
COUNTING ROOTS OF POLYNOMIALS

KEITH CONRAD

In R[T ], a linear polynomial aT + b has exactly one root in R: at + b = 0 if and only
if t = −b/a. By the quadratic formula, a quadratic polynomial in R[T ] has at most 2
roots in R. Even though there is not an analogue of the quadratic formula for roots of all
polynomials (especially in degree 5 and up), the bound we described on the number of roots
in degrees 1 and 2 in R[T ] is valid in all degrees when the coefficients are in an arbitrary
field and we will prove this by induction on the degree.

Theorem 1. Let f(T ) be a nonzero polynomial of degree d with coefficients in a field F .
Then f(T ) has at most d roots in F .

We can’t replace “at most d roots” with “exactly d roots” since there are nonconstant
polynomials with no roots: T 2 + 1 in R[T ] has no roots in R and T 3 − 2 in Q[T ] has no
roots in Q.

Proof. We induct on the degree of polynomials. Each step in the induction is about all
polynomials of a common degree: the theorem in degree 0, then in degree 1, then in degree
2, then in degree 3, and so on.

The base case is degree 0. A polynomial of degree 0 in F [T ] is a nonzero constant
polynomial, so it has no roots at all.

Now assume the theorem is true for all polynomials in F [T ] of degree d for some d ≥ 0.
We will prove the theorem is true for all polynomials in F [T ] of degree d + 1.

A polynomial of degree d + 1 in F [T ] has the form

(1) f(T ) = cd+1T
d+1 + cdT

d + · · ·+ c1T + c0,

where c0, . . . , cd+1 ∈ F and cd+1 6= 0. To bound the number of roots of f(T ) in F , we
consider two cases.

Case 1. If f(T ) has no root in F , then we’re done since 0 ≤ d + 1.
Case 2. If f(T ) has a root in F , say r, then

(2) 0 = cd+1r
d+1 + cdr

d + · · ·+ c1r + c0.

From this condition we can show T − r is a factor of f(T ): f(T ) = (T − r)Q(T ) for some
Q(T ) in F [T ]. Here are two different ways of doing that.

Method 1. Divide f(T ) by T −r using the division algorithm in F [T ]. The remainder is 0
or is nonzero with degree less than deg(T − r) = 1, so either way the remainder is constant:

f(T ) = (T − r)Q(T ) + c

for some c ∈ F . To find c, set T = r: 0 = 0 ·Q(0) + c = c, so f(T ) = (T − r)Q(T ).

Method 2. Subtract (2) from (1). The constant terms c0 cancel and we get

(3) f(T ) = cd+1(T
d+1 − rd+1) + cd(T d − rd) + · · ·+ c1(T − r).
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Each difference T j − rj for j = 1, 2, . . . , d + 1 has T − r as a factor:

T j − rj = (T − r)(T j−1 + rT j−2 + · · ·+ riT j−1−i + · · ·+ rj−2T + rj−1).

Write the more complicated second factor, a polynomial of degree j − 1, as Qj,r(T ). So

(4) T j − rj = (T − r)Qj,r(T ),

and substituting (4) into (3) gives

f(T ) =

d+1∑
j=1

cj(T − r)Qj,r(T ) = (T − r)

d+1∑
j=1

cjQj,r(T ) = (T − r)Q(T ),

where Q(T ) =
∑d+1

j=1 cjQj,r(T ).

By either method, from f(T ) = (T − r)Q(T ) we take degrees on both sides to see
d + 1 = 1 + degQ, so degQ = d.

A root of f(T ) in F is either r or is a root of Q(T ). Indeed, for s ∈ F we have

f(s) = (s− r)Q(s),

so if f(s) = 0 then (s− r)Q(s) = 0, which means s− r = 0 or Q(s) = 0: s = r or s is a root
of Q(s). By the inductive hypothesis, Q(T ) has at most d roots in F , so f(T ) has at most
d + 1 roots: s and the roots of Q(T ) in F .

