
QUADRATIC INTEGERS

KEITH CONRAD

1. Introduction

Does uniqueness of prime factorization in Z really need a proof? Isn’t it just obvious? To
show why this should not be accepted without proof, we will describe here number systems
generalizing Z where prime factorization is not unique. The prime factorization exists but
some numbers can have essentially more than one prime factorization!

Definition 1.1. Let d be an integer that is not a perfect square. We set

Z[
√
d] = {a+ b

√
d : a, b ∈ Z}

and call such a set of numbers, for a specified choice of d, a set of quadratic integers.

Example 1.2. When d = −1, so
√
d = i, these quadratic integers are

Z[i] = {a+ bi : a, b ∈ Z}.

These are complex numbers whose real and imaginary parts are integers. Examples include
4− i and 7 + 8i.

Example 1.3. When d = 2, Z[
√

2] = {a + b
√

2 : a, b ∈ Z}. Examples include 3 +
√

2 and
1− 4

√
2.

We can add, subtract, and multiply in Z[
√
d], and the results are again in Z[

√
d]:

(a+ b
√
d) + (a′ + b′

√
d) = (a+ a′) + (b+ b′)

√
d,

(a+ b
√
d)− (a′ + b′

√
d) = (a− a′) + (b− b′)

√
d,

(a+ b
√
d)(a′ + b′

√
d) = (aa′ + dbb′) + (ab′ + ba′)

√
d.

For example, in Z[
√

5], (2 + 3
√

5)(4−
√

5) = 8− 2
√

5 + 12
√

5− 15 = −7 + 10
√

5.

2. The Norm on Z[
√
d]

Before we define primes in Z[
√
d] we will explain how to measure the size of a number in

Z[
√
d]. In Z, size is measured by the absolute value. For polynomials in Q[T ] or R[T ], size

is measured by the degree regardless of how big or small the coefficients are. In Z[
√
d], size

will be measured by the absolute value of the norm. What’s the norm?

Definition 2.1. For α = a+ b
√
d ∈ Z[

√
d], its norm is the product

N(α) = (a+ b
√
d)(a− b

√
d) = a2 − db2.

Example 2.2. In Z[i], N(a+ bi) = a2 + b2. In Z[
√

2], N(a+ b
√

2) = a2 − 2b2. In Z[
√
−2],

N(a+b
√
−2) = a2+2b2. In Z[

√
3], N(a+b

√
3) = a2−3b2. In Z[

√
−3], N(a+b

√
−3) = a2+3b2.
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Quadratic integers may be irrational or not even real, but their norm is always a plain
integer, e.g., N(7 + 4

√
2) = 49− 2 · 16 = 17 and N(1 + 2

√
5) = 1− 5 · 4 = −19. For m ∈ Z,

N(m) = m2. In particular, N(1) = 1.
Here is the key algebraic property of norms.

Theorem 2.3. The norm is multiplicative: for α and β in Z[
√
d], N(αβ) = N(α) N(β).

Proof. Write α = a+ b
√
d and β = a′ + b′

√
d. Then αβ = (aa′ + dbb′) + (ab′ + ba′)

√
d. We

now compute N(α) N(β) and N(αβ):

N(α) N(β) = (a2 − db2)(a′2 − db′2) = (aa′)2 − d(ab′)2 − d(ba′)2 + d2(bb′)2

and

N(αβ) = (aa′ + dbb′)2 − d(ab′ + ba′)2

= (aa′)2 + 2aa′bb′d+ (dbb′)2 − d(ab′)2 − 2aa′bb′d− d(ba′)2

= (aa′)2 + (dbb′)2 − d(ab′)2 − d(ba′)2

= (aa′)2 + d2(bb′)2 − d(ab′)2 − d(ba′)2.

The two results agree, so N(αβ) = N(α) N(β). �

When d > 0, N(a + b
√
d) = a2 − db2 might be negative (e.g., N(

√
2) = −2 < 0). When

d < 0, so −d > 0, N(a+b
√
d) = a2−db2 is never negative (e.g., N(a+b

√
−2) = a2+2b2 ≥ 0).

Since a notion of size should be be ≥ 0 and norms might be negative (if d > 0), we will use

|N(α)| rather than N(α) as the measure of how “big” a quadratic integer α ∈ Z[
√
d] is.

Example 2.4. In Z[
√

2], check N(7 + 6
√

2) = −23 and N(11 + 7
√

2) = 23, so 7 + 6
√

2
and 11 + 7

√
2 both have absolute norm 23. This is analogous to two different polynomials

having the same degree.

