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1. Introduction

Mathematical induction is a method that allows us to prove infinitely many similar
assertions in a systematic way, by organizing the results in a definite order and showing

• the first assertion is correct (“base case”)
• whenever an assertion in the list is correct (“inductive hypothesis”), prove the next

assertion in the list is correct (“inductive step”).

This tells us every assertion in the list is correct, which is analogous to falling dominos. If
dominos are close enough and each domino falling makes the next domino fall, then after
the first domino falls all the dominos will fall.

The most basic results that are proved by induction are summation identities, such as

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
for all positive integers n.

Proofs of summation identities are not how proofs by induction usually look: we can’t
always convert a previously settled case into the next case by “doing something to both
sides.” The inductive hypothesis (that is, the assumed truth of previously settled cases) has
to help us derive the next case by some method, and that method may or may not start
with the inductive hypothesis itself.

Here we will discuss a particular example of identities proved by induction that are not
like summation identities: induction on the number of terms. Pay attention to the point in
the inductive step where the inductive hypothesis is used.

2. Algebra

Theorem 2.1. For all odd numbers a1, . . . , an where n ≥ 2, the product a1 · · · an is odd.

Proof. We induct on n, the number of odd numbers.
For the base case n = 2 we want to every product of two odd numbers a1 and a2 is odd.

Since these numbers are odd, a1 = 2k1 + 1 and a2 = 2k2 + 1 for some integers k1 and k2.
Then

a1a2 = (2k1 + 1)(2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1 = 2(2k1k2 + k1 + k2) + 1,

which is an odd number since 2k1k2 + k1 + k2 ∈ Z. That settles the base case.
Now assume for an n ≥ 2 that the result is true for all sets of n odd numbers. To prove

the result for n + 1, we want to show every set of n + 1 odd numbers a1, . . . , an+1 has a
product a1 · · · an+1 that is odd.

A product of n + 1 numbers can be written either as a product of 2 numbers or as a
product of n numbers by collecting some factors into a single number:

(2.1) a1a2 · · · an+1 = (a1a2 · · · an)an+1

1



2 KEITH CONRAD

is a product of the two numbers a1a2 · · · an and an+1, while

(2.2) a1a2 · · · an+1 = a1a2 · · · an−1(anan+1)

is a product of the n numbers a1, a2, . . . , an−1, and anan+1.
Each of (2.1) and (2.2) leads to a proof of the inductive step: using (2.1) involves the

inductive hypothesis (all sets of n odd numbers) and then the base case (all sets of 2
odd numbers) while (2.2) involves the base case (all sets of 2 odd numbers) and then the
inductive hypothesis (all sets of n odd numbers).

First method. Write
a1a2 · · · anan+1 = (a1a2 · · · an)an+1

and the product a1a2 · · · an is odd by the inductive hypothesis (for n odd numbers). Then
(a1a2 · · · an)an+1 is a product of two odd numbers, a1a2 · · · an and an+1, so their product is
odd by the base case. Thus a1a2 · · · anan+1 is an odd number.

Second method. Write

a1a2 · · · anan+1 = a1a2 · · · an−1(anan+1).

The product anan+1 is an odd number by the base case, so a1a2 · · · an−1(anan+1) is a
product of n odd numbers: a1, a2, . . . , an−1, and anan+1. Therefore their product is odd
by the inductive hypothesis, which says a1a2 · · · an−1(anan+1) is odd, so a1a2 · · · anan+1 is
odd. �

3. Calculus

Theorem 3.1. For all sets of differentiable functions f1(x), . . . , fn(x) where n ≥ 2, the
product f1(x) · · · fn(x) is differentiable and

(f1(x) · · · fn(x))′

f1(x) · · · fn(x)
=

f ′1(x)

f1(x)
+ · · ·+ f ′n(x)

fn(x)
.

Proof. We induct on n, the number of functions.
The base case n = 2 follows from the product rule: for any two differentiable functions

f1(x) and f2(x), the product rule tells us that f1(x)f2(x) is differentiable and

(f1(x)f2(x))′ = f ′1(x)f2(x) + f1(x)f ′2(x),

so dividing both sides by f1(x)f2(x) gives us

(f1(x)f2(x))′

f1(x)f2(x)
=

f ′1(x)f2(x) + f1(x)f ′2(x)

f1(x)f2(x)
=

f ′1(x)

f1(x)
+

f ′2(x)

f2(x)
.

Now assume the result is true for all sets of n differentiable functions where n ≥ 2. To
prove the result for all sets of n + 1 differentiable functions f1(x), . . . , fn+1(x), write their
product either as a product of 2 functions or as a product of n functions by collecting some
factors into a single function:

(3.1) f1(x)f2(x) · · · fn+1(x) = (f1(x)f2(x) · · · fn(x)) · fn+1(x)

is a product of the 2 functions f1(x)f2(x) · · · fn(x) and fn+1(x), while

(3.2) f1(x)f2(x) · · · fn+1(x) = f1(x)f2(x) · · · fn−1(x)(fn(x)fn+1(x))

is a product of the n functions f1(x), f2(x), . . . , fn−1(x), and fn(x)fn+1(x).
Each of (3.1) and (3.2) lead to separate proofs of the inductive step: use the inductive

hypothesis (all sets of n differentiable functions) and then the base case (all sets of 2
differentiable functions) or use the base case and then the inductive hypothesis.
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First method. By the inductive hypothesis, f1(x)f2(x) · · · fn(x) is differentiable and

(3.3)
(f1(x) · · · fn(x))′

f1(x) · · · fn(x)
=

f ′1(x)

f1(x)
+ · · ·+ f ′n(x)

fn(x)
.

Then by the base case of 2 differentiable functions applied to f1(x) · · · fn(x) and fn+1(x),
their product f1(x) · · · fn(x)fn+1(x) is differentiable and

(f1(x) · · · fn(x)fn+1(x))′

f1(x) · · · fn(x)fn+1(x)
=

((f1(x) · · · fn(x)) · fn+1(x))′

(f1(x) · · · fn(x)) · fn+1(x)

=
(f1(x) · · · fn(x))′

f1(x) · · · fn(x)
+

f ′n+1(x)

fn+1(x)
by the base case

=
f ′1(x)

f1(x)
+ · · ·+ f ′n(x)

fn(x)
+

f ′n+1(x)

fn+1(x)
, by (3.3)

and this is what we needed to show for n + 1 differentiable functions.
Second method. By the base case, fn(x)fn+1(x) is differentiable and

(3.4)
(fn(x)fn+1(x))′

fn(x)fn+1(x)
=

f ′n(x)

fn(x)
+

f ′n+1(x)

fn+1(x)
.

Then by the inductive hypothesis for n differentiable functions applied to f1(x), . . . , fn−1(x),
and fn(x)fn+1(x), the product f1(x) · · · fn−1(x)(fn(x)fn+1(x)) = f1(x) · · · fn(x)fn+1(x) is
differentiable and

(f1(x) · · · fn(x)fn+1(x))′

f1(x) · · · fn(x)fn+1(x)
=

(f1(x) · · · fn−1(x)(fn(x)fn+1(x)))′

f1(x) · · · fn−1(x)(fn(x)fn+1(x))

=
f ′1(x)

f1(x)
+ · · ·+

f ′n−1(x)

fn−1(x)
+

(fn(x)fn+1(x))′

fn(x)fn+1(x)
by ind. hypothesis

=
f ′1(x)

f1(x)
+ · · ·+

f ′n−1(x)

fn−1(x)
+

f ′n(x)

fn(x)
+

f ′n+1(x)

fn+1(x)
by (3.4).
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