Since f(T ) was an arbitrary polynomial of degree d+ 1 in F [T ], we have shown that the
d-th case of the theorem being true implies the (d+ 1)-th case is true. By induction on the
degree, the theorem is true for all nonconstant polynomials. �

Corollary 2. If F is a field and f(T ) ∈ F [T ] is nonconstant, then for each c ∈ F the
equation f(t) = c has at most deg f solutions in F .

Proof. A solution t to f(t) = c is a root of the polynomial f(T ) − c, and deg(f(T ) − c) =
deg(f(T )) since f(T ) is not constant. By Theorem 1 the number of roots of f(T )− c in F
is at most deg(f(T )− c) = deg(f(T )). �

Example 3. For a nonconstant polynomial f(T ) ∈ Z[T ] and c ∈ Z, the equation f(n) = c
has finitely many integer solutions n since it has finitely many rational solutions n.

This corollary is not true in general for polynomials whose coefficients are not in a field:
the polynomial T 2 has degree 2 and if it is viewed as a polynomial with coefficients in Z/(8)
the equation t2 = 1 has 4 solutions in Z/(8): 1, 3, 5, and 7. Note Z/(8) is not a field.

The most important qualitative consequence of Theorem 1 is that a polynomial in F [T ]
has finitely many roots in F .

Corollary 4. If F is an infinite field and two polynomials f(T ) and g(T ) in F [T ] satisfy
f(t) = g(t) for infinitely many t in F then f(t) = g(t) for all t ∈ F .

As an example, if two polynomials in R[T ] are equal at all numbers in the interval (0, 1)
then they are equal at all real numbers.

Proof. Look at the difference polynomial f(T )− g(T ). By hypothesis, this polynomial has
infinitely many roots in F , so by Theorem 1 it can’t be a nonzero polynomial . Thus
f(T )− g(T ) is the zero polynomial, so f(T ) = g(T ). Thus f(t) = g(t) for all t ∈ F . �

When p is prime, Fp = Z/(p) is a field of size p. This is a finite field.
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Corollary 5. For a prime p, a polynomial f(T ) in Fp[T ] of degree less than p is not
identically zero on Fp: there’s some t ∈ Fp such that f(t) 6≡ 0 mod p.

Proof. By Theorem 1, f(T ) has at most deg f roots in Fp. Since deg f < p, the set of roots
of f(T ) in Fp is not all of Fp, so there’s some t ∈ Fp such that f(t) 6≡ 0 mod p. �

To appreciate this corollary, we have t3(t2 − 1) = 0 for all t in Z/(8): t = 0, 2, 4, 6 satisfy
t3 ≡ 0 mod 8 and t = 1, 3, 5, 7 satisfy t2−1 ≡ 0 mod 8. Therefore the polynomial T 3(T 2−1)
of degree 5 is identically 0 on the 8 elements of Z/(8). Note Z/(8) is not a field.

Theorem 6. Let f(T ) be a nonconstant polynomial in Z[T ]. For each k ≥ 1 there is an
integer n such that f(n) has at least k different prime factors.

The meaning of this theorem is that it’s impossible for a polynomial with integral coef-
ficients to have its values all be of the form ±2a3b or some other product of a fixed set of
primes.

Proof. The argument below is from Jorge Miranda. It is a proof by induction on k.
First, since the equations f(n) = 1, and f(n) = −1 each have only finitely many solutions

in Z (see Example 3), some value f(n) is divisible by a prime. This settles the case k = 1.
Now suppose k ≥ 2 and there are primes p1, . . . , pk−1 and a positive integer m such that

f(m) is divisible by p1, . . . , pk−1. We will find a new prime pk and a value f(n) divisible by
p1, . . . , pk−1, pk.

If f(0) = 0 then as a polynomial f(T ) has no constant term:

f(T