Remark 2.5. Unlike polynomials, for which there are examples of degree n for all n ≥ 1,
not every positive integer is the absolute norm of a quadratic integer in Z[

√
d]. For example,

in Z[i] we have N(a+ bi) = a2 + b2, so while 1 = N(1) and 2 = N(1 + i), there is nothing in
Z[i] with norm 3. There are also no numbers in Z[i] with norm 6, 7, or 11.

3. Primes and prime factorization in Z[
√
d]

To define prime elements in Z[
√
d], which should have only “trivial factors,” we want to

define what the trivial factors of a quadratic integer are. This would be analogous to the
trivial factors of an integer n being ±1 and ±n.

One source of trivial factors are the invertible numbers in Z[
√
d], also called the units of

Z[
√
d]: if uv = 1 in Z[

√
d], so u and v are inverses of each other, then for every α ∈ Z[

√
d]

we have α = u(vα), so every unit in Z[
√
d] is a factor of α. Also α = (uα)v, so every unit

multiple of α is a factor of α.

Example 3.1. In Z[
√

3], 2 +
√

3 is a unit since (2 +
√

3)(2 −
√

3) = 1, so for every α in
Z[
√

3] we have α = (2 +
√

3)((2−
√

3)α): all numbers in Z[
√

3] are divisible by 2 +
√

3.

Definition 3.2. For nonzero α ∈ Z[
√
d], we call α prime if α is not a unit and its only

factors are units and unit multiples of α.
We call α composite if it is not a unit and not prime: α has a factor other than a unit or

a unit multiple of α.
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Theorem 3.3. Let α be nonzero in Z[
√
d].

(1) α is a unit if and only if |N(α)| = 1.
(2) α is composite if and only if there is a factorization α = βγ where |N(β)| < |N(α)|

and |N(γ)| < |N(α)|.

The first property is saying units are the nonzero elements of smallest possible absolute
norm. The second property is saying that, in terms of size (the absolute norm), a number

in Z[
√
d] is composite precisely when it has a factorization into two parts that both have

smaller size than the original number.

Proof. Set α = a+ b
√
d, where a and b are in Z. Then |N(α)| = 1⇐⇒ N(α) = ±1.

(1) First suppose N(α) = ±1. Then (a+ b
√
d)(a− b

√
d) = ±1. If (a+ b

√
d)(a− b

√
d) = 1

then a + b
√
d has inverse a − b

√
d. If (a + b

√
d)(a − b

√
d) = −1 then a + b

√
d has inverse

−(a− b
√
d).

For the converse direction, suppose α ∈ Z[
√
d] is invertible, say αβ = 1 for some β in

Z[
√
d]. Taking the norm of both sides of the equation αβ = 1, we find N(α) N(β) = 1. This

is an equation in Z, so N(α) = ±1.
(2) Suppose α is composite, so there is a factor β of α that is not a unit or a unit

multiple of α. Let γ be the complementary factor of β in α, so α = βγ. Since β is not
a unit, |N(β)| > 1. If γ were a unit then β = αγ−1, so β would be a unit multiple

of α, and that’s a contradiction. Thus γ is not a unit in Z[
√
d], so |N(γ)| > 1. From

|N(α)| = |N(β) N(γ)| = |N(β)||N(γ)| with both |N(β)| and |N(γ)| greater than 1, each is
also less than |N(α)|.

Conversely, suppose α = βγ in Z[
√
d] where |N(β)| < |N(α)| and |N(γ)| < |N(α)|.

We have |N(α)| = |N(β)||N(γ)|, so if β were a unit we’d have |N(α)| = |N(γ)|, which
is not true. Thus β is not a unit. If β were a unit multiple of α, say β = uα, then
|N(β)| = |N(u)||N(α)| = |N(α)|, which is not true either. Thus β is a factor of α that is

not a unit or a unit multiple of α, so α is composite in Z[
√
d]. �

Example 3.4. Since 2 +
√

3 is a unit in Z[
√

3], with inverse 2−
√

3, a trivial factorization
of 5 + 2

√
3 is

5 + 2
√

3 = (2 +
√

3)(4−
√

3)

since the first factor is a unit.

Example 3.5. A non-trivial factorization of 11 in Z[
√

3] is (2
√

3 + 1)(2
√

3− 1) since both
factors have norm −11. How interesting: 11 is prime in Z but it is composite in Z[

√
3].

