QUADRATIC INTEGERS

KEITH CONRAD

1. INTRODUCTION

Does uniqueness of prime factorization in \mathbf{Z} really need a proof? Isn't it just obvious? To show why this should not be accepted without proof, we will describe here number systems generalizing \mathbf{Z} where prime factorization is *not* unique. The prime factorization exists but some numbers can have essentially more than one prime factorization!

Definition 1.1. Let d be an integer that is not a perfect square. We set

$$\mathbf{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbf{Z}\}$$

and call such a set of numbers, for a specified choice of d, a set of quadratic integers.

Example 1.2. When d = -1, so $\sqrt{d} = i$, these quadratic integers are

$$\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}.$$

These are complex numbers whose real and imaginary parts are integers. Examples include 4 - i and 7 + 8i.

Example 1.3. When d = 2, $\mathbf{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbf{Z}\}$. Examples include $3 + \sqrt{2}$ and $1 - 4\sqrt{2}$.

We can add, subtract, and multiply in $\mathbf{Z}[\sqrt{d}]$, and the results are again in $\mathbf{Z}[\sqrt{d}]$:

$$(a + b\sqrt{d}) + (a' + b'\sqrt{d}) = (a + a') + (b + b')\sqrt{d}, (a + b\sqrt{d}) - (a' + b'\sqrt{d}) = (a - a') + (b - b')\sqrt{d}, (a + b\sqrt{d})(a' + b'\sqrt{d}) = (aa' + dbb') + (ab' + ba')\sqrt{d}.$$

For example, in $\mathbb{Z}[\sqrt{5}]$, $(2+3\sqrt{5})(4-\sqrt{5}) = 8 - 2\sqrt{5} + 12\sqrt{5} - 15 = -7 + 10\sqrt{5}$.

2. The Norm on $\mathbf{Z}[\sqrt{d}]$

Before we define primes in $\mathbf{Z}[\sqrt{d}]$ we will explain how to measure the size of a number in $\mathbf{Z}[\sqrt{d}]$. In \mathbf{Z} , size is measured by the absolute value. For polynomials in $\mathbf{Q}[T]$ or $\mathbf{R}[T]$, size is measured by the degree regardless of how big or small the coefficients are. In $\mathbf{Z}[\sqrt{d}]$, size will be measured by the absolute value of the norm. What's the norm?

Definition 2.1. For $\alpha = a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, its *norm* is the product

$$N(\alpha) = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2$$

Example 2.2. In $\mathbf{Z}[i]$, $N(a + bi) = a^2 + b^2$. In $\mathbf{Z}[\sqrt{2}]$, $N(a + b\sqrt{2}) = a^2 - 2b^2$. In $\mathbf{Z}[\sqrt{-2}]$, $N(a+b\sqrt{-2}) = a^2 + 2b^2$. In $\mathbf{Z}[\sqrt{3}]$, $N(a+b\sqrt{3}) = a^2 - 3b^2$. In $\mathbf{Z}[\sqrt{-3}]$, $N(a+b\sqrt{-3}) = a^2 + 3b^2$.

KEITH CONRAD

Quadratic integers may be irrational or not even real, but their norm is always a plain integer, e.g., $N(7 + 4\sqrt{2}) = 49 - 2 \cdot 16 = 17$ and $N(1 + 2\sqrt{5}) = 1 - 5 \cdot 4 = -19$. For $m \in \mathbb{Z}$, $N(m) = m^2$. In particular, N(1) = 1.

Here is the key algebraic property of norms.

Theorem 2.3. The norm is multiplicative: for α and β in $\mathbb{Z}[\sqrt{d}]$, $N(\alpha\beta) = N(\alpha)N(\beta)$.

Proof. Write $\alpha = a + b\sqrt{d}$ and $\beta = a' + b'\sqrt{d}$. Then $\alpha\beta = (aa' + dbb') + (ab' + ba')\sqrt{d}$. We now compute $N(\alpha)N(\beta)$ and $N(\alpha\beta)$:

$$N(\alpha)N(\beta) = (a^2 - db^2)(a'^2 - db'^2) = (aa')^2 - d(ab')^2 - d(ba')^2 + d^2(bb')^2$$

and

$$\begin{split} \mathrm{N}(\alpha\beta) &= (aa' + dbb')^2 - d(ab' + ba')^2 \\ &= (aa')^2 + 2aa'bb'd + (dbb')^2 - d(ab')^2 - 2aa'bb'd - d(ba')^2 \\ &= (aa')^2 + (dbb')^2 - d(ab')^2 - d(ba')^2 \\ &= (aa')^2 + d^2(bb')^2 - d(ab')^2 - d(ba')^2. \end{split}$$

The two results agree, so $N(\alpha\beta) = N(\alpha) N(\beta)$.

