that v is a discrete valuation if v(K×) is a discrete subgroup
of R.

Thus giving a valuation is essentially equivalent to giving a non-
Archimedean norm, under the rule v(·) = − log | · |. When K is a finite
extension of Qp, we will make the following convention: v = vK is a
discrete valuation, so we may normalize it so that vK(K×) = Z. On
the other hand, we will always assume that | · | = | · |K extends the
usual norm | · |p on Qp.

Definition 3.2. Let K be a non-Archimedean normed field. The val-
uation ring of K is defined to be

OK = {x ∈ K||x| ≤ 1}.
Its maximal ideal is

mK = {x ∈ K||x| < 1}.
Its residue field is

kK = OK/mK .

When vK is discrete, mK is a principal ideal. Any element $K gener-
ating mK is called a uniformizer.

Definition 3.3. Let L/K be a finite extension of degree d, where K is
a finite extension of QP . The index

[vL(L×) : vL(K×)] = eL/K = e

is called the ramification index of the extension L/K. The degree

[kL : kK ] = fL/K = f

is called the inertial degree of the extension L/K.

In order words, we have vK = evL on restriction to K.

Example. Quadratic extensions of Qp.

Proposition 3.4. Let L/K be as above. Then ef = d.

Proof. Since these quantities are all multiplicative in towers, we can
assume that K = Qp. Then OL is a finite free Zp-module of rank d.
Let $L be a uniformizer of L. Then we have ($e

L) = (p) as ideals of
OL.

Now each quotient ($i
L)/($i+1

L ), i = 0, . . . , e − 1 is isomorphic to
kL, hence of cardinality #kL = pf . On the other hand we have as
Zp-modules

OL/($e
L) = OL/pOL ∼= Zd

p/pZd
p,

which has cardinality pd. It follows that pef = pd and hence ef = d. �
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If e = 1 then we say that L/K is unramified, whereas if f = 1 then
we say that L/K is totally ramified. The above proposition shows that
these two possibilities are mutually exclusive unless L = K.

Finally we have the following, generalizing the p-adic expansions
introduced earlier.

Proposition 3.5. Let K be a finite extension of Qp, and let S be a set
of representatives for kK in OK containing 0. Let $K be a uniformizer
of K. Then every element x ∈ K has a unique expression in the form

$vK(x)

∞∑
i=0

ai$
i

with ai ∈ S.

Hensel’s lemma. The following lemma is vital in much that follows.
Let K be a complete non-Archimedean normed field.

Lemma 3.6. Let f(x) ∈ OK [x] be a monic polynomial, and suppose
x ∈ OK satisfies

(1) |f(x)| < 1;
(2) |f ′(x)| = 1.

Then there exists a unique y ∈ OK such that f(y) = 0 and |y − x| ≤
|f(x)|.

This has the following prototype.

Lemma 3.7. Let f(x) ∈ Zp[x] be a monic polynomial, and suppose
x ∈ Zp satisfies

(1) f(x) ≡ 0 mod p;
(2) f ′(x) 6≡ 0 mod p.

Then there exists a unique y ∈ Zp such that f(y) = 0 and y ≡ x
mod p.

Proof. Let us prove the second version. We construct the p-adic ex-
pansion of y, by showing inductively that for each n there is a unique
set of integers ai, 0 ≤ ai ≤ p− 1 such that if yn = a0 + pa1 + . . . then
f(yn) ≡ 0 mod pn+1.

For n = 0, we just take the first p-adic digit in the expansion of x.
For the induction step, suppose a0, . . . , an are given. We have

f(yn + cpn+1) = f(yn) + f ′(yn)cpn+1 + (terms divisible by pn+2).

We want this to vanish modulo pn+2, and this happens if and only if

c ≡ f(yn)

pn+1f ′(yn)
mod p.
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(Note that the right hand side is a p-adic integer by the induction
hypothesis). We therefore take an+1 to be the first p-adic digit of the
right hand side above. �

We state without proof the following more general formulation.
Lemma 3.8. Let f(x) ∈ OK [x] be a monic polynomial, and suppose
that f = f mod mK factors as f(x) = g0(x)h0(x), where g0, h0 are
monic and relatively prime polynomials in kK [x]. Then there exist
unique monic polynomials g, h ∈ OK [x] such that f(x) = g(x)h(x)
and g = g0, h = h0.

Unramified extensions. Fix an algebraic closure Qp. We will con-
sider all extensions of Qp as being contained in this algebraic closure.
Proposition 3.9. Let K be a finite extension of Qp. Then for ev-
ery integer f ≥ 1, K has a unique unramified extension of degree f .
Moreover, the composite of any two unramified extensions of K is still
unramified.

Proof. To construct such an extension, proceed as follows. Let l/kK be
an extension of kK of degree f , and let α be a primitive element. Let
g be the minimal polynomial of α over kK , and let g be any lift of f to
OK .

Then Gauss’ lemma implies that g is irreducible, hence defines an
extension E of K of degree f . All of the roots of g in E in fact lie in
OE, hence g has roots in kE. Hence fE/K = f = [E : K], and E is an
unramified extension.

Let us next show that the composite of two unramified extensions
L,L′ is unramified over K. This will follow if L.L′ is unramified over
L, i.e. if [L.L′ : L] = [kL.L′ : kL]. Let α be a primitive element for
kL′/kK and choose a lift OL′ . Let h the minimal polynomial of α over
L.

Now h is irreducible in kL[x], since any factorization would lift by
Hensel’s lemma to a factorization in OL[x]. The result now follows.

Finally, we show the uniqueness of the unramified extension of degree
f . Suppose L,L′ are two such. Then L.L′ is unramified overK, and has
the same residue field as L, since a finite field has a unique extension
of any given degree. Hence

[L.L′ : K] = [L.L′ : L][L : K]

so we see L′ ⊂ L and vice versa. This concludes the proof. �

Corollary 3.10. The unramified extension of Qp of degree f is the
one obtained by adjoining the pf −1 roots of unity. It has Galois group
Z/fZ over Qp.
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Corollary 3.11. Let L/K be a finite extension, K finite over Qp.
Then L has a subfield Lur, the maximal subextension of L unramified
over K. Moreover, L/Lur is totally ramified.

Totally ramified extensions. In this section, K is a finite extension
of Qp.

Definition 3.12. Let f(x) ∈ OK [x] be a monic polynomial:

f(x) = xn + a1x
n−1 + · · ·+ an.

If for each i = 1, . . . , n we have v(ai) ≥ 1, and v(an) = 1, then we say
that f is Eisenstein.

Lemma 3.13. If f is Eisenstein then it is irreducible.

Proof. Suppose we can factor f = gh in OK [x], with g, h monic poly-
nomials. Then f = gh, hence we have g(x) = xa, h(x) = xb for some
a, b > 0.

On the other hand, since v(an) = 1, one of g, h must have constant
term a unit. This is a contradiction. �

Proposition 3.14. Suppose that L/K is a totally ramified extension
of degree e, and let $ = $L be a uniformizer of L. Then the minimal
polynomial of $ is Eisenstein.

Conversely, if f ∈ OK [x] is an Eisenstein polynomial of degree e,
then for any root α of f , K(α)/K is totally ramified of degree e, and
α is a uniformizer of K(α).

Proof. Let f(x) = xn +a1x
n−1 + · · ·+an be the minimal polynomial of

$. The coefficients of f are symmetric polynomials in the conjugates
of $, hence have positive valuation. Also, an = NL/K$ and hence
|an| = |$|e, or alternatively vK(an) = vL($) = 1. It follows that f is
Eisenstein.

Suppose conversely that f ∈ OK [x] is Eisenstein, and let α be a root.
Let L = K(α). Then as above we have vL($) = vK(an) = 1, hence
eL/K = e. The result follows. �

Exercises to lecture 3.
(1) Let f(x) = Xp − X − 1 ∈ Zp[x]. Show that f is irreducible.

Let K be the splitting field of f . What is [K : Qp]? Is this
extension ramified?

(2) Let K = Qp(ζp), where ζp is a primitive pth root of unity. Show
that [K : Qp] = p−1, and that this extension is totally ramified.
Give a uniformizer of K. What about Qp(ζpn)?
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(3) Earlier we constructed a canonical splitting of the homomor-
phism Z×p → F×p . Construct a similar splitting for K, a finite
extension of Qp. (Hint: Hensel’s lemma).

(4) Continuing with this theme, we saw Z×p ∼= Zp × F×p when p is
odd. Let K be a finite extension of Qp, and let e = eK/Qp . Give
a sufficient condition on e to have O×K ∼= OK × k

×
K , and show

that it is sharp.
(5) Which quadratic extensions of Q2 are ramified?
(6) Let L/K be finite extensions of K, and let α ∈ O×L be a prim-

itive element. Let f be its minimal polynomial, g the minimal
polynomial of α ∈ kL, and e = eL/K . Show that f = ge.

(7) Let L/K be a totally ramified extension, and let $ be a uni-
formizer of L. Show that OL = OK [$].

Lecture 4

Worked examples.

Example. Let f(x) = xn − p ∈ Zp[x], and suppose that p - n. Let L be
the splitting field of f over Qp.

Then L contains the subfield K = Qp(ζn) (we use ζr to denote a
primitive rth root of unity). As we’ve seen, K is unramified over Qp.
Moreover, f(x) ∈ OK [x] is an Eisenstein polynomial. Thus we have
eL/Qp = n and fL/Qp = fK/Qp .

Example (p-cyclotomic extensions). Let f(x) = (xp − 1)/(x − 1) =
1 + x+ · · ·+ xp−1. The roots of f are the primitive pth roots of unity,
and we write K = Qp(ζp) for its splitting field.

Let x = y + 1. Then we have

f(x) = f(y+1) =
(y + 1)p − 1

y
= p+

(
p

2

)
y+ · · ·+

(
p

p− 2

)
yp−2 +yp−1.

Thus f(y + 1) is an Eisenstein polynomial in the variable y. It follows
from the results of the previous lecture that K is a totally ramified,
Galois extension of Qp of degree p− 1, and a uniformiser is 1− ζp.

What about the field L = Qp(ζpr), when r > 1? Then we take
h(x) = (xp

r − 1)/(xp
r−1 − 1). Thus the roots of h are precisely the

primitive prth roots of unity, and L is the splitting field of h.
In fact h(y+1) is also Eisenstein. It’s easy to see that h has constant

term equal to p, and we have

h(x) ≡ (x− 1)p
r

(x− 1)pr−1 ≡ (x− 1)(p−1)pr−1

mod p,
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and hence h(y + 1) ≡ y(p−1)pr−1 mod p, so that all of the non-leading
terms of h(y) are divisible by p. Thus L is also totally ramified and
Galois over Qp, of degree (p− 1)pr−1. A uniformiser is λ = 1− ζpr . Its
Galois group H is isomorphic to (Z/prZ)×. We note that this group
has a natural decreasing filtration by the subgroups

Hn = {x ∈ H such that x ≡ 1 mod pn}, n = 0, . . . , r.

In fact, Hn is equal to the set of Galois automorphisms which induce
the trivial action on OL/(λn+1).

This is a particular example of the so-called ramification filtration:
given any Galois extension L/K of p-adic fields, there is a canonical
filtration of G = Gal(L/K) by normal subgroups Gr, defined as above.
One can show that each Gr/Gr+1 is abelian. In particular, G is always
soluble. One consequence of this is that the roots of any polynomial
f ∈ Qp[x] are expressible in radicals!

The p-adic complex numbers. We recall the following.

Proposition 4.1. Let Qp be an algebraic closure of Qp. Then | · |p
extends uniquely to a norm | · | on Qp.

Theorem 4.2. Qp is not complete.

Definition 4.3. We define

Ω = Q̂p,

and write O for the valuation ring of Ω.

Proof of theorem. Let b1 = 1. Choose a sequence bn ∈ Qp, n = 2, 3, . . .
of roots of unity of order prime to p such that bn−1 ∈ Qp(bn) and

[Qp(bn) : Qp(bn−1)] > n.

Put
c =

∑
n

bnp
n ∈ Ω.

Suppose for contradiction that c ∈ Qp, and let t = [Qp(c) : Qp]. Let

ct =
t∑

n=0

bnp
n.

Thus ct is the tth partial sum of the sequence defining c, and we have
|c − ct| ≤ p−t−1, by the ultrametric inequality. Let M be a Galois
extension of Qp containing c, ct and bt. For any σ ∈ Gal(M/Qp), we
have

|σct − σc| ≤ p−t−1.
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By construction, we can find σ1, . . . , σt+1 ∈ Gal(M/Qp(bt−1)) such that
the σj(bt) are distinct.

We now have the inequality

|σict − σjct| = |(σibt − σjbt)pt| ≥ p−t for i 6= j.

(Since the extension generated by bt is unramified over Qp, the σjbt have
pairwise distinct images in the residue field, hence |σibt − σjbt| = 1.)
These two inequalities show that the σjc are distinct, contradicting
t = [Qp(c) : Qp]. This concludes the proof. �

Lemma 4.4 (Krasner’s lemma). Let K be a complete non-Archimedean
normed field, and let f ∈ K[x] be a monic polynomial with roots
α1, . . . , αd in K. Suppose β ∈ K satisfies

|β − α1| < |α1 − αi|, i = 2, . . . , d.

Then K(α) ⊂ K(β).

Proof. Let L = K(β),M = L(α1, . . . , αd). M/L is Galois, and for any
σ ∈ Gal(M/L) one has

|β − α1| = |σ(β − α1)| = |β − σ(α1)|.

(Recall that the norm is always Galois invariant). Then

|α1−σ(α1)| ≤ sup(|α1−β|, |β−σ(α1)| = |α1−β| < |α1−αi|, i = 2, . . . , d.

We must therefore have σ(α1) = α1. σ was arbitrary, so it follows that
α ∈ L, as required. �

Proposition 4.5. Ω is algebraically closed.

Proof. Let α ∈ Ω, and let f ∈ Ω[x] be its minimal polynomial. After
scaling α we can suppose that f ∈ O[x]. Write

f(x) = xn + a1x
n−1 + · · ·+ an,

and let C = mini(|α − αi|), where α = α1, . . . , αn are the roots of f .
Choose a polynomial g = xn + b1x

n−1 + · · ·+ bn ∈ OQp [x] such that for
each i, we have |ai − bi| < Cn. Then if β1, . . . , βn are the roots of of g,
we have∏

i

|α− βi| = |g(α)| = |g(α)− f(α)| ≤ sup
i
|ai − bi| < Cn.

In particular, we must have |α − βi| < C for some i. It follows by
Krasner’s lemma that α ∈ Ω(βi) = Ω. �
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It follows that Ω is a suitable domain in which to do p-adic analysis.
For this reason we sometimes refer to it as the field of p-adic complex
numbers.

Here is another interesting result that uses Krasner’s lemma.

Proposition 4.6. Let d ≥ 1 be an integer. Then there are only finitely
many extensions of Qp of degree bounded by d.

Functions defined by power series. We begin with some notation.

Definition 4.7. Given a ∈ Ω, r ∈ R, set

D(a, r) = {x ∈ Ω||x− a| ≤ r}
and

D(a, r−) = {x ∈ Ω||x− a| < r}.
We call these respectively the closed and open disks around a of radius
r.

If a = 0 we will abbreviate these as D(r) and D(r−).

We will be considering functions defined by formal power series

f(X) =
∞∑
n=0

anX
n, an ∈ Ω.

Lemma 4.8. Let

r = r(f) =
1

lim supn |an|1/n
.

Then f(x) converges when |x| < r and diverges when |x| > r.

Proof. Suppose that |x| < r Thus we can write |x| = (1− ε)r for some
positive ε, and hence

|anxn| = (r|an|1/n)n(1− ε)n.
Since lim supn |an|1/n = 1/r, we see that |an|1/n ≤ 1/(r − εr/2) for all
sufficiently large n, and hence

lim
n→∞

|anxn| ≤ lim
n→∞

(
(1− ε)r

(1− ε/2)r

)n
= 0.

A similar argument in reverse shows that if |x| > r then anxn 6→ 0 as
n→∞. �

Definition 4.9. We call r the radius of convergence of the power series
f .

We have the following important lemma, whose proof is left as an
exercise.
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Lemma 4.10. Suppose that f(X) converges in the disk D(r). Then it
defines a continuous function f : D(r)→ Ω.

Proposition 4.11. The radius of convergence of exp(X) is p−1/(p−1).
The radius of convergence of log(1 +X) is 1.

Proof. An earlier exercise was to show that

ordp(n!) =
n− Sn
p− 1

,

where Sn is the sum of the digits in the p-adic expansion of n. We
compute

lim
n→∞

ordp n!

n
= lim

n→∞

n− Sn
n(p− 1)

= 1/(p− 1).

The result for log is immediate. �

Exercises to lecture 4.

(1) In the first example above, give a formula for fK/Qp .
(2) Let K be a finite extension of Qp. Show that there exists a

subfield F ⊂ K such that [F : Q] = [K : Qp] and F is dense in
K.

(3) Show that the ring of integers in Qp(ζpr) is equal to Zp[ζpr ].
(4) Let λ = 1 − ζp ∈ K = Qp(ζp). Show that if σ ∈ Gal(K/Qp)

satisfies σ(ζp) = ζap , then σ(λ) ≡ aλ mod λ2.
(5) What is |Ω|?
(6) Give another proof of Proposition 4.5 using the following more

general formulation of Hensel’s lemma:

Lemma 4.12. Let K be a complete non-Archimedean normed
field, and let f ∈ OK [x] be a monic polynomial. Suppose there
exists α ∈ OK such that |f(α)| < |f ′(α)|2. Then there exists a
unique y ∈ OK such that f(y) = 0 and |y−α| ≤ |f(α)|/|f ′(α)|.

(7) Give a proof of Proposition 4.6.
(8) Decide whether exp(X) and log(1 +X) converge on the bound-

aries of their respective disks of convergence.
(9) Compute the radii of convergence of the following power series:

(a)
∑

n n!Xn

(b)
∑

n(ζp − 1)Xn/n!
(c)

∑
n p

nXpn .
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Lecture 5

Last time we introduced the field Ω of p-adic complex numbers. In
this lecture we can finally start introducing some analytic tools that
are completely special to the p-adic situation. Since we’ll be working
in Ω mostly from now on, we introduce the following valuation: ordp :
Ω× → R is the valuation extending the usual one on Qp. It is given
by the formula ordp = − logp | · |. (This brings us into line with the
notation used in the course text).

Newton polygons. Let K be a subfield of Ω, and let f(x) = 1 +
a1x+ · · ·+ anx

n ∈ K[x].

Definition 5.1. The Newton polygon N(f) of f is the lower convex
hull of the points (0, 0), (1, ordp a1), . . . , (n, ordp an). That is, it’s the
highest polygonal line such that all the points (i, ordp ai) lie on or above
it.

See the course text for some pictures. Intuitively, it can be con-
structed as follows: in the (x, y)-plane, imagine the points (i, ordp ai)
as nails sticking outwards, and the negative y-axis as a piece of string
with one end fixed at the origin, and the other end free.

We rotate the string counter-clockwise until it meets one of the nails.
As we continue rotating, the segment of the string between this the
origin and this point will be fixed. Continuing in this manner the
string forms a polygon which is necessarily convex.

Definition 5.2. Let f be as above. We call the slopes of the segments
appearing in N(f) the slopes of f . If λ is a slope, we call the length of
the projection of the corresponding segment to the x-axis the length of
λ.

Lemma 5.3. Factor

f(x) =
n∏
i=1

(
1− x

αi

)
.

Let λi = ordp 1/αi. Then if λ is a slope of f of length l, then exactly l
of the λi are equal to λ. Let

fλ(x) =
∏

ordp αi=−λ

(
1− x

αi

)
.

Then fλ(x) ∈ K[x] and f =
∏

λ fλ.

Example. Let f(x) = 1− x/2− x2/2− x3 ∈ Q2[x]. One can check that
f(x) is irreducible in Q[x]. However, its 2-adic Newton polygon has 3
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distinct slopes, so it factors into 3 linear factors over Q2. In particular,
all of its roots are in Q2.
Proof. The proof will be an exercise in the application of the following
fact: suppose that x1, . . . , xn ∈ Ω, and ordp x1 < ordp xi, i = 2, . . . , n.
Then ordp

∑
i xi = ordp x1.

Order the αi so that λ1 ≤ λ2 ≤ · · · ≤ λn. Suppose that λ1 = · · · =
λr < λr+1. We want to show that the first segment of N(f) is the line
joining (0, 0) and (r, ordp ar). Now, ai is a symmetric polynomial in the
1/αj. Hence we have ordp ai ≥ iλ1, so the point (i, ordp ai) lies above
this line.

On the other hand, ar is a sum of products of r of the 1/αj, and
1/(α1 . . . αr) is the unique term with minimal valuation. Thus ordp ar =
rλ1. Moreover, we have ordp ar+1 > (r+1)λ1, so there is a corner in the
polygon at (r, ordp ar), and the first segment joins (0, 0) and (r, ordp ar).

We next suppose that λr+1 = · · · = λs < λs+1. The same argument
works to show that the next segment of the polygon is the line joining
(r, ordp ar) and (s, ordp as). Continuing in this manner, we verify that
N(f) has the claimed form.

The last statement follows immediately from the Galois invariance
of the norm. �

Remark 1. Using the lemma, you can give another proof of Eisenstein’s
criterion.
Newton polygons for power series. In this section we will work
with a power series f(X) = 1 +

∑∞
i=1 aiX

i ∈ 1 +XΩ[[X]].

Definition 5.4. For each n ≥ 1, let fn(X) = 1 +
∑n

i=0 aiX
i. Then we

define the Newton polygon of f to be the limit of the N(fn) as n→∞.
To be more precise, we distinguish three cases.

(1) N(f) has infinitely many segments of finite length.
(2) N(f) has finitely many segments, and the last segment, which

is infinitely long, has infinitely many of the points (i, ordp ai)
on it.

(3) N(f) has finitely many segments, and the last segment, which
is infinitely long, has finitely many of the points (i, ordp ai) on
it.

Example. Let f(X) = − log(1−X)/X.

Lemma 5.5. Let b = supi λi, the supremum being over the slopes of
f . Then the radius of convergence of f is pb.

Moreover, f converges on the boundary of the disk D(pb) if and only
if we are in case (3) above and the distance between the final slope and
(i, ordp ai) goes to infinity with i.
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Proof. Suppose that ordp x > −b. We can write ordp x = −c, with
c < b. It follows that

ordp aix
i = ordp ai − ic.

Now, ordp ai − ic is eventually monotonic and strictly increasing, so
we’re done. The converse direction is similar.

The final claim is clear from the proof. (Here the picture on p. 101
of the course text is helpful). �

Lemma 5.6. Suppose λ1 is the first slope of N(f), c ∈ Ω, ordp c = λ ≤
λ1. Suppose that f converges on the closed disk D(pλ), and let

g(X) = (1− cX)f(X).

Then N(g) is obtained by translating N(f) by (1, λ) and joining (0, 0)
and (1, λ).

Suppose finally that f has last slope λf . Then f(X) converges on the
closed disk D(pλf ) if and only if g(X) does.

Proof. We may suppose without loss of generality that c = 1 and so
λ = 0. We let g(X) = 1 +

∑∞
i=0 biX

i. Thus bi = ai − ai−1 for each i.
We must show that N(g) is N(f) translated one unit to the right, with
an extra segment between the (0, 0) and the endpoint.

Since ordp bi ≥ ordp ai−1, the points (i, ordp bi) all lie above the
Newton polygon of N(f) translated one to the right. Suppose that
(i − 1, ordp ai−1) is a corner of N(f). Then ordp ai > ordp ai−1, hence
ordp bi = ordp ai−1, and (i, ordp bi) is a corner of N(g).

It follows that N(g) is as claimed in the lemma, except for possibly
the last segment. Suppose that N(g) had a slope λg > λf . Then for
some i, (i + 1, ordp ai) lies below this segment, hence ordp bj > ordp ai
for all j ≥ i + 1. Then bj = aj − aj−1 ⇒ ordp aj = ordp ai+1 for all
j ≥ i+ 1. This contradicts the assumption that f(X) converges in the
closed disk D(1).

The remaining claims follow similarly. �

Exercises to lecture 5.
(1) Find the Newton polygons of the following polynomials:

(a) 1− x+ px2.
(b) 1− x3/p2.
(c) 1 + x2 + px4 + p3x6.
(d)

∏p2

i=1(1− ix).
(2) Justify the first sentence in the proof of Lemma 5.6.
(3) Let f(x) = 1 + a1x + · · · + anx

n, with an 6= 0. Suppose that
N(f) consists of a single line from (0, 0) to (n,m), with n,m
coprime integers. Show that f is irreducible.
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(4) Does the Newton polygon of every irreducible f have the form
given in the previous exercise? Give a proof of counter-example.

(5) Suppose that that f = 1+a1x+ · · ·+a2nx
2n and that whenever

α is a reciprocal root of f (i.e. f(1/α) = 0), so also is p/α, with
the same multiplicity. What does this imply about the shape of
N(f)? Draw all possible shapes for n in the range n = 1, 2, 3, 4.

(6) Find a power series f(X) such that N(f) has a segment with
irrational slope.

Lecture 6

Newton polygons of power series, continued. We continue to
develop the properties of Newton polygons of power series. We work
with a power series f(X) = 1 +

∑∞
i=0 aiX

i ∈ Ω[[X]], assumed to have
a strictly positive radius of convergence.

Lemma 6.1. Suppose that f(X) has first slope λ1, and that f has at
least two distinct slopes. Then there exists y ∈ Ω with ordp 1/y = λ1

and f(y) = 0.

Proof. We may suppose that λ1 = 0. It follows that ordp ai ≥ 0 for all
i, and that ordp ai → 0 as i→∞. Let fn(X) = 1 +

∑n
i=0 aiX

i. Let N
be the largest integer such that ordp aN = 0.

Then for n ≥ N , fn(X) has exactly N zeroes xn,1, . . . , xn,N of valu-
ation 0 (by our result for Newton polygons of polynomials). We define
a sequence yj as follows: let yN = yN,1, and for each n ≥ N , let yn+1 be
one of the elements of xn,1, . . . , xn,N minimizing |xn,i − yn|. We claim
that (yn)n≥N is a Cauchy sequence, and that the limit y has the desired
properties.

For each n ≥ N , let Sn be the set of roots of fn(X) counted with
multiplicities. For n ≥ N , we have

|fn+1(yn)− fn(yn)| = |fn+1(yn)| =
∏

x∈Sn+1

∣∣∣1− yn
x

∣∣∣
=

N∏
i=1

∣∣∣∣1− yn
xn+1,i

∣∣∣∣ =
N∏
i=1

|xn+1,i − yn| ≥ |yn+1 − yn|N .

Rewriting this, we have

|yn+1 − yn|N ≤ |an+1y
n+1
n | = |an+1|.

By hypothesis, |an| → 0 as n→∞. This shows that the sequence (yn)
is in fact a Cauchy sequence. Let y ∈ Ω be its limit.
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We have f(y) = limn fn(y). On the other hand, we have

|fn(y)| = |fn(y)− fn(yn)| = |y − yn|

∣∣∣∣∣
n∑
i=1

ai
yi − yin
y − yn

∣∣∣∣∣ .
Now, (yi − yin)/(y − yn) = (yi−1 + yi−2yn + · · · + yi−1

n ) has norm ≤ 1,
by the ultrametric inequality. Using that |ai| ≤ 1 for each i gives
that |fn(y)| ≤ |y − yn|, which tends to 0 as n tends to infinity. Thus
f(y) = 0. This concludes the proof. �

Lemma 6.2. Suppose that f(α) = 0, and that

g(X) = (1−X/α)−1f(X) = (1 +X/α + (X/α)2 + . . . )f(X).

Then g(X) converges on D(|α|).

Proof. Let fn(X) = 1 +
∑n

i=1 aiX
i, as above. We have

bi = 1/αi + a1/α
i−1 + · · ·+ ai−1/α + ai,

hence biαi = fi(α). But |fi(α)| → 0 as i→∞, and thus g(α) converges.
�

Weierstrass factorization.

Lemma 6.3. There exists a power series g(X) ∈ 1 + XΩ[[X]] such
that f(X)g(X) = 1. Suppose that the slopes of the Newton polygon of
f are strictly greater than λ. Then the same is true of g. In particular,
f and g both converge in the closed disk D(pλ) and are non-zero there.

Proof. We write g(X) = 1+
∑∞

i=0 biX
i. In order to have f(X)g(X) = 1

as formal power series, we must have for each i

bi = −(bi−1a1 + · · ·+ b1ai−1 + ai).

This allows us to solve for the bi inductively, so we find that g(X) exists
as a formal power series.

For the second part of the lemma, we may suppose after scaling that
λ = 0. The hypotheses of the theorem imply that for each i, ordp ai > 0,
and ordp ai → ∞ as i → ∞. We must show that the same is true of
the bi. The fact that ordp bi > 0 for each i follows by induction from
the above relation.

We now show that ordp bi →∞ as i→∞. FixM > 0, and choosem
such that for all i > m, ordp ai > M . Let ε = min(ordp a1, . . . , ordp am).
I claim that for all i > nm, we have ordp bi > min(M,nε). In particular,
when i > mM/ε, ordp bi > M . Thus the claim implies the lemma.
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We prove the claim by induction on n, the case n = 0 being trivial.
Suppose we’ve proven the claim for n− 1. We write

bi = −(bi−1a1 + · · ·+ bi−mam︸ ︷︷ ︸
ordp>min(M,(n−1)ε)+ε

+ bi−m−1am+1 + · · ·+ ai︸ ︷︷ ︸
ordp>M

).

The result follows. �

Theorem 6.4. Let f(X) = 1 +
∑∞

i=0 aiX
i, and suppose that f con-

verges on the closed disk D(pλ). Let N be the total length of all segments
of N(f) of slope ≤ λ. (We suppose in particular that N is finite).

Then there exists a unique polynomial h(X) ∈ 1 + XΩ[X] of degree
N and g(X) ∈ 1 + XΩ[[X]] convergent and non-zero in D(pλ) such
that h(X) = f(X)g(X).

Moreover, N(h) is equal to the part of N(f) between 0 and (N, ordp aN).

Proof. We induct on N . The case N = 0 is the lemma above. Suppose
that the theorem has been proven in the case N − 1, and let λ1 ≤
λ be the first slope of f . By lemma 6.1, there exists α ∈ Ω with
ordp 1/α = λ1 and f(α) = 0. Let f1(X) = (1 − X/α)−1f(X). Thus
f1(X) converges on the disk D(|α|) = D(pλ1).

Write c = 1/α, so that f(X) = (1− cX)f1(X). Let f ′1(X) have first
slope λ′1. If λ′1 < λ1, then f1(X) has a root of slope λ′1, and hence so
does f . But the previous lemma shows that f(X) has no zeroes in the
disk D(λ−1 ), so this is impossible. Thus λ′1 ≥ λ1.

We can now apply the lemma from last time, relating N(f) and
N(f1). This says that N(f) is obtained from N(f1) by translating by
(1, λ1) and joining the points (0, 0) and (1, λ1). By induction, there
exists a polynomial h1(X) of degree N − 1 and a power series g(X),
convergent and non-vanishing in D(pλ), such that

h1(X) = f1(X)g(X).

Setting h(X) = (1− cX)h1(X), we have

h(X) = f(X)g(X).

This h satisfies the hypothesis of the theorem. �

Corollary 6.5. (1) Suppose that the slope λ of f has finite length
N . Then there are exactly N values of x such that f(x) = 0
and ordp 1/x = λ (counting multiplicities).

(2) Suppose that f(X) has infinite radius of convergence (i.e. f(x)
converges for any x ∈ Ω. In this case we sometimes say that f
is entire). Then for any C, there exist only finitely many values
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of x with |x| ≤ C and f(x) = 0. Moreover, ordering the zeroes
xn of f to have increasing norm, we have

f(X) =
∞∏
i=1

(
1− X

xn

)
.

Remark 2. Compare the above corollary with the Weierstrass factor-
ization theorem, valid over C.

Paper topics. The aim is to give a 5-10 page exposition and a 30-45
minute lecture on one of the following topics.

(1) The connections with global arithmetic. Let F be a finite ex-
tension of Q (a number field). Then F has a canonical ‘ring of
integers’ OF ⊂ F , which plays an analogous role in the study
of F to that of Z in the study of Q. In particular, prime ideals
of OF give rise to norms on F , and completing with respect to
one of these gives extensions of Qp (the so-called local fields as-
sociated to the ‘global field’ F ). There is a connection between
the local and global Galois groups.

(2) The Hasse principle. Consider a quadratic form f(x1, . . . , xr) =
a1x

2
1 + · · · + arx

2
r, with coefficients in the field Q. Does there

exist a rational solution to the equation f(x1, . . . , xr) = 0? If
this is true then there will certainly exist solutions in Qp for
every prime p (and in R). The Hasse principle states that the
converse holds: if f = 0 has a solution in every ‘local’ field,
then it has a solution ‘globally’ (i.e. in Q).

(3) The p-adic interpolation of the Riemann zeta function. The
Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns

is an analytic function of a complex variable, defined a priori
only where the above series converges (namely, when the real
part of s is > 1). However, it admits an analytic continuation
to the whole of C, and the properties of this continuation are
intimately tied up with the distribution of the primes.

It is a remarkable fact that the values of ζ at negative in-
tegers enjoy p-adic continuity properties, and in fact can be
interpolated to give a p-adic analytic avatar of the Riemann
zeta function.

(4) The ramification filtration. Let L/K be a Galois extension of
finite extensions of Qp. Then there is a canonical filtration of
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Gal(L/K) by normal subgroups, corresponding to the ramifi-
cation behaviour of the field. Each quotient is abelian, so this
shows that Gal(L/K) is always a soluble group.

Particularly interesting is that this filtration admits a modifi-
cation, making it stable under passage to quotient; in particular,
it induces a filtration of the absolute Galois group of K. There
is also a connection with local class field theory.

(5) The local Kronecker-Weber theorem. The Kronecker-Weber
theorem states that any abelian extension of Q (i.e. a Ga-
lois extension with abelian Galois group) is contained inside a
cyclotomic extension.

One way to prove this is by passing from the local Kronecker-
Weber theorem, which states the same thing for Qp. The proof
is a detailed study of the ramification properties of p-adic fields.

(6) Truncated exponential polynomials. The following theorem is
due to Schur:

Theorem 6.6. Let fn(x) = 1 + x + x2/2! + · · · + xn/n!. Let
L be the splitting field of f over Q. Then the Galois group of
L/Q is An if 4 | n and Sn otherwise.

Coleman has given a nice proof using Newton polygons and
a simple result relating local and global Galois groups, along
with some results on the distributions of the primes.

Exercises to lecture 6.
(1) Choose a topic to write a paper on.

Lecture 7

Systems of equations and algebraic varieties. Let F a field and
F its algebraic closure. We are interested in the sets of solutions to
polynomial equations over F .

Definition 7.1. Affine n-space over F is the set

An = {(y1, . . . , yn) ∈ F n}.

Let f(x1, . . . , xn) ∈ F [x1, . . . , xn]. The affine hypersurface defined by f
is

Hf = {(y1, . . . , yn) ∈ An such that f(y1, . . . , yn) = 0}.
If f1, . . . , fr ∈ F [x1, . . . , xn] then the affine algebraic variety defined by
these polynomials is

Hf1,...,fr = Hf1 ∩ · · · ∩Hfr .
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If H is an affine algebraic variety defined by f1, . . . , fr and F ′ is an
algebraic extension of F , we write

H(F ′) = H∩(F ′)n = {(y1, . . . , yn) ∈ (F ′)n such that f(y1, . . . , yn) = 0.}.

We will speak of Hf and Hf1,...,fr as being defined ‘over F ’.

Example. Let f(x1, x2) = x2
1 + x2

2 − 1, and let X = Hf . Then X(R) is
the unit circle, while X(C) can be put into bijection with the complex
plane.

Now let f(x, y) = y2− (x3− x), and take F = Fp. Then #Hf (Fp) is
related to the number of elements z of Fp such that z3 − z is a square.

From now on we will be considering the following question: Let
F = Fq, for some q, and let X be an affine algebraic variety over Fq.
Let Ns = #X(Fqs). How does Ns vary with s? A natural way to study
sequences of integers is via generating functions, which motivates the
following definition.

Definition 7.2. With notation as above, consider the formal power
series in the variable T

Z(X,T ) = exp

(
∞∑
s=1

NsT
s/s

)
.

This is called the zeta function of the algebraic variety X.

In general, there are several different possibilities for the generating
function of an integer sequence. We will see in a moment one reason
why this is the right choice.

Example. • Take X = An, affine n-space. Then Ns = An(Fqs) =
qns, and hence

Z(X,T ) = exp

(
∞∑
s=1

(qnT )s/s

)
= exp(− log(1− qnT )) =

1

1− qnT
.

• Let f(x, y) = y2− (x3− x), and let X = Hf . Suppose that p is
odd. Then we have

Ns = 3 + 2#{x ∈ F×qs such that x3 − x is a square}.
One can show by quite indirect means that

Z(X,T ) =
1− aT + qT 2

1− qT
= 1 + (q − a)T + q(1− a+ q)T 2 + . . .

for some a ∈ Z. In particular, N1 = q − a, and a and hence
Z(X,T ) are determined by N1. Thus all the numbers Ns, s ≥ 1
are determined by N1.
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• Let f(x) = xp + yp − 1, and X = Hf (the so-called Fermat
hypersurface). Then the coefficients of Z(X,T ) are related to
Gauss sums, although we won’t say how.

Remark 3. One game you can play is the following: let

f(x1, . . . , xn) ∈ Z[x1, . . . , xn].

Then, by reducing the coefficients of f modulo p, we obtain affine
hypersurfaces Hp over Fp for every prime p, and hence zeta functions
Z(Hp, T ). One can then form a ‘global’ zeta function

Z(f, s) =
∏
p

Z(Hp, p
−s),

where s is a complex variable. The most trivial example is when we
consider 0-dimensional affine space and take f to be the zero polyno-
mial, so all the hypersurfaces Hp consist of a single point. Specializing
the first example above to n = 0 gives Z(Hp, T ) = 1/(1−T ), and hence

Z(f, s) =
∏
p

1

1− p−s
.

In other words, we recover the Riemann zeta function. Taking more
interesting polynomials f gives rise to even more interesting complex
analytic functions. The fact that this works is one of the reasons for
defining Z(X,T ) in the way that we did.

More on zeta functions. One elementary property is the following.

Proposition 7.3. Let X be an algebraic variety over Fq. Then the
coefficients of Z(X,T ) are positive integers.

Proof. Note that Gs = Gal(Fq/Fqs) acts on X, with XGs = X(Fqs).
Let Y = X/G1. Given [x] ∈ Y , we write deg[x] = #[x] for the size of
the Galois orbit of x. Note that if x ∈ X(Fqs)−X(Fqt) for every t | s
then deg[x] = s.

We single out the contribution of [x] to Z(X,T ). Let deg[x] = t.
Then the contribution of [x] to Ns is t if t | s and 0 otherwise, so the
contribution to the zeta function is

exp

(
∞∑
j=1

tT jt/jt

)
= exp(− log(1− T t)) =

1

1− T t
.

Thus we can write

Z(X,T ) =
∏

[x]∈Y

1

1− T deg[x]
=
∏

[x]∈Y

(
1 + T deg[x] + T 2 deg[x] + . . .

)
.
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The result follows. (Note that the product on the right makes sense
since, for any give N , there are only finitely many terms in the product
with T j for j ≤ N). �

Proposition 7.4. Suppose that X is an algebraic variety over Fq, con-
tained in An. Then the coefficient of T j in Z(X,T ) is at most qnj.

Proof. We saw above that

Z(An, T ) =
1

1− qnT
=
∞∑
j=1

qnjT j.

The fact that Ns ≤ #An(Fqs) for every s implies the corresponding
result for the coefficients of Z(X,T ) and Z(An, T ), so the result follows.

�

Rationality of the zeta function. The most important basic prop-
erty of the zeta function is the following.

Theorem 7.5 (Dwork). Let X be an affine algebraic variety over Fq.
Then Z(X,T ) is a rational function (i.e. it is the power series expan-
sion of a rational function of T ), with coefficients in Q.

To give you an idea of the importance of this for the numbers Ns,
we give the following equivalent formulation.

Theorem 7.6. Let X be an affine algebraic variety over Fq. Then
there exist sets of algebraic numbers {α1, . . . , αt}, {β1, . . . , βu} which
are invariant under Galois conjugation and such that

Ns =
t∑
i=1

αsi −
u∑
j=1

βsj , for every s ≥ 1.

Corollary 7.7. Suppose that the degree of the numerator and denom-
inator of Z(X,T ) are bounded by N . Then the numbers Ns, s ≥ 1, are
completely determined by the Ns for s = 1, . . . , 2N .

We are going to dedicate the rest of our time to proving this theorem.
Here is a sketch of the proof:

(1) Reduction to the case where X is an affine hypersurface. One
can show that if Y1, Y2 ⊂ X are algebraic varieties with Y1∪Y2 =
X and Y1 ∩ Y2 = W , say, then

Z(X,T ) =
Z(Y1, T ) · Z(Y2, T )

Z(W,T )
.

An easy induction argument then allows us to reduce to the case
where X is an affine hypersurface, defined by a single equation
in An.
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(2) A theorem of Borel and Dwork. We will prove the following
result of quite independent interest:

Theorem 7.8. Let F (T ) = 1 +
∑∞

j=1 AjT
j be a power series

with integer coefficients, and let p be a prime. Suppose that
there exist r, R > 0 such that rR > 1 and
• F is meromorphic in the disk |z| < R in C.
• F is meromorphic in the disk |z| < r in Ω.

Then F is the power series expansion of a rational function of
T .

(We recall that a holomorphic function in a disk |z| < A
is one defined by a convergent power series in that disk. A
meromorphic function in a disk is one that can we written as a
quotient of two holomorphic functions in the disk).

(3) As we saw above, the coefficients of Z(X,T ) are majorized by
those of Z(An, T ) = 1/(1− qnT ), a function which is certainly
meromorphic in C. Thus it will suffice to exhibit Z(X,T ) as
a meromorphic p-adic function, after which we will apply the
above theorem.

A rationality criterion. The following is the first stepping stone to
part 2 of the plan above.

Theorem 7.9. Let K be a field, and let F (T ) =
∑∞

i=0 aiT
i. For m, s ≥

0, let As,m be the m+ 1×m+ 1 matrix

As,m =


as as+1 as+2 . . . as+m
as+1 as+2 as+3 . . . as+m+1

as+2 as+3 as+4 . . . as+m+2
...

...
... . . . ...

as+m as+m+1 as+m+2 . . . as+2m

 .

Let Ns,m = detAs,m. Then F (T ) is a rational function if and only if
there exist M,S ≥ 0 such that Ns,M = 0 whenever s ≥ S.

Proof. First we prove sufficiency. Write F (T ) = P (T )/Q(T ), where
P (T ) = b0 + b1T + · · · + bNT

N and Q(T ) = c0 + c1T + · · · + cMT
M .

Then Q(T ) · F (T ) = P (T ), and comparing coefficients of the degree i
term gives

M∑
j=0

ai−M+jcM−j = 0
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for i sufficiently large. In other words, we have

ascM + as+1cM−1 + · · ·+ as+Mc0 = 0
as+1cM + as+2cM−1 + · · ·+ as+M+1c0 = 0

...
as+McM + as+M+1cM−1 + · · ·+ as+2Mc0 = 0,

for s sufficiently large. This shows that Ns,M = 0 for s sufficiently
large.

Suppose conversely that there exist M,S as in the statement of the
theorem. Suppose that M is chosen to be minimal with respect to
the property that Ns,M = 0 for all sufficiently large s. We claim that
Ns,M−1 6= 0 for all s ≥ S.

Suppose for contradiction that this was not the case, so thatNs,M−1 =
Ns,M = 0. Let r0, . . . , rM be the rows of As,M . Some linear combination
of r0, . . . , rM−1 vanishes, except for possibly the last column, say

αkrk + αk+1rk+1 + · · ·+ αM−1rM−1,

with αk 6= 0. Performing some row operations on As,M , we can replace
rk by

rk + 1/αk(αk+1rk+1 + · · ·+ αM−1rM−1).

Suppose that k > 0. Then the matrix As,M looks like

as as+1 . . . as+M
as+1 as+2 . . . as+m+1
...

...
...

0 0 . . . β
...

...
...

as+M as+M+1 . . . as+2M


.

The lower left m×m matrix has determinant Ns+1,M−1 = 0.
Similarly, when k = 0 we can check thatNs+1,M−1 = 0. By induction,

we have Ns,M−1 = 0 for all s ≥ S, contradicting the minimality of M .
Thus for all s ≥ S, we have Ns,M = 0 and Ns,M−1 6= 0. In particular,

there exists a linear combination of the rows of As,M which is zero, and
in which the coefficient of the last row is non-zero, hence the last row
of As,M is a linear combination of the preceding M rows.

It follows that any solution (u0, . . . , uM) to the equations

aSuM + aS+1uM−1 + · · ·+ aS+Mu0 = 0
...

aS+M−1uM + aS+MuM−1 + · · ·+ aS+2M−1u0 = 0
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is also a solution to
asuM + as+1uM−1 + · · ·+ as+Mu0 = 0

for every s ≥ S. This says that(
M∑
i=0

uiT
i

)(
∞∑
j=1

ajT
j

)
is a polynomial, so we’re done.

�

Exercises to lecture 7.
(1) Read Section V.1 of the course text.
(2) Prove the equivalence between Theorems 7.5 and 7.6.
(3) Deduce Corollary 7.7 from Theorem 7.5.
(4) Prove the formula above relating the zeta functions of X, Y1, Y2

and W , and use it to show that Dwork’s theorem for affine
hypersurfaces implies it for all affine algebraic varieties.

(5) Let f(x, y) = y2 − (x3 − x), and compute Z(Hf , T ) over Fp for
p = 3, 5, 7.

(6) (Not to be taken too seriously) Read the following blog post for
another perspective on the information contained in a state-
ment of the form ‘the generating function of this sequence is
rational/algebraic/. . . ’.

(7) Try exercises V.1.14 and V.1.15 of the course text.

Lecture 8

Rationality of p-adic power series. Last time we stated the follow-
ing theorem:

Theorem 8.1. Let K be a field, and let F (T ) =
∑∞

i=0 aiT
i. For m, s ≥

0, let As,m be the m+ 1×m+ 1 matrix

As,m =


as as+1 as+2 . . . as+m
as+1 as+2 as+3 . . . as+m+1

as+2 as+3 as+4 . . . as+m+2
...

...
... . . . ...

as+m as+m+1 as+m+2 . . . as+2m

 .

Let Ns,m = detAs,m. Then F (T ) is a rational function if and only if
there exist M,S ≥ 0 such that Ns,M = 0 whenever s ≥ S.

We would like to turn this into an effective way of recognising when a
power series is a rational function in disguise. (A more general version
of this result was stated last time).

http://sbseminar.wordpress.com/2010/02/11/christols-theorem-and-the-cartier-operator/
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Theorem 8.2. Let F (T ) = 1 +
∑∞

i=1 aiT
i be a power series, and sup-

pose that the ai are integers. Suppose that F defines a holomorphic
function in the disk |z| < R in C and an entire meromorphic function
in Ω (i.e. F is the quotient of two entire holomorphic functions in Ω).
Then F is the power series expansion of a rational function.

Proof. We can suppose R < 1. We apply the Weierstrass preparation
theorem. For any r > 0, we can write B(T ) = A(T ) · F (T ), where
A is a polynomial and B is a power series such that both B(T ) and
1/B(T ) are holomorphic and non-vanishing in the disk |x| ≤ r. Write
B(T ) = 1 +

∑∞
i=1BiT

i, A(T ) = 1 + A1T + · · ·+ AeT
e.

Let As,m and Ns,m be as defined above. Note that Ns,m is an integer.
Equating coefficients in B = AF , we have

Bs+e = as+e + A1as+e−1 + · · ·+ Aeas.

Choose m > 2e. Then the above equation shows that after doing some
column operations, we can replace all but the first e columns of the
matrix As,m by the columns of the matrix (Bs+i+j)i,j. Hence

|Ns,m|p ≤
(

max
j≥s+e

|Bj|p
)m+1−e

< r−s(m+1−e),

for s sufficiently large. Taking r = 1/
√
R, this gives |Ns,m|p < Rs(m+2).

But we have also

|Ns,m|∞ < (m+ 1)!R−1/2(m+1)(m+2s),

for s sufficiently large, and so

|Ns,m|∞|Ns,m|p < (m+1)!Rs(m+2)−1/2(m+1)(m+2s) = (m+1)!Rs− 1
2
m(m+1),

and this expression tends to 0 as s tends to infinity. But the only
integer n with |n|∞|n|p < 1 is 0, so Ns,m = 0 for s sufficiently large.
Applying the previous theorem now gives the result. �

p-adic interpolation. The above result reduces Dwork’s theorem to
showing that the zeta function of an affine hypersurface Xf ⊂ An over
Fq is actually p-adic meromorphic. Our approach to this is based on
the following observation: for each s, An(Fsq) is a group, so it makes
sense to take the (discrete) Fourier transform of the indicator function
of Xf (Fsq), which can be viewed as taking values in Ω. We hope that
this setup will give rise to a p-adic analytic function. This motivates
the constructions of this lecture.

Let ε ∈ Ω be a pth root of unity. If q = ps, we write tr : Fq → Fp for
the natural trace map, and a 7→ εtr a for the induced character

Fq → Fp → Ω×.
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We would like to find a p-adic power series Θ(T ) whose value at [a],
a ∈ Fp, is εa. More generally, for a ∈ Fq we’d like

εtr a = Θ([a])Θ([ap]) . . .Θ([a]p
s−1

).

(Recall that [·] denotes the Teichmuller digits, the natural section Fq →
Ω of the reduction map, and that these respect multiplication).

Henceforth let a ∈ Fq and t = [a] ∈ Ω. Let λ = ε− 1. A natural first
guess for Θ is the series

g(T ) = (1 + λ)T =
∞∑
i=0

T (T − 1) . . . (T − i+ 1)

i!
λi.

However, for t 6∈ Zp, we have

ordp
t(t− 1) . . . (t− i+ 1)

i!
λi = i ordp λ−

i− Si
p− 1

=
Si

p− 1
,

and this does not tend to infinity, so the series does not converge!
To get around this we introduce the following formal power series in

two variables

F (X, Y ) = (1+Y )X×(1+Y p)(Xp−X)/p×· · ·×(1+Y pn)(Xpn−Xpn−1
)/pn×. . .

(Here (1 + Y )X =
∑∞

i=0
Y (Y−1)...(Y−i+1)

i!
X i.) This series is contrived to

satisfy the hypotheses of the two-variable version of the following.

Lemma 8.3. Let F (X) = 1 +
∑∞

i=1 aiX
i, with ai ∈ Qp for each i.

Then ai ∈ Zp for each i if and only if F (Xp)/F (X)p ∈ 1 + pXZp[[X]].

Proof. Suppose that F (X) ∈ 1 + XZp[[X]]. Then we have F (X)p =
F (Xp) + pG(X), for some G(X) ∈ XZp[[X]], hence F (Xp)/F (X)p =
1− pG(X)/F (X)p ∈ 1 + pXZp[[X]].

Suppose conversely that F (Xp) = F (X)pG(X), with G(X) ∈ 1 +
pXZp[[X]]. Let G(X) = 1 +

∑∞
i=1 biX

i. We prove by induction that
ai ∈ Zp.

Suppose ai ∈ Zp for i < n. Then equating the coefficients of Xn in
F (Xp) = F (X)pG(X) gives

an/p if p divides n
0 otherwise

}
= coefficient of Xn in

(
1 +

n∑
i=1

aiX
i

)p(
1 +

n∑
i=1

biX
i

)
.

Re-arranging gives pan as a sum of terms in pZp, hence an ∈ Zp. �

Let F (X, Y ) =
∑
am,nX

nY m. We calculate:

F (Xp, Y p)

F (X, Y )p
=

(1 + Y p)X
p
(1 + Y p2)(Xp2−Xp)/p(1 + Y p3)(Xp3−Xp2 )/p2 . . .

(1 + Y )pX(1 + Y p)Xp−X(1 + Y p2)(Xp2−Xp)/p
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=
(1 + Y p)X

(1 + Y )pX
.

We want to show that (1 + Y p)X/(1 + Y )pX lies in 1 + pXZp[[X, Y ]] +
pY Zp[[X, Y ]]. Let (1 + Y p)/(1 + Y )p = 1 + pY G(Y ), G(Y ) ∈ Zp[[Y ]].
Then we have

(1 + Y p)X

(1 + Y )pX
= (1+pY G(Y ))X =

∞∑
i=0

X(X − 1) . . . (X − i+ 1)

i!
(pY G(Y ))i.

Thus the hypotheses of the lemma are satisfied and we conclude F (X, Y ) ∈
Zp[[X, Y ]].

Now let us view F (X, Y ) =
∑∞

n=0 (Xn
∑∞

m=n am,nY
m) as a series in

X, with Y fixed. We take

Θ(T ) = F (T, λ) =
∞∑
n=0

anT
n.

Note that an =
∑∞

m=n am,nλ
m and hence ordp an ≥ n/(p − 1). In

particular, Θ(T ) converges in the open disk D(p1/(p−1),−).
Now let us consider once more the case where a ∈ Fq and t = [a] ∈ Ω

is the corresponding Teichmuller digit. For fixed s we consider the
formal power series

(1 + Y )t+t
p+···+tps−1

= F (t, Y )F (tp, Y ) . . . F (tp
s−1

, Y ).

(To see this identity, note that the right hand side is equal to

(1 + Y )t+t
p+···+tps−1

(1 + Y p)(tp
s−t)/p(1 + Y p2)(tp

s+1−tp)/p2 . . .

Substituting tps = t, we see that all terms except the first disappear).
Then

Θ(t)Θ(tp) . . .Θ(tp
s−1

) = F (t, λ)F (tp, λ) . . . F (tp
s−1

, λ)

= (1 + λ)t+t
p+···+tps−1

= εtr a,

which is what we wanted. We record this as a proposition.

Proposition 8.4. There exists a series Θ(T ) =
∑∞

n=0 anT
n which con-

verges in the open disk D(p1/(p−1),−) and such that for all a ∈ Fps, we
have

Θ([a])Θ([a]p) . . .Θ([a]p
s−1

) = εtr a.

Next time we will see how to glue these expressions into a single
p-adic analytic function, which will eventually lead to a description of
the zeta function as an entire meromorphic function.
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Exercises to lecture 8.
(1) Read section IV.2 of the course text.
(2) In this section is defined the Artin-Hasse exponential function

Ep(X). Compare with the power series F (X, Y ) defined above.
Use Dwork’s miracle lemma to give another proof, different to
the one in the book, that Ep(X) has coefficients in Zp.

(3) Give another proof, different to the one above, that F (X, Y ) has
coefficients in Zp, by expressing it in terms of the Artin-Hasse
exponential function.

(4) Compute the first p coefficients of the series Ep(X). What fact
in elementary number theory corresponds to the fact that the
Xp coefficient lies in Zp?

(5) In this lecture we made heavy use of the series

(1 +X)a =
∞∑
i=0

a(a− 1) . . . (a− i+ 1)

i!
X i

for a ∈ Ω. Show that when a ∈ Zp, the coefficients of this series
lie in Zp (and so in particular, it converges in the disk D(1−)).

Lecture 9

The space of overconvergent power series.

Definition 9.1. Let R = Ω[[X1, . . . , Xn]] be the space of formal power
series in n variables. We write

U = {(u1, . . . , un) | ∀i, ui ∈ Z≥0}.
If u = (u1, . . . , un) then we write |u| =

∑n
i=1 ui. Given G(X1, . . . , Xn) ∈

R, we can write

G(X1, . . . , Xn) = G(X) =
∑
u∈U

guX
u.

We write R0 ⊂ R for the space of overconvergent power series

R0 = {G(X) =
∑
u∈U

guX
u ∈ R | ∃M > 0, ordp gu ≥M |u|,∀u ∈ U}.

The point is that the power series in R0 converge in some disk strictly
containing the closed disk of radius 1. We note that R0 is closed un-
der multiplication, so is a subring of R. The ring R0 is important in
several places in p-adic analysis; for example, in Monsky-Washnitzer’s
overconvergent cohomology. One of the features that is important in
the background here is that it is actually a p-adic Fréchet space with a
natural Schauder basis, given by the monomials Xu; in particular this
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means that the constructions with trace and determinant given below
make sense.

We define several important operators on the space R0. First, let q
be a positive integer. We define Tq by

Tq

(∑
u∈U

guX
u

)
=
∑
u∈U

gquX
u.

If G(X) is an element of R0, then we also write G for the map R0 → R0

given by multiplication by G(X). We write Gq(X) = G(Xq). (Note
that in this case Gq(X) also lies in R0).

Finally, we write Ψq,G = Tq ◦G : R0 → R0.

Lemma 9.2. Let G(X) =
∑

u∈U guX
u. Then:

(1) Ψq,G(Xu) =
∑

v∈U gqv−uX
v.

(2) G ◦ Tq = Tq ◦Gq = Ψq,Gq .

Proof. For the first part, we have

Ψq,G(Xu) = Tq
∑
v∈U

gv−uX
v =

∑
v∈U

gqv−uX
v.

For the second, we have

G ◦ Tq(Xu) =

{
0 if q - u
G ·Xu/q if q | u ,

and in the latter case G · Xu/q =
∑

v∈U gvX
v+u/q =

∑
v∈U gv−u/qX

v,
while

Ψq,Gq(X
u) =

∑
v∈U

gv−u/qX
v.

(Note we are using the convention here that for v ∈ Qn ⊃ U , gv has its
usual meaning if v ∈ U and is zero otherwise). �

Trace and determinant.

Definition 9.3. Let A : R0 → R0 be a linear operator. Suppose that
A(Xu) =

∑
v∈U av,uX

v. Then we write

trA =
∑
u∈U

au,u

for the trace of A, when this sum exists.

We do not worry about the question of whether this is basis inde-
pendent here (although cf. the remarks above).
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Lemma 9.4. Let G(X) ∈ R0, and let Ψ = Ψq,G. Then tr Ψs converges
for each integer s ≥ 1 and we have

(qs − 1)n tr Ψs =
∑

x∈Ωn,xqs−1=1

G(x) ·G(xq) · · · · ·G(xq
s−1

),

where we write x = (x1, . . . , xn), 1 = (1, . . . , 1) and xqi = (xq
i

1 , . . . , x
qi

n ).

Proof. We first treat the case s = 1. Then the identity we want to
show is

(q − 1)n tr Ψ =
∑

x∈Ωn,xq−1=1

G(x).

By definition, we have

tr Ψ =
∑
u∈U

g(q−1)u,

and this sum exists since G ∈ R0. Recall that∑
xi∈Ω,xq−1

i =1

xwii =

{
q − 1 if q − 1 | wi
0 otherwise.

(This can be viewed as following from, for example, the orthogonality
of characters for the cyclic group of (q−1)st roots of unity in Ω). Hence
for w ∈ U , we have

∑
x∈Ωn,xq−1=1

xw =
n∏
i=1

 ∑
xq−1
i =1

xwii

 =

{
(q − 1)n if q − 1 | w
0 otherwise.

(We write xw here for the evaluation of Xw at the point x). Therefore∑
xq−1=1

G(x) =
∑
w∈U

gw
∑

xq−1=1

xw = (q − 1)n
∑
u∈U

g(q−1)u = (q − 1)n tr Ψ.

This proves the lemma in the case s = 1. For general s, we have by
the previous lemma

Ψs = Tq ◦G◦Tq ◦G◦Ψs−2 = Tq2 ◦G◦Gq ◦Ψs−2 = · · · = Ψqs,G·Gq ·····Gqs−1 .

Applying the above computation to this operator gives the result. �

Suppose that A = (ai,j) is a linear map Ωn → Ωn, and let T be an
independent variable. Then (1−AT ) is a matrix with entries in Ω[T ],
and we can form

det(1− AT ) =
n∑

m=0

bmT
m,
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where

bm = (−1)m
∑

1≤u1,...,um≤n
σ∈Sm

(
ε(σ)

m∏
i=1

aui,uσ(i)

)
.

In this case we also have the identity of formal power series

det(1− AT ) = exp

(
−
∞∑
s=1

trAsT s/s

)
.

This can be deduced as follows. We can suppose that A is upper-
triangular, with diagonal entries a1, . . . , an. Then the left hand side
here is

∏n
i=1(1− aiT ), while the right hand side is

exp

(
−
∞∑
s=1

n∑
i=1

asiT
s/s

)
= exp

(
n∑
i=1

log(1− aiT )

)
=

n∏
i=1

(1− aiT ).

Definition 9.5. Let A : R0 → R0 be a linear operator. Suppose that
A(Xu) =

∑
v∈U av,uX

v. Then we write det(1−AT ) for the formal series
∞∑
m=0

bmT
m,

where

bm = (−1)m
∑

u1,...,um∈U
σ∈Sm

(
ε(σ)

m∏
i=1

aui,uσ(i)

)
,

assuming that this sum exists.

The same remarks as above apply to the basis independence of this
definition.

Lemma 9.6. Suppose that Ψ = Ψq,G for some G ∈ R0. Then the for-
mal series det(1−ΨT ) exists, and has an infinite radius of convergence.
Moreover, we have the identity of formal power series

det(1−ΨT ) = exp

(
−
∞∑
s=1

tr ΨsT s/s

)
.

Proof. To show that det(1− ΨT ) exists, we must show that the sums
defining the coefficients bm converge. Since G =

∑
u∈U guX

u ∈ R0, we
can choose M > 0 with ordp gu ≥ M |u| for all u ∈ U . Hence for any
u1, . . . , um ∈ U , and any permutation σ of 1, . . . ,m, we have

ordp

(
gquσ(1)−u1 · gquσ(2)−u2 · · · · · gquσ(m)−um

)
≥M

(
|quσ(1) − u1|+ |quσ(2) − u2|+ · · ·+ |quσ(m) − um|

)
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≥M

(
m∑
i=1

q|uσ(i)| −
m∑
i=1

|ui|

)
= M(q − 1)

m∑
i=1

|ui|,

using that | · | is σ-invariant. Since there are only finitely many u ∈ U
with |u| less than a given amount, this shows that the bm and hence
the series det(1−ΨT ) exists.

This also shows that ordp bm → ∞ as m → ∞. In fact, we have
1/m ordp bm → ∞ as m → ∞, and this shows that det(1 − ΨT ) has
infinite radius of convergence (as if ordp x = λ then

ordp bmλ
m = m(1/m ordp bm + ordp λ),

and this tends to infinity with m). The final identity follows by passing
to the limit with respect to the version for finite matrices proved above.

�

A particular example. Recall the following from last time:

Proposition 9.7. There exists a series Θ(T ) =
∑∞

n=0 anT
n which con-

verges in the open disk D(p1/(p−1),−) and such that for all a ∈ Fps, we
have

Θ([a])Θ([a]p) . . .Θ([a]p
s−1

) = εtr a.

The following lemma will be essential.

Lemma 9.8. Let a ∈ D(1), and let w ∈ U . Then Θ(aXw) ∈ R0.

Proof. Recall that Θ(T ) = F (T, λ) =
∑

j ajT
j, where ordp aj ≥ j/(p−

1). We must find M > 0 such that if we write

G(X) = Θ(aXw) =
∑
j

aja
jXjw1

1 . . . Xjwn
n =

∑
u∈U

guX
u,

then ordp gu ≥ M |u| for all u ∈ U . Taking M = 1/(|w|(p − 1)) shows
that G ∈ R0. �

Next time we will apply the results of this and the previous lecture to
find an expression for the zeta function as an entire p-adic meromorphic
function.

Exercises to lecture 9.
(1) Prepare your talk for next week.

Lecture 10

This lecture we will finally give the proof of the following.

Theorem 10.1. Let X = Hf be an affine hypersurface over the finite
field Fq. Then the zeta function Z(X,T ) is a rational function.



44 P -ADIC ANALYSIS, P -ADIC ARITHMETIC

p-adic meromorphy. We begin by showing that Z(X,T ) defines an
entire meromorphic function in Ω. We can suppose that X ⊂ An. We
begin by inducting on n as follows: write

Z(X,T ) = exp

(
∞∑
s=1

NsT
s/s

)
,

where Ns = #X(Fqs). Define also

N ′s = #{(x1, . . . , xn) ∈ X(Fqs) | ∀i, xi 6= 0}

= #{(x1, . . . , xn) ∈ X | ∀i, xq
s−1
i = 1},

and

Z ′(T ) = exp

(
∞∑
s=1

N ′sT
s/s

)
.

Then we have Z(X,T ) = Z ′(T ) · exp (
∑∞

s=1(Ns −N ′s)T s/s) . Let Xi =
{(x1, . . . , xn) ∈ X | xi = 0}. This can be viewed as an affine hypersur-
face in An−1 (where we view An−1 ⊂ An as the co-ordinate hyperplane
defined by xi = 0). We have

N ′s = # (X(Fqs)− ∪ni=1Xi(Fqs)) .
By the inclusion-exclusion principle,

Ns −N ′s =
∑
i

#Xi(Fqs)−
∑
i<j

# (Xi ∩Xj) (Fqs)

+
∑
i<j<k

# (Xi ∩Xj ∩Xk) (Fqs)− . . . ,

and hence

exp

(
∞∑
s=1

(Ns −N ′s)T s/s

)
=

(
∏

i Z(Xi, T ))× . . .(∏
i<j Z(Xi ∩Xj, T )

)
× . . .

(Note that Xi∩Xj can be viewed as a hypersurface in An−2 ⊂ An, and
so on). So by induction on n, Z(X,T ) will define an entire meromorphic
function if the same is true for Z ′(T ).

Now let us write q = pr, and let ε be a primitive pth root of unity.
Recall that we have defined a power series Θ(T ), convergent in the
closed unit disk, such that for any a ∈ Fqs , t = [a], we have

εtr a = Θ(t) ·Θ(tp) · · · · ·Θ(tp
rs−1

).

Now here comes the clever bit: for u ∈ Fqs , we have the relation∑
x0∈Fqs

εtrx0u =

{
0 if u 6= 0
qs otherwise.
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This follows from orthogonality of characters for the abelian group Fqs .
Subtracting away the term x0 = 0, we have∑

x0∈F×qs

εtrx0u =

{
−1 if u 6= 0
qs − 1 otherwise.

Now apply this to u = f(x1, . . . , xn) and sum over F×qs to get the
following relation:∑

x0,...,xn∈F×qs

εtrx0f(x1,...,xn) = qsN ′s − (qs − 1)n.

Let F (X0, . . . , Xn) ∈ Ω[X0, . . . , Xn] be the polynomial whose coef-
ficients are the Teichmuller lifts of those of X0f(X1, . . . , Xn). Write
F (X) =

∑N
i=1 aiX

wi , for wi ∈ U , with ai = [bi], say. We then have

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈F×qs

N∏
i=1

εtr bix
wi

= (qs−1)n+
∑

x0,...,xn∈Ω

∀i,xq
s−1
i =1

N∏
i=1

(
Θ(aix

wi) ·Θ(apix
pwi) · · · · ·Θ(ap

rs−1

i xp
rs−1wi)

)
.

Now we define

G(X) = G(X0, . . . , Xn) =
N∏
i=1

Θ(aiX
wi)·Θ(apiX

pwi)·· · ··Θ(ap
r−1

i Xpr−1wi).

Recall from last time that for any a ∈ D(1) ⊂ Ω, w ∈ U , Θ(aXw) is
contained in the ring R0 of overconvergent power series. Thus the same
is true for G. In particular, the operator Ψ = Ψq,G defined last time
makes sense for this choice of G. This gives

qsN ′s = (qs − 1)n +
∑

x0,...,xn∈Ω

∀i,xq
s−1
i =1

N∏
i=1

(
G(x) ·G(xq) · · · · ·G(xq

s−1

)
)
.

= (qs − 1)n + (qs − 1)n+1 tr Ψs

and hence

N ′s =
n∑
i=0

(−1)n
(
n

i

)
qs(n−1−i) +

n+1∑
i=0

(−1)i
(
n+ 1

i

)
qs(n−i) tr Ψs.
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Finally, we define

∆(T ) = det(1−ΨT ) = exp

(
−
∞∑
s=1

tr ΨsT s/s

)
.

We saw last time that since G ∈ R0, ∆(T ) has in infinite radius of
convergence, so defines an entire holomorphic function. It follows that

Z ′(T ) = exp

(
∞∑
s=1

N ′sT
s/s

)

=
n∏
i=0

{
exp

(
∞∑
s=1

qs(n−1−i)T s/s

)}(−1)i(ni)

×
n+1∏
i=0

{
exp

(
∞∑
s=1

qs(n−i) tr ΨsT s/s

)}(−1)i(n+1
i )

=
n∏
i=0

(1− qn−1−iT )(−1)i(ni) ×
n+1∏
i=0

∆(qn−iT )(−1)i+1(n+1
i ).

The conclusion of the proof. We recall the rationality criterion
proved two lectures ago.

Theorem 10.2. Let F (T ) = 1 +
∑∞

i=1 aiT
i be a power series, and

suppose that the ai are integers. Suppose that F defines a holomorphic
function in the disk |z| < R in C and an entire meromorphic function
in Ω (i.e. F is the quotient of two entire holomorphic functions in Ω).
Then F is the power series expansion of a rational function.

We’ve seen that the series Z(X,T ) is a formal power series with
integer coefficients. The above shows that it defines an entire p-adic
meromorphic function. Finally, we recall that if we write

Z(X,T ) = 1 +
∞∑
i=1

aiT
i,

then 0 ≤ ai ≤ qni (since X is contained in An). It follows that Z(X,T )
defines a holomorphic function in the disk |z| < 1/qn in C, and the
above theorem applies. We conclude that Z(X,T ) is indeed a rational
function.

The Weil conjectures. We conclude by briefly putting the function
Z(X,T ) in a broader context. In fact, its rationality is only the first
in an array of amazing properties. Suppose now that X is a projective
variety of dimension n defined over Fq, and that it is non-singular.
(Projective varieties are discussed in Chapter V of the course text;
they play the role of compact objects in this setting. Non-singularity
is a mild non-degeneracy condition. Dimension is a measure of the
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number of independent parameters; thus a hypersurface in An will have
dimension n− 1. If you are not happy with these concepts, just think
of affine varieties and the results we state here will not be too far from
being true).

In 1949, Weil conjectured the following properties of Z(X,T ):
(1) Z(T ) is a rational function.
(2) Z satisfies a functional equation

Z(1/qnT ) = ±qnχ/2T χZ(T ),

where χ is the Euler characteristic of the variety X. (This
plays a very similar role to that of the Euler characteristic of a
topological space in algebraic topology).

(3) We can write

Z(T ) =
P1(T )P3(T ) . . . P2n−1(T )

P0(T )P2(T ) . . . P2n(T )
,

where P0(T ) = 1− T, P2n(T ) = 1− q2n(T ) and

Ph(T ) =

βh∏
i=1

(1− αh,iT ),

where the αh,i are algebraic integers of absolute value qh/2. The
numbers βh are called the Betti numbers of the variety X. They
should satisfy the relation

∑2n
i=0(−1)iβi = χ(X).

Weil was led to these conjectures by extensive calculations with Fer-
mat hypersurfaces and other varieties of interest related to Gauss sums.
He seems to have been motivated by a connection with algebraic topol-
ogy: indeed, one can view the above properties as corresponding to the
existence of the Lefschetz trace formula and Poincaré duality!

Most amazingly of all, suppose that e.g. X is a hypersurface in Pn
cut out by the reduction modulo p of a polynomial f(X0, . . . , Xn) ∈
Z[X0, . . . , Xn]. Then as well as the finite sets

X(Fps) = {(x0, . . . , xn) ∈ Fps | f(x0, . . . , xn) = 0}/ ∼
we have a complex manifold

X(C) = {(x0, . . . , xn) ∈ C | f(x0, . . . , xn) = 0}/ ∼ .

Then Weil conjectured that the Betti numbers of this complex manifold
are precisely the numbers βi defined above! Thus the topology of the
complex manifold X(C) determines the behaviour of the point counts
#X(Fps).

The first progress on these conjectures was made by Dwork, who
proved the rationality of Z(X,T ) in 1959 (and it is his proof we have
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given here). The rest of the conjectures had to wait until the construc-
tion by Grothendieck and Artin in the 1960’s of étale cohomology, a
cohomology theory that encapsulates both varieties over finite fields
and complex manifolds, as well as many things in between.

Exercises to lecture 10.
(1) For those interested in the history of mathematics: have a look

at Weil’s paper ‘Numbers of solutions of equations in finite
fields’, Bull. Amer. Math. Soc. Volume 55, Number 5 (1949),
497-508, and Dwork’s paper, ‘On the rationality of the zeta
function of an algebraic variety’, Amer. J. Math. 82 1960 631–
648.

(2) Prepare for your tomorrow or Wednesday!
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