The following test for primality in Z[
√
d], using the norm, provides a way to generate

many primes in Z[
√
d] if we can recognize primes in Z.

Theorem 3.6. For α ∈ Z[
√
d], if |N(α)| is a prime number then α is prime in Z[

√
d].

Proof. Set p = |N(α)|. Since this is not 1, α is not a unit. We will show α is not composite
either, and thus α is prime.

Suppose α is composite, so α = βγ in Z[
√
d] where |N(β)| < |N(α)| and |N(γ)| < |N(α)|.

Taking absolute norms of both sides of α = βγ, we have p = |N(β)||N(γ)|. This is an
equation in the positive integers, and p is a prime number, so either |N(β)| or |N(γ)| is p.
That contradicts |N(β)| < p and |N(γ)| < p. �
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Example 3.7. We saw in Example 2.4 that 7+6
√

2 and 11+7
√

2 both have absolute norm
23, so they are each prime in Z[

√
2]. More prime elements of Z[

√
2] are 1 + 3

√
2, 1− 2

√
2,

3 +
√

2, −5 +
√

2, and 5 + 2
√

2 since each of their absolute norms is a prime number.

WARNING. The converse of Theorem 3.6 is false: a quadratic integer can be prime
without having a prime norm. For instance, it can be shown that 3 is prime in Z[i] even
though its norm is 9 and 3 +

√
5 is prime in Z[

√
5] even though its norm is 4.

Theorem 3.8. Every α ∈ Z[
√
d] with |N(α)| > 1 is a product of primes in Z[

√
d].

Proof. Use strong induction on |N(α)|. This is analogous to the proof by strong induction on
the degree that every nonconstant polynomial in Q[T ] or R[T ] is a product of irreducibles.

Details are left to the reader. A new phenomenon in Z[
√
d] is that not all positive integers

are absolute norms; skip over them in the induction. �

Proving a prime factorization exists in Z[
√
d] is completely different from actually finding

it. For example, in Z[
√

5] what is a prime factorization of 7+
√

5? It’s not clear at all how to
find it! We know it exists thanks to Theorem 3.8, but explicitly finding a prime factorization
requires more techniques than we have developed here.

Definition 3.9. We say Z[
√
d] has unique factorization if whenever

p1p2 · · · pr = q1q2 · · · qs
for prime quadratic integers pi and qj in Z[

√
d], we have r = s and, after rearranging terms,

pi = uiqi for all i, where ui is a unit of Z[
√
d].

Having “uniqueness” of prime factorization in Z[
√
d] be about matching different primes

up to unit multiples is analogous to matching irreducibles in Q[T ] up to constant multiples.

Example 3.10. The following equation shows Z[
√
−3] does not have unique factorization:

(3.1) 2 · 2 = (1 +
√
−3)(1−

√
−3).

We will show 2, 1+
√
−3, and 1−

√
−3 are all prime in Z[

√
−3]. The numbers 2, 1+

√
−3,

and 1 −
√
−3 all have norm 4. If a number in Z[

√
−3] with norm 4 is composite, it has a

factor with norm 2 (not −2; why?). That means we can solve x2 +3y2 = 2 in integers x and
y, which we plainly can’t. So every number in Z[

√
−3] with norm 4 is prime in Z[

√
−3].

The number 2 is not a unit multiple of 1 ±
√
−3 since (1 ±

√
−3)/2 is not in Z[

√
−3].

Thus (3.1) is an example of nonunique factorization.

Example 3.11. The following equation shows Z[
√

5] does not have unique factorization:

(3.2) 2 · 2 = (
√

5 + 1)(
√

5− 1).

The factors here have absolute norm 4, so if any are composite they have a factor of absolute
norm 2. Then we can solve x2− 5y2 = ±2 for some x, y ∈ Z, but this is impossible because
it reduces modulo 5 to x2 ≡ ±2 mod 5, which has no solution!

Could 2 be a unit multiple of
√

5 ± 1? No, since the ratio (
√

5 ± 1)/2 is not in Z[
√

5].
Thus (3.2) is an example of nonunique factorization.

Here are more examples of nonunique prime factorization among quadratic integers:

2 · 3 = (1 +
√
−5)(1−

√
−5) in Z[

√
−5],

3 · 3 · 3 · 3 = (5 + 2
√
−14)(5− 2

√
−14) in Z[

√
−14].
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