QUADRATIC INTEGERS

KEITH CONRAD

1. INTRODUCTION

Does uniqueness of prime factorization in Z really need a proof? Isn’t it just obvious? To
show why this should not be accepted without proof, we will describe here number systems
generalizing Z where prime factorization is not unique. The prime factorization exists but
some numbers can have essentially more than one prime factorization!

Definition 1.1. Let d be an integer that is not a perfect square. We set
ZIVd = {a+bVd:a,bec Z}
and call such a set of numbers, for a specified choice of d, a set of quadratic integers.
Example 1.2. When d = —1, so v/d = i, these quadratic integers are
Zji]={a+bi:abeZ}.

These are complex numbers whose real and imaginary parts are integers. Examples include
4—1¢and 7+ 8.

Example 1.3. When d = 2, Z[v2] = {a + bv/2 : a,b € Z}. Examples include 3 + v/2 and
1—-4v2.

We can add, subtract, and multiply in Z[/d], and the results are again in Z[v/d)]:
(a+0Vd)+ (d +VVd) = (a+d)+ (b+V)Vd,
(a+bVd) — (d +VVd) = (a—d)+ (b—V)Vd,
(a+bVd)(d +VVd) = (ad + dbb) + (ab’ + ba')Vd.
For example, in Z[v/5], (2 +3v5)(4 — v/5) =8 — 2v/5 + 12v/5 — 15 = —7 + 10V/5.

2. THE NORM ON Z[Vd]

Before we define primes in Z[v/d] we will explain how to measure the size of a number in
Z[\/d). In Z, size is measured by the absolute value. For polynomials in Q[T or R[T], size
is measured by the degree regardless of how big or small the coefficients are. In Z[\/&], size
will be measured by the absolute value of the norm. What’s the norm?

Definition 2.1. For a = a + bV/d € Z[\/d], its norm is the product
N(a) = (a + bVd)(a — bVd) = a* — db*.

Example 2.2. In Z[i], N(a + bi) = a? + b*. In Z[\f] N(a + bv/2) = a® — 202, In Z[/—2],
N(a+byv/—2) = a®+2b%. In Z[v/3], N(a+bV/3 ) = a?-3b%. In Z[\/-3], N(a+bv/—=3) = a®>+3b?.
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Quadratic integers may be irrational or not even real, but their norm is always a plain
integer, e.g., N(7+4v2) =49 —2-16 =17 and N(1+2v5) =1 —-5-4 = —19. For m € Z,
N(m) = m?2. In particular, N(1) = 1.

Here is the key algebraic property of norms.

Theorem 2.3. The norm is multiplicative: for o and § in Z[\V/d], N(af) = N(a) N(B).

Proof. Write a = a +bvV/d and B = a’ + ¥V/d. Then af = (aa’ + dbV') + (ab + ba')v/d. We
now compute N(«) N(8) and N(af3):

N(a)N(B) = (a® — db?*)(a® — db'?) = (ad')* — d(ab')? — d(ba’)? + d*(bb')?
and
N(af) = (ad' + dbb')* — d(ab' + ba')?
= (ad)? + 2ad'bb'd + (dbV')? — d(ab')? — 2aa’bb'd — d(ba’)?
(aad")? + (dbb')? — d(ab')? — d(ba')*
a’)”+
(

/

= (ad")? + d*(bV')? — d(ab)? — d(ba)?.
The two results agree, so N(af) = N(a) N(f). O

When d > 0, N(a + bv/d) = a? — db? might be negative (e.g., N(v/2) = —2 < 0). When
d < 0,50 —d > 0, N(a+bvd) = a®—db? is never negative (e.g., N(a+by/—2) = a®+2b* > 0).
Since a notion of size should be be > 0 and norms might be negative (if d > 0), we will use
| N(c)| rather than N(a) as the measure of how “big” a quadratic integer o € Z[/d] is.

Example 2.4. In Z[/2], check N(7 4 61/2) = —23 and N(11 + 7/2) = 23, so 7 + 6+/2
and 11 4+ 7v/2 both have absolute norm 23. This is analogous to two different polynomials
having the same degree.

