
DIVISIBILITY AND GREATEST COMMON DIVISORS

KEITH CONRAD

1. Introduction

We will begin with a review of divisibility among integers, mostly to set some notation
and to indicate its properties. Then we will look at two important theorems involving
greatest common divisors: Euclid’s algorithm and Bezout’s identity.

The set of integers is denoted Z (from the German word Zahl = number).

2. The Divisibility Relation

Definition 2.1. When a and b are integers, we say a divides b if b = ak for some k ∈ Z.
We then write a | b (read as “a divides b”).

Example 2.2. We have 2 | 6 (because 6 = 2 · 3), 4 | (−12), and 5 | 0. We have ±1 | b for
every b ∈ Z. However, 6 does not divide 2 and 0 does not divide 5.

Divisibility is a relation, much like inequalities. In particular, the relation 2 | 6 is not the
number 3, even though 6 = 2 ·3. Such an error would be similar to the mistake of confusing
the relation 5 < 9 with the number 9− 5.

Notice divisibility is not symmetric: if a | b, it is usually not true that b | a, so you should
not confuse the roles of a and b in this relation: 4 | 20 but 20 - 4.

Remark 2.3. Learn the definition of a | b as given in Definition 2.1, and not in the
form “ b

a is an integer.” It essentially amounts to the same thing (exception: 0 | 0 but 0
0

is not defined), however thinking about divisibility in terms of ratios will screw up your
understanding of divisibility in other settings in algebra. That is why it is best to regard
Definition 2.1, which makes no reference to fractions, as the correct definition of divisibility.

The following three theorems about divisibility are simple applications of the definition.
They should all make intuitive sense.

Theorem 2.4. Let a, b ∈ Z with a | b. Then a | bc for any c ∈ Z.

Proof. We have b = ak for some k ∈ Z. Therefore bc = (ak)c = a(kc) and kc ∈ Z, so
a | bc. �

This just says a factor of a number is a factor of any multiple of it. (Or, equivalently, a
multiple of a multiple is a multiple.)

Theorem 2.5. If a | b and b | c then a | c.

Proof. We have b = ak and c = b` for some k and ` in Z. Then

c = b` = a(k`)

and k` ∈ Z, so a | c. �

As a mantra, “a factor of a factor is a factor.”
1
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Theorem 2.6. If a | b and a | c then a | (br + cs) for every r and s in Z. In particular, if
a | b and a | c then a | (b + c) and a | (b− c).

Proof. We have b = ak and c = a` for some k and ` in Z. Then

br + cs = akr + a`s = a(kr + `s)

and kr + `s ∈ Z, so a | (br + cs). �

Using the language of linear algebra, Theorem 2.6 says any factor of two integers is also
a factor of any Z-linear combination of the two integers.

To avoid silly errors, keep in mind the following false implications: generally

a | bc 6⇒ a | b or a | c
(for instance, 6 | (4 · 9) but 6 divides neither 4 nor 9) and

a | bn 6⇒ a | b
(for instance, 12 | 62 but 12 doesn’t divide 6).

3. Greatest Common Divisors

For two nonzero integers a and b, their greatest common divisor is the largest integer
which is a factor of both of them. It is denoted (a, b). For instance, (12, 18) = 6 and
(−9, 15) = 3. Do not confuse our usage of parentheses in (a, b) with the notation for open
intervals in calculus. The number 1 is always a common divisor, and it is the greatest
common divisor exactly when a and b are relatively prime.

The naive method of finding the greatest common divisor of two integers is to factor each
into primes and extract the greatest common divisor from the prime power factors that
appear.

Example 3.1. Consider a = 19088597 and b = 39083. Since

19088597 = 112 · 193 · 23, 39083 = 112 · 17 · 19,

we have (19088597, 39083) = 112 · 19 = 2299.

Factoring is hard (even on a computer when the integer has several hundred digits), so
this method of computing (a, b) is not good when a and b are large. There is a method of
computing greatest common divisors, going back to Euclid, which avoids the need to factor
at all. Instead of factoring, we will do successive divisions with remainder in such a way
that the remainder keeps dropping. The last nonzero remainder will turn out to be the
greatest common divisor.

Theorem 3.2 (Euclid). Let a and b be nonzero integers. Divide b into a and carry out
further divisions according to the following method, where the old remainder becomes the
new divisor:

a = bq1 + r1, 0 ≤ r1 < |b|,
b = r1q2 + r2, 0 ≤ r2 < r1,

r1 = r2q3 + r3, 0 ≤ r3 < r2,
...

...
...
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The non-negative remainders r1, r2, . . . are strictly decreasing, and thus must eventually
become 0. The last nonzero remainder is the greatest common divisor.

This algorithm of Euclid for finding (a, b) can be carried out very rapidly on a computer,
even for very large integers which are not easy to factor into primes.