When d > 0, $N(a + b\sqrt{d}) = a^2 - db^2$ might be negative (e.g., $N(\sqrt{2}) = -2 < 0$). When d < 0, so -d > 0, $N(a+b\sqrt{d}) = a^2 - db^2$ is never negative (e.g., $N(a+b\sqrt{-2}) = a^2 + 2b^2 \ge 0$). Since a notion of size should be $be \ge 0$ and norms might be negative (if d > 0), we will use $|N(\alpha)|$ rather than $N(\alpha)$ as the measure of how "big" a quadratic integer $\alpha \in \mathbb{Z}[\sqrt{d}]$ is.

Example 2.4. In $\mathbb{Z}[\sqrt{2}]$, check $N(7 + 6\sqrt{2}) = -23$ and $N(11 + 7\sqrt{2}) = 23$, so $7 + 6\sqrt{2}$ and $11 + 7\sqrt{2}$ both have absolute norm 23. This is analogous to two different polynomials having the same degree.

Remark 2.5. Unlike polynomials, for which there are examples of degree n for all $n \ge 1$, not every positive integer is the absolute norm of a quadratic integer in $\mathbb{Z}[\sqrt{d}]$. For example, in $\mathbb{Z}[i]$ we have $N(a + bi) = a^2 + b^2$, so while 1 = N(1) and 2 = N(1 + i), there is nothing in $\mathbb{Z}[i]$ with norm 3. There are also no numbers in $\mathbb{Z}[i]$ with norm 6, 7, or 11.

3. PRIMES AND PRIME FACTORIZATION IN $\mathbf{Z}[\sqrt{d}]$

To define prime elements in $\mathbb{Z}[\sqrt{d}]$, which should have only "trivial factors," we want to define what the trivial factors of a quadratic integer are. This would be analogous to the trivial factors of an integer n being ± 1 and $\pm n$.

One source of trivial factors are the invertible numbers in $\mathbb{Z}[\sqrt{d}]$, also called the *units* of $\mathbb{Z}[\sqrt{d}]$: if uv = 1 in $\mathbb{Z}[\sqrt{d}]$, so u and v are inverses of each other, then for every $\alpha \in \mathbb{Z}[\sqrt{d}]$ we have $\alpha = u(v\alpha)$, so every unit in $\mathbb{Z}[\sqrt{d}]$ is a factor of α . Also $\alpha = (u\alpha)v$, so every unit multiple of α is a factor of α .

Example 3.1. In $\mathbb{Z}[\sqrt{3}]$, $2 + \sqrt{3}$ is a unit since $(2 + \sqrt{3})(2 - \sqrt{3}) = 1$, so for every α in $\mathbb{Z}[\sqrt{3}]$ we have $\alpha = (2 + \sqrt{3})((2 - \sqrt{3})\alpha)$: all numbers in $\mathbb{Z}[\sqrt{3}]$ are divisible by $2 + \sqrt{3}$.

Definition 3.2. For nonzero $\alpha \in \mathbb{Z}[\sqrt{d}]$, we call α prime if α is not a unit and its only factors are units and unit multiples of α .

We call α composite if it is not a unit and not prime: α has a factor other than a unit or a unit multiple of α .

 $\mathbf{2}$

Theorem 3.3. Let α be nonzero in $\mathbb{Z}[\sqrt{d}]$.

(1) α is a unit if and only if $|N(\alpha)| = 1$.

(2) α is composite if and only if there is a factorization $\alpha = \beta \gamma$ where $|N(\beta)| < |N(\alpha)|$ and $|N(\gamma)| < |N(\alpha)|$.

The first property is saying units are the nonzero elements of smallest possible absolute norm. The second property is saying that, in terms of size (the absolute norm), a number in $\mathbb{Z}[\sqrt{d}]$ is composite precisely when it has a factorization into two parts that both have smaller size than the original number.

Proof. Set $\alpha = a + b\sqrt{d}$, where a and b are in **Z**. Then $|N(\alpha)| = 1 \iff N(\alpha) = \pm 1$.

