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1. Introduction

When we compute powers of nonzero numbers modulo a prime p, something striking
happens for powers of different numbers: they are all 1 when the exponent is p− 1.

Example 1.1. The tables below show the powers of nonzero numbers mod 5 and nonzero
numbers mod 7. In the first table all fourth powers are 1, and in the second table all sixth
powers are 1.

k 1 2 3 4

1k mod 5 1 1 1 1
2k mod 5 2 4 3 1
3k mod 5 3 4 2 1
4k mod 5 4 2 4 1

k 1 2 3 4 5 6

1k mod 7 1 1 1 1 1 1
2k mod 7 2 4 1 2 4 1
3k mod 7 3 2 6 4 5 1
4k mod 7 4 2 1 4 2 1
5k mod 7 5 4 6 2 3 1
6k mod 7 6 1 6 1 6 1

These tables illustrate a fundamental property of prime numbers first formulated by
Fermat.

Theorem 1.2 (Fermat). For prime p and every integer a 6≡ 0 mod p, ap−1 ≡ 1 mod p.

This is called Fermat’s little theorem. After proving it we will indicate how it can be
turned into a method of proving numbers are composite without having to find a factoriza-
tion for them.

2. Proof of Fermat’s Little Theorem

The proof of Fermat’s little theorem relies on a simple but clever idea: write down the
same list in two different ways and then compare their products.

Proof. We have a prime p and an arbitrary integer a 6≡ 0 mod p. To show ap−1 ≡ 1 mod p,
consider nonzero integers modulo p in the standard range:

S = {1, 2, 3, . . . , p− 1}.
We will compare S with the set obtained by multiplying the elements of S by a:

aS = {a, a · 2, a · 3, . . . , a(p− 1)}.
The elements of S represent the nonzero numbers modulo p and (the key point!) the
elements of aS also represent the nonzero numbers modulo p. That is, every nonzero
number mod p is congruent to exactly one number in aS. Indeed, for any b 6≡ 0 mod p,
the congruence ax ≡ b mod p has a solution x since a mod p is invertible, and necessarily
x 6≡ 0 mod p (since b 6≡ 0 mod p). Adjusting x modulo p to lie between 1 and p− 1 we have
x ∈ S, so ax ∈ aS and thus b mod p is represented by an element of aS. Different elements
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of aS never represent the same number mod p since ax ≡ ay mod p =⇒ x ≡ y mod p, and
different elements of S are not congruent mod p.

Since S and aS become the same set when reduced modulo p, the product of the numbers
in each set must be the same modulo p:

1 · 2 · 3 · · · · · (p− 1) ≡ a(a · 2)(a · 3) · · · (a(p− 1)) mod p.

Pulling the p− 1 copies of a to the front of the product on the right, we get

1 · 2 · 3 · · · · · (p− 1) ≡ ap−1(1 · 2 · 3 · · · · · (p− 1)) mod p.

Now we cancel each of 1, 2, 3, . . . , p − 1 on both sides (since they are all invertible modulo
p) and we are left with 1 ≡ ap−1 mod p. �

Let’s illustrate the idea behind this proof when p = 7.

Example 2.1. When p = 7, S = {1, 2, 3, 4, 5, 6}. Taking a = 2, if we double the elements
of S we get 2S = {2, 4, 6, 8, 10, 12}. This is not the same set of integers as S, but 2S turns
into S when we reduce it mod 7:

2 ≡ 2, 4 ≡ 4, 6 ≡ 6, 8 ≡ 1, 10 ≡ 3, 12 ≡ 5.

Similarly, 3S = {3, 6, 9, 12, 15, 18} and, modulo 7,

3 ≡ 3, 6 ≡ 6, 9 ≡ 2, 12 ≡ 5, 15 ≡ 1, 18 ≡ 4.

For any a 6≡ 0 mod 7, the sets {1, 2, 3, 4, 5, 6} and {a, 2a, 3a, 4a, 5a, 6a} turn into the same
list mod 7, so their products are the same modulo 7:

1 · 2 · 3 · 4 · 5 · 6 ≡ a · 2a · 3a · 4a · 5a · 6a ≡ a6(1 · 2 · 3 · 4 · 5 · 6) mod 7.

Canceling the common factors 1, 2, 3, 4, 5, and 6 from both sides, since they are all nonzero
mod 7, we are left with 1 ≡ a6 mod 7.

Remark 2.2. In the proof we were led to 1 · 2 · 3 · · · (p − 1) = (p − 1)! modulo p, but
we did not have to calculate it at all, since after creating this product on both sides of a
congruence we canceled it term by term. It turns out there is a simple formula for this
product: (p − 1)! ≡ −1 mod p when p is prime. That is called Wilson’s theorem. It is
irrelevant to the proof of Fermat’s little theorem.