Example 3.3. Before we prove Euclid’s algorithm works, let’s see how it looks for the pair
in Example 3.1:

19088597 = 39083 · 488 + 16093

39083 = 16093 · 2 + 6897

16093 = 6897 · 2 + 2299

6897 = 2299 · 3 + 0.

The last nonzero remainder is 2299, and we said (19088597, 39083) = 2299 in Example 3.1.
Notice we did not need to factor the two numbers to find their greatest common divisor.

Let’s prove Theorem 3.2.

Proof. The key idea that makes Euclid’s algorithm work is this: if a = b + mk for some k
in Z, then (a,m) = (b,m). That is, two numbers whose difference is a multiple of m have
the same gcd with m. Indeed, any common divisor of a and m is a divisor of b = a −mk
(Theorem 2.6), and therefore is a common divisor of b and m. This tells us (a,m) ≤ (b,m).
Similarly, any common divisor of b and m is a divisor of a = b + mk, and therefore is a
common divisor of a and m. Thus (b,m) ≤ (a,m) too, so (a,m) = (b,m).

Another way of putting this is:

(3.1) m | (a− b) =⇒ (a,m) = (b,m).

Now we look at the successive equations in Euclid’s algorithm:

a = bq1 + r1, 0 ≤ r1 < |b|,
b = r1q2 + r2, 0 ≤ r2 < r1,

r1 = r2q3 + r3, 0 ≤ r3 < r2,
...

...
...

The first equation says b | (a− r1), so by (3.1) we have (a, b) = (r1, b). The second equation
says r1 | (b − r2), so again by (3.1) we have (b, r1) = (r2, r1). The third equation says
r2 | (r1 − r3), so again by (3.1) we have (r1, r2) = (r3, r2). Comparing these results,

(a, b) = (b, r1) = (r1, r2) = (r2, r3),

so the later greatest common divisors continue to be equal to (a, b). The last equations in
Euclid’s algorithm look like this:

rn = rn+1qn+2 + rn+2, 0 < rn+2 < rn+1,

rn+1 = rn+2qn+3 + 0.

Thus
(a, b) = (b, r1) = · · · = (rn, rn+1) = (rn+1, rn+2).

The final equation in Euclid’s algorithm tells us (rn+1, rn+2) = rn+2, so (a, b) equals rn+2,
which is the last nonzero remainder. �
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Example 3.4. We compute (322345, 21419):

322345 = 21419 · 15 + 1060,

21419 = 1060 · 20 + 219,

1060 = 219 · 4 + 184,

219 = 184 · 1 + 35,

184 = 35 · 5 + 9,

35 = 9 · 3 + 8,

9 = 8 · 1 + 1,

8 = 1 · 8 + 0.

Therefore (322345, 21419) = 1. The last equation was superfluous: if we ever reach a
remainder of 1, then the next remainder is ≥ 0 and less than 1 and therefore must be 0, so
1 is the last nonzero remainder.

Not only is the last equation superfluous, but we could have stopped already in the fourth
equation: here we meet a remainder of 35, which is small enough that we can factor it in
our heads as 5 · 7. Therefore

(322345, 21419) = (184, 35),

and we can easily check 5 and 7 are not factors of 184, so this greatest common divisor must
be 1. However, this early cutoff in the algorithm misses something important: as we will
soon see, all the steps of Euclid’s algorithm are needed to carry out one of the algorithm’s
most crucial consequences.

The significance of Euclid’s algorithm goes beyond its computation of the greatest com-
mon divisor. By reversing the steps of Euclid’s algorithm starting with the equation having
the last nonzero remainder, we are able to write (a, b) in an especially useful form, as follows.

Theorem 3.5 (Bezout). For nonzero a and b in Z, there are x and y in Z such that

(3.2) (a, b) = ax + by.

In particular, when a and b are relatively prime, there are x and y in Z such that ax+by = 1.

Adopting terminology from linear algebra, expressions of the form ax + by with x, y ∈ Z
are called Z-linear combinations of a and b. Equation (3.2) is called Bezout’s identity.

Before we prove Theorem 3.5 we illustrate the idea of the proof in some examples.

Example 3.6. In Example 3.3 we used Euclid’s algorithm to show (19088597, 39083) =
2299. Reversing the steps of that algorithm,

2299 = 16093− 6897 · 2
= 16093− (39083− 16093 · 2) · 2 [expand]

= 16093 · (1 + 2 · 2)− 39083 · 2 [recombine terms]

= 16093 · 5− 39083 · 2 [simplify]

= (19088597− 39083 · 488) · 5− 39083 · 2 [expand]

= 19088597 · 5 + 39083 · (−488 · 5− 2) [recombine terms]

= 19088597 · 5− 39083 · 2442. [simplify]



DIVISIBILITY AND GREATEST COMMON DIVISORS 5

Therefore Bezout’s identity is satisfied with the integers x = 5 and y = −2442 (not y =
2442).

Example 3.7. Let a = 121 and b = 38. Then by Euclid’s algorithm,

121 = 38 · 3 + 7,

38 = 7 · 5 + 3,

7 = 3 · 2 + 1,

and we can stop here since we have reached a remainder of 1. Unwinding,

1 = 7− 3 · 2
= 7− (38− 7 · 5) · 2 [expand]

= 7 · (1 + 5 · 2)− 38 · 2 [recombine terms]

= 7 · 11− 38 · 2 [simplify]

= (121− 38 · 3) · 11− 38 · 2 [expand]

= 121 · 11− 38 · (3 · 11 + 2) [recombine terms]

= 121 · 11− 38 · 35, [simplify]

so 121x + 38y = 1 for x = 11 and y = −35.
Of course it would be completely trivial (but also useless!) to solve 121x + 38y = 1 in

real numbers x and y: use x = 0 and y = 1/38, for instance. Being able to solve such an
equation with integers is the key point.

Example 3.8. The reader should reverse the steps of Euclid’s algorithm in Example 3.4
to find

1 = 322345 · 2445 + 21419 · (−36796).

Now we’ll prove Theorem 3.5.

Proof. Write out the equations in Euclid’s algorithm in their natural order:

a = bq1 + r1, 0 < r1 < |b|,
b = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,
...

...
...

rn−1 = rnqn+1 + rn+1, 0 < rn+1 < rn,

rn = rn+1qn+2 + rn+2, 0 < rn+2 < rn+1,

rn+1 = rn+2qn+3.

In the equation with the last nonzero remainder, solve for it:

(3.3) rn+2 = rn − rn+1qn+2.

This expresses rn+2 as a Z-linear combination of rn and rn+1. Now feed in the expression
for the remainder from the preceding equation:

rn+2 = rn − (rn−1 − rnqn+1)qn+2

= rn(1 + qn+1qn+2)− rn−1qn+2.
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Now we have the last nonzero remainder rn+2 as a Z-linear combination of rn−1 and rn.
Proceeding up the equations in Euclid’s algorithm, eventually we reach

rn+2 = bu + r1v

for some u, v ∈ Z. Finally, writing r1 as a− bq1, we get

rn+2 = av + b(u− vq1)

and we have obtained Bezout’s identity. �

4. Consequences of Bezout’s identity

In this section we collect several corollaries of Bezout’s identity (3.2). The main thing to
learn from each proof is how Bezout’s identity is used: whenever you have relatively prime
integers a and b, you should immediately think “Oh, so 1 can be written in the form ax+by
for some integers x and y.” This is the main technique to handle proofs involving relatively
prime integers. Since Bezout’s identity is not intuitive, you will find most of the proofs are
not intuitive even if the statements of the theorems feel like common sense. On the other
hand, the proofs are quite short. After reading the proofs, write out the corollaries on a
separate sheet of paper and check that you can reproduce the proofs on your own.

Corollary 4.1. If a | bc and (a, b) = 1, then a | c.

Proof. Since a | bc, bc = ak for some integer k. Because (a, b) = 1,

1 = ax + by

for some integers x and y. Multiplying through by c (why? because we want to show c is a
times something and c · 1 = c), we have

c = acx + (bc)y = acx + (ak)y = a(cx + ky).

Since cx + ky ∈ Z, a | c. �

Corollary 4.2. If a | c, b | c, and (a, b) = 1, then ab | c.

Proof. We have c = ak and c = b` where k and ` are integers. Also, since (a, b) = 1 we have

ax + by = 1

for some integers x and y. Therefore

c = c · 1 = cax + cby = (b`)ax + (ak)by = ab(`x + ky).

Since `x + ky ∈ Z, ab | c. �

Corollary 4.3. If (a, c) = 1 and (b, c) = 1, then (ab, c) = 1.

Proof. Write

ax + cy = 1, bx′ + cy′ = 1

for some integers x, y, x′, y′. Multiplying the above equations,

1 = (ax + cy)(bx′ + cy′) = ab(xx′) + c(axy′ + bx′y + cyy′).

This expresses 1 as a Z-linear combination of ab and c, so ab and c are relatively prime (any
common factor would divide 1, and thus is ±1). �
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All these corollaries generalize to more than two pairs of relatively prime integers, by using
induction on the number of pairs (and associativity to write a product of several integers
as a product of two integers, e.g., abcd = (abc)d). We will state these generalizations, but
leave the proofs to the reader:

(1) if a | b1b2 . . . brc and (a, bi) = 1 for all i, then a | c,
(2) if a1, . . . , ar are all factors of m and (ai, aj) = 1 for all i 6= j then a1a2 · · · ar is a

factor of m,
(3) if a1, . . . , ar are relatively prime to m then a1a2 · · · ar is relatively prime to m.
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