(1) First suppose $N(\alpha) = \pm 1$. Then $(a + b\sqrt{d})(a - b\sqrt{d}) = \pm 1$. If $(a + b\sqrt{d})(a - b\sqrt{d}) = 1$ then $a + b\sqrt{d}$ has inverse $a - b\sqrt{d}$. If $(a + b\sqrt{d})(a - b\sqrt{d}) = -1$ then $a + b\sqrt{d}$ has inverse $-(a - b\sqrt{d})$.

For the converse direction, suppose $\alpha \in \mathbb{Z}[\sqrt{d}]$ is invertible, say $\alpha\beta = 1$ for some β in $\mathbb{Z}[\sqrt{d}]$. Taking the norm of both sides of the equation $\alpha\beta = 1$, we find $N(\alpha)N(\beta) = 1$. This is an equation in \mathbb{Z} , so $N(\alpha) = \pm 1$.

(2) Suppose α is composite, so there is a factor β of α that is not a unit or a unit multiple of α . Let γ be the complementary factor of β in α , so $\alpha = \beta \gamma$. Since β is not a unit, $|N(\beta)| > 1$. If γ were a unit then $\beta = \alpha \gamma^{-1}$, so β would be a unit multiple of α , and that's a contradiction. Thus γ is not a unit in $\mathbb{Z}[\sqrt{d}]$, so $|N(\gamma)| > 1$. From $|N(\alpha)| = |N(\beta)N(\gamma)| = |N(\beta)||N(\gamma)|$ with both $|N(\beta)|$ and $|N(\gamma)|$ greater than 1, each is also less than $|N(\alpha)|$.

Conversely, suppose $\alpha = \beta \gamma$ in $\mathbb{Z}[\sqrt{d}]$ where $|N(\beta)| < |N(\alpha)|$ and $|N(\gamma)| < |N(\alpha)|$. We have $|N(\alpha)| = |N(\beta)||N(\gamma)|$, so if β were a unit we'd have $|N(\alpha)| = |N(\gamma)|$, which is not true. Thus β is not a unit. If β were a unit multiple of α , say $\beta = u\alpha$, then $|N(\beta)| = |N(u)||N(\alpha)| = |N(\alpha)|$, which is not true either. Thus β is a factor of α that is not a unit or a unit multiple of α , so α is composite in $\mathbb{Z}[\sqrt{d}]$.

Example 3.4. Since $2 + \sqrt{3}$ is a unit in $\mathbb{Z}[\sqrt{3}]$, with inverse $2 - \sqrt{3}$, a trivial factorization of $5 + 2\sqrt{3}$ is

$$5 + 2\sqrt{3} = (2 + \sqrt{3})(4 - \sqrt{3})$$

since the first factor is a unit.

Example 3.5. A non-trivial factorization of 11 in $\mathbb{Z}[\sqrt{3}]$ is $(2\sqrt{3}+1)(2\sqrt{3}-1)$ since both factors have norm -11. How interesting: 11 is prime in \mathbb{Z} but it is composite in $\mathbb{Z}[\sqrt{3}]$.

The following test for primality in $\mathbf{Z}[\sqrt{d}]$, using the norm, provides a way to generate many primes in $\mathbf{Z}[\sqrt{d}]$ if we can recognize primes in \mathbf{Z} .

Theorem 3.6. For $\alpha \in \mathbb{Z}[\sqrt{d}]$, if $|N(\alpha)|$ is a prime number then α is prime in $\mathbb{Z}[\sqrt{d}]$.

Proof. Set $p = |N(\alpha)|$. Since this is not 1, α is not a unit. We will show α is not composite either, and thus α is prime.

Suppose α is composite, so $\alpha = \beta \gamma$ in $\mathbb{Z}[\sqrt{d}]$ where $|N(\beta)| < |N(\alpha)|$ and $|N(\gamma)| < |N(\alpha)|$. Taking absolute norms of both sides of $\alpha = \beta \gamma$, we have $p = |N(\beta)||N(\gamma)|$. This is an equation in the positive integers, and p is a prime number, so either $|N(\beta)|$ or $|N(\gamma)|$ is p. That contradicts $|N(\beta)| < p$ and $|N(\gamma)| < p$.