Remark 2.5. Unlike polynomials, for which there are examples of degree n for all n > 1,
not every positive integer is the absolute norm of a quadratic integer in Z[\/&] For example,
in Z[i] we have N(a + bi) = a® + b2, so while 1 = N(1) and 2 = N(1 + i), there is nothing in
Z[i] with norm 3. There are also no numbers in Z[i] with norm 6, 7, or 11.

3. PRIMES AND PRIME FACTORIZATION IN Z[v/d]

To define prime elements in Z[v/d], which should have only “trivial factors,” we want to
define what the trivial factors of a quadratic integer are. This would be analogous to the
trivial factors of an integer n being +1 and =£n.

One source of trivial factors are the invertible numbers in Z[v/d], also called the units of
Z[Vd]: if wv = 1 in Z[V/d], so u and v are inverses of each other, then for every a € Z[V/d]
we have a = u(va), so every unit in Z[v/d] is a factor of a. Also a = (ua)v, so every unit
multiple of « is a factor of a.

Example 3.1. In Z[v/3], 2 + /3 is a unit since (2 + v/3)(2 — V/3) = 1, so for every « in
Z[/3] we have o = (2 4+ v/3)((2 — V/3)a): all numbers in Z[v/3] are divisible by 2 + /3.

Definition 3.2. For nonzero o € Z[/d], we call a prime if a is not a unit and its only
factors are units and unit multiples of «.

We call o composite if it is not a unit and not prime: « has a factor other than a unit or
a unit multiple of «.
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Theorem 3.3. Let a be nonzero in Z[V/d).

(1) « is a unit if and only if | N(a)| = 1.

(2) « is composite if and only if there is a factorization oo = B~y where |N(B)| < | N(«)]
and [N(7)| < |N(a)].

The first property is saying units are the nonzero elements of smallest possible absolute
norm. The second property is saying that, in terms of size (the absolute norm), a number
in Z[\/Zﬂ is composite precisely when it has a factorization into two parts that both have
smaller size than the original number.

Proof. Set o = a + bv/d, where a and b are in Z. Then |N(a)| = 1 <= N(a) = £1.

(1) First suppose N(a) = £1. Then (a+bvd)(a—bVd) = £1. If (a+bVd)(a —bVd) = 1
then a + bv/d has inverse a — b\/d. If (a + b\/ﬁ)(a — b\/&) — —1 then a + bv/d has inverse
—(a — bVd).

For the converse direction, suppose a € Z[\/&] is invertible, say a8 = 1 for some ( in
Z[\/d]. Taking the norm of both sides of the equation a8 = 1, we find N(a) N(3) = 1. This
is an equation in Z, so N(«a) = £1.

(2) Suppose « is composite, so there is a factor S of a that is not a unit or a unit
multiple of a. Let v be the complementary factor of 5 in «, so a = fv. Since 8 is not
a unit, |[N(B)] > 1. If v were a unit then 8 = ay~!, so 8 would be a unit multiple
of a, and that’s a contradiction. Thus v is not a unit in Z[v/d], so |[N(v)| > 1. From
IN(a)| = [N(B)N(7y)| = |N(B)|| N(7)| with both |N(8)| and |N(~)| greater than 1, each is
also less than | N(a)|.

Conversely, suppose a = (v in Z[v/d] where |N(8)| < |N(a)| and |N(v)| < |N(a)|.
We have |N(a)| = | N(B)||N(vy)], so if 8 were a unit we’d have | N(a)| = |N(v)|, which

is not true. Thus § is not a unit. If 8 were a unit multiple of «, say 8 = wua, then
IN(B)| = | N(u)|| N(a)] = |N(«x)|, which is not true either. Thus § is a factor of « that is
not a unit or a unit multiple of «, so a is composite in Z[/d). O

Example 3.4. Since 2 + /3 is a unit in Z[\/g], with inverse 2 — /3, a trivial factorization
of 5+ 2v/3 is
5+2V3=(2+V3)(4—-V3)

since the first factor is a unit.

Example 3.5. A non-trivial factorization of 11 in Z[v/3] is (2v/3 4+ 1)(2v/3 — 1) since both
factors have norm —11. How interesting: 11 is prime in Z but it is composite in Z[v/3].