3. Using Fermat’s Little Theorem to Prove Compositeness

A crucial feature of Fermat’s little theorem is that it is a property of every integer
a 6≡ 0 mod p. To emphasize that, let’s rewrite Fermat’s little theorem like this:

If p is a prime number then ap−1 ≡ 1 mod p for all integers a 6≡ 0 mod p.

The expression ap−1 in the congruence still makes sense if we replace the prime p with an
arbitrary integer m ≥ 2, so the contrapositive of Fermat’s little theorem says:

If m ≥ 2 and am−1 6≡ 1 mod m for some integer a 6≡ 0 mod m then m is composite.

This suggests the potential of proving a number m ≥ 2 is composite without having to
factor it: just find a single integer a 6≡ 0 mod m for which am−1 6≡ 1 mod m. We say that
a is a Fermat witness for m. That is, a reveals the compositeness of m by breaking the
congruence in Fermat’s little theorem for modulus m if m were prime.
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Example 3.1. Let m = 48703. Since 2m−1 ≡ 11646 6≡ 1 mod m, the number 48703 must be
composite and 2 is a Fermat witness for m. We know this without knowing how to factor
48703 into a product of smaller numbers. Of course you can use a computer to rapidly
determine that the prime factorization of m is 113 · 431, but that is a separate issue.

Example 3.2. Let m = 80581. Since 2m−1 ≡ 1 mod m, there is no contradiction and 2 is
not a Fermat witness. Maybe m is prime. But 3m−1 ≡ 76861 6≡ 1 mod m, so 3 is a Fermat
witness proving that 80581 is composite, but the reason we know it is composite does not
tell us how to factor the number.

These examples illustrate a point that is at first hard to believe: proving a number is
composite and factoring a number in a nontrivial way are not the same task. It is often easier
to prove a number has a nontrivial factorization than it is to find a nontrivial factorization.
(Cryptographic protocols used on the internet depend on this distinction.) In practice,
composite numbers having hundreds of digits can usually have their compositeness revealed
by the above method after testing just a few values of a on a computer, and there are large
numbers known to be composite but for which no nontrivial factor is known.

A reason it is computationally efficient to compute am−1 mod m is that when you ask a
computer to calculate a large power of a number, such as a48702 in Example 3.1, the computer
is not carrying out anything close to 48000 multiplications. There is a much faster way! By
writing the exponent 48702 in binary, the calculation of a48702 turns into repeated squaring
and can be done with far fewer multiplications than the size of the exponent.

Example 3.3. Since 48702 = 2 + 22 + 23 + 24 + 25 + 29 + 210 + 211 + 212 + 213 + 215, we
can write

(3.1) a48702 = a2a2
2
a2

3
a2

4
a2

5
a2

9
a2

10
a2

11
a2

12
a2

13
a2

15
,

which is a product of 11 numbers. Each a2
k

is the result of squaring a successively k times. If

we compute a2
k

for k = 1, 2, . . . , 15 and save that data, then the number of multiplications

we need to get a48702 is quite small: 15 squarings to get from a2 to a2
15

, and then 10

multiplications of the different values of a2
k

on the right side of (3.1). That is a total of
just 15 + 10 = 25 multiplications to determine a48702.

Remark 3.4. How many multiplications are needed to compute aN? If 2d ≤ N < 2d+1

then writing N in binary makes aN a product of terms from {a, a2, a4, . . . , a2d}. We need d
repeated squarings to get each of these terms and at most d multiplications of these terms
to get aN , which is a total of at most 2d ≤ 2 log2N multiplications. This is much less than
N when N is even moderately big. If N = 48702 then 2 log2N ≈ 31.14, while we found
a48702 in Example 3.3 needs 25 multiplications, showing how 2 log2N works as an upper
bound on the number of required multiplications.

Another aspect that keeps computations under control is that we are interested not in
am−1 itself, but in am−1 mod m. When m is large, calculating am−1 as a raw integer and
then reducing it mod m takes much longer than computing (a mod m)m−1: doing repeated
squaring mod m and reducing intermediate products mod m every time keeps the output
from ever getting much larger than the size of m itself. For example, using the computer
algebra package Sage to determine 1156052360 mod 56052361, the calculation of 1156052360

in Z followed by reduction modulo 56052361 took 2.210 seconds while the calculation of
(11 mod 56052361)56052360 took 17 microseconds (that’s 17 millionths of a second). The
first calculation takes 130,000 times as long as the second one.
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