KEITH CONRAD

Example 3.7. We saw in Example 2.4 that $7+6\sqrt{2}$ and $11+7\sqrt{2}$ both have absolute norm 23, so they are each prime in $\mathbb{Z}[\sqrt{2}]$. More prime elements of $\mathbb{Z}[\sqrt{2}]$ are $1+3\sqrt{2}$, $1-2\sqrt{2}$, $3+\sqrt{2}$, $-5+\sqrt{2}$, and $5+2\sqrt{2}$ since each of their absolute norms is a prime number.

WARNING. The converse of Theorem 3.6 is *false*: a quadratic integer can be prime without having a prime norm. For instance, it can be shown that 3 is prime in $\mathbf{Z}[i]$ even though its norm is 9 and $3 + \sqrt{5}$ is prime in $\mathbf{Z}[\sqrt{5}]$ even though its norm is 4.

Theorem 3.8. Every $\alpha \in \mathbb{Z}[\sqrt{d}]$ with $|N(\alpha)| > 1$ is a product of primes in $\mathbb{Z}[\sqrt{d}]$.

Proof. Use strong induction on $|N(\alpha)|$. This is analogous to the proof by strong induction on the degree that every nonconstant polynomial in $\mathbf{Q}[T]$ or $\mathbf{R}[T]$ is a product of irreducibles. Details are left to the reader. A new phenomenon in $\mathbf{Z}[\sqrt{d}]$ is that not all positive integers are absolute norms; skip over them in the induction.

Proving a prime factorization exists in $\mathbb{Z}[\sqrt{d}]$ is completely different from actually finding it. For example, in $\mathbb{Z}[\sqrt{5}]$ what is a prime factorization of $7 + \sqrt{5}$? It's not clear at all how to find it! We know it exists thanks to Theorem 3.8, but explicitly finding a prime factorization requires more techniques than we have developed here.

Definition 3.9. We say $\mathbf{Z}[\sqrt{d}]$ has unique factorization if whenever

$$p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$$

for prime quadratic integers p_i and q_j in $\mathbb{Z}[\sqrt{d}]$, we have r = s and, after rearranging terms, $p_i = u_i q_i$ for all i, where u_i is a unit of $\mathbb{Z}[\sqrt{d}]$.

Having "uniqueness" of prime factorization in $\mathbf{Z}[\sqrt{d}]$ be about matching different primes up to unit multiples is analogous to matching irreducibles in $\mathbf{Q}[T]$ up to constant multiples.

Example 3.10. The following equation shows $\mathbf{Z}[\sqrt{-3}]$ does *not* have unique factorization: (3.1) $2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$

We will show 2, $1+\sqrt{-3}$, and $1-\sqrt{-3}$ are all prime in $\mathbb{Z}[\sqrt{-3}]$. The numbers 2, $1+\sqrt{-3}$, and $1-\sqrt{-3}$ all have norm 4. If a number in $\mathbb{Z}[\sqrt{-3}]$ with norm 4 is composite, it has a factor with norm 2 (not -2; why?). That means we can solve $x^2 + 3y^2 = 2$ in integers x and y, which we plainly can't. So every number in $\mathbb{Z}[\sqrt{-3}]$ with norm 4 is prime in $\mathbb{Z}[\sqrt{-3}]$.

The number 2 is not a unit multiple of $1 \pm \sqrt{-3}$ since $(1 \pm \sqrt{-3})/2$ is not in $\mathbb{Z}[\sqrt{-3}]$. Thus (3.1) is an example of nonunique factorization.

Example 3.11. The following equation shows $\mathbf{Z}[\sqrt{5}]$ does *not* have unique factorization:

(3.2)
$$2 \cdot 2 = (\sqrt{5} + 1)(\sqrt{5} - 1).$$

The factors here have absolute norm 4, so if any are composite they have a factor of absolute norm 2. Then we can solve $x^2 - 5y^2 = \pm 2$ for some $x, y \in \mathbb{Z}$, but this is impossible because it reduces modulo 5 to $x^2 \equiv \pm 2 \mod 5$, which has no solution!

Could 2 be a unit multiple of $\sqrt{5} \pm 1$? No, since the ratio $(\sqrt{5} \pm 1)/2$ is not in $\mathbb{Z}[\sqrt{5}]$. Thus (3.2) is an example of nonunique factorization.

Here are more examples of nonunique prime factorization among quadratic integers:

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \text{ in } \mathbf{Z}[\sqrt{-5}],$$

$$3 \cdot 3 \cdot 3 \cdot 3 = (5 + 2\sqrt{-14})(5 - 2\sqrt{-14}) \text{ in } \mathbf{Z}[\sqrt{-14}]$$

4