The following test for primality in Z[v/d], using the norm, provides a way to generate
many primes in Z[\/&] if we can recognize primes in Z.

Theorem 3.6. For o € Z[\V/d], if |N(a)| is a prime number then « is prime in Z[\/d.

Proof. Set p = |N(«)|. Since this is not 1, v is not a unit. We will show « is not composite
either, and thus « is prime.

Suppose « is composite, so o = B in Z[v/d] where | N(3)| < | N(a)| and |N(v)| < | N(a)|.
Taking absolute norms of both sides of « = (7, we have p = |N(3)||N(v)|. This is an
equation in the positive integers, and p is a prime number, so either |N(3)| or | N(v)| is p.
That contradicts |N(3)| < p and | N(vy)| < p. O
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Example 3.7. We saw in Example 2.4 that 7+ 6+/2 and 11 +7+v/2 both have absolute norm
23, so they are each prime in Z[v/2]. More prime elements of Z[/2] are 1+ 3v/2, 1 — 2v/2,
3+ \/5, -5+ \/5, and 5 + 2v/2 since each of their absolute norms is a prime number.

WARNING. The converse of Theorem 3.6 is false: a quadratic integer can be prime
without having a prime norm. For instance, it can be shown that 3 is prime in Z[i] even
though its norm is 9 and 3 + +/5 is prime in Z[v/5] even though its norm is 4.

Theorem 3.8. Every o € Z[/d] with |[N(«)| > 1 is a product of primes in Z[\/d].

Proof. Use strong induction on | N(a)|. This is analogous to the proof by strong induction on
the degree that every nonconstant polynomial in Q[T] or R[T] is a product of irreducibles.
Details are left to the reader. A new phenomenon in Z[+/d] is that not all positive integers
are absolute norms; skip over them in the induction. O

Proving a prime factorization exists in Z[v/d] is completely different from actually finding
it. For example, in Z[v/5] what is a prime factorization of 7++/5? It’s not clear at all how to
find it! We know it exists thanks to Theorem 3.8, but explicitly finding a prime factorization
requires more techniques than we have developed here.

Definition 3.9. We say Z[v/d] has unique factorization if whenever
pip2:-Pr=aq192° - 9gs

for prime quadratic integers p; and ¢; in Z[\/Zﬂ, we have r = s and, after rearranging terms,
p; = u;q; for all 4, where u; is a unit of Z[\/g]

Having “uniqueness” of prime factorization in Z[\/&] be about matching different primes
up to unit multiples is analogous to matching irreducibles in Q[T] up to constant multiples.

Example 3.10. The following equation shows Z[v/—3] does not have unique factorization:
(3.1) 2.2=(1+v/-3)(1-V=3).

We will show 2, 14++/—3, and 1—+/—3 are all prime in Z[v/—3|. The numbers 2, 1++/—3,
and 1 — /-3 all have norm 4. If a number in Z[\/—3] with norm 4 is composite, it has a
factor with norm 2 (not —2; why?). That means we can solve z2 +3y? = 2 in integers x and
y, which we plainly can’t. So every number in Z[y/—3]| with norm 4 is prime in Z[v/—3].

The number 2 is not a unit multiple of 1 £ 1/—3 since (1 £+/—3)/2 is not in Z[/—3].
Thus (3.1) is an example of nonunique factorization.

Example 3.11. The following equation shows Z[v/5] does not have unique factorization:
(3.2) 2-2=(V54+1)(V5-1).

The factors here have absolute norm 4, so if any are composite they have a factor of absolute
norm 2. Then we can solve z? — 5y? = +2 for some z,y € Z, but this is impossible because
it reduces modulo 5 to 22 = +2 mod 5, which has no solution!

Could 2 be a unit multiple of v/5 4 1?7 No, since the ratio (v/5 & 1)/2 is not in Z[/5].
Thus (3.2) is an example of nonunique factorization.

Here are more examples of nonunique prime factorization among quadratic integers:
2-3 = (1+v-5)(1—-+v-5) in Z[V-5],
3:3:3-3 = (5+2vV-14)(5—2v—14) in Z[V—-14].
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