
Math 3240 - Introduction to Number Theory Due by email
Problem Set 1 2/1/20 at noon

A month’s intelligent instruction in the theory of numbers ought to be twice as instructive,
twice as useful, and at least ten times as entertaining as the same amount of “calculus
for engineers.” G. H. Hardy

• Required Reading: “Pell’s Equation I,” “Division Theorem in Z and F [T ],” “Divisibility and
Greatest Common Divisors” and “Modular Arithmetic”.

• Optional: “Induction Examples”.

• At least two students in each homework group should work out numerical results separately
and then compare, as a check on each other’s work.

1. (Induction practice)

a) (10 pts) When a is odd, (a − 1)/2 is an integer. Prove by induction on r ≥ 2 that for all
odd numbers a1, a2, . . . , ar,

a1a2 · · · ar − 1

2
≡ a1 − 1

2
+

a2 − 1

2
+ · · ·+ ar − 1

2
mod 2.

This says the expression (a−1)/2, when thought of modulo 2, behaves like logarithms: products
go to sums! (Hint when r = 2: write a1 = 2k1 + 1 and a2 = 2k2 + 1 for integers k1 and k2.)

Note. If you are going to clear the denominator (which is not strictly necessary), be sure to
change the modulus too and prove the congruence for the new modulus, not for modulus 2.

Note. There are r terms in the product and in the sum, not 3 terms; the · · · on both sides
represents intermediate terms. It is insufficient to check only that the case r = 3 implies the
case r = 4. Theorem 4.2 of the induction handout is an example of induction on the number
of terms.

b) (10 pts) When a is odd, show (a2 − 1)/8 is an integer. Then prove by induction on r ≥ 2
that for all odd numbers a1, a2, . . . , ar,
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8
mod 2.

2. (Exploration)

a) (8 pts) The sequence (1, 2, 3, 4) has 4 different cyclic shifts: (1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2),
and (4, 1, 2, 3). But the sequence (1, 2, 1, 2) has the same length and only two different cyclic
shifts: (1, 2, 1, 2) and (2, 1, 2, 1). The sequence (1, 1, 1, 1) has the same length and only one
cyclic shift.

How many different cyclic shifts could a sequence of length 3 have? Of length 5? Of length 6?
Of length 9? Of length 10? Give explicit examples to illustrate what you find and formulate
a general conjecture for all lengths. (Don’t treat only the cases of length 3 and 5.)

b) (5 pts) Look at the handout “Decimal Data” on the course website and make conjectures
based on patterns you find. Some themes to consider are: for which b is the decimal expansion
of 1/b purely periodic, how is the period length of the decimal expansion for 1/b related to b
(particularly for 1/p when p is prime), and the different digit sequences in the periods of all
the reduced fractions with the same denominator (particularly prime denominators).

c) (5 pts) For each prime p = 2, 3, 5, . . . , 29 (that’s 10 primes), compute all the nonzero
squares modulo p and arrange your answers in a table with the squares for each modulus in
numerical order. (For example, by squaring every number modulo 7 and reducing the answer,
the nonzero squares modulo 7 are 1, 2, 4.) What do you notice about the number of nonzero
squares modulo p as p varies? Use a calculator or computer algebra system to assist you.



3. a) (5 pts) Use Euclid’s algorithm to compute the greatest common divisor of 5082 and 19943,
writing out every equation of the algorithm as in class and then explaining how the calculations
justify that the last nonzero remainder really is a greatest common divisor: why every common
divisor of 5082 and 19943 is a factor of the last nonzero remainder and, conversely, why the
last nonzero remainder is a common factor of 5082 and 19943.

b) (5 pts) Using part a and back-substitution, express (5082, 19943) in the form 5082x+19943y
for some integers x and y, (Wolfram Alpha will tell you an answer, as a check, but it won’t
carry out the back-substitution steps.)

c) (5 pts) Carry out Euclid’s algorithm for T 5 + T 4 + 1 and T 5 − 2T 2 − T − 1 in Q[T ] and
factor the greatest common divisor from each polynomial. (Remember the convention that
the gcd of two polynomials is always scaled to be monic, so it may not be the last nonzero
remainder in Euclid’s algorithm.)

4. Provide counterexamples to the following false statements about Z. (Don’t give examples,
only counterexamples!)

a) (3 pts) If a, b, and c are integers such that ax+by = c for some x and y in Z, then (a, b) = c.

b) (3 pts) When d is the greatest common divisor of a and b, a/d and b are relatively prime.
(Give 3 counterexamples.)

c) (3 pts) If a ≡ b mod m then a ≡ b mod 2m.

d) (3 pts) If ab is a perfect square in Z and a and b are relatively prime integers then a and
b are both perfect squares.

5. (Some gcd properties) Solve the following problems without using fractions, e.g., use Bezout’s
identity or that if a | bc in Z and (a, b) = 1 then a | c.
a) (5 pts) Using only the definition of greatest common divisor, prove that if a | b and (b, c) = 1
then (a, c) = 1.

b) (5 pts) If (a, b) = 1, show (a, bc) = (a, c) using Bezout’s identity. (Hint: show (a, bc) and
(a, c) divide each other.)

c) (5 pts) If a | bc, a | bd, and (c, d) = 1, show a | b using Bezout’s identity. (Warning. If
ax + by = c in Z, you can’t say right away that (a, b) = c.)

d) (5 pts) If ad = bc, (a, b) = 1, (c, d) = 1, and a, b, c, and d are all positive, show a = c and
b = d.

6. (Pell’s equation)

a) (5 pts) In class, simultaneous triangular and square numbers were related to positive integer
solutions of the equation x2−2y2 = 1. Adapt this method to show that a positive integer that
is both square and pentagonal leads to a positive integer solution of x2 − 6y2 = 1 where x is
odd and y is even.

b) (5 pts) Show every integral solution of x2 − 6y2 = 1 must have x odd and y even.

c) (5 pts) The first three positive integer solutions of x2 − 6y2 = 1 are (x, y) = (5, 2), (49, 20),
and (485, 198). Which of these lead to a simultaneous square and pentagonal number (not
all do!), and what numbers are they? (In your work, don’t confuse indices m and n with the
numbers Sm and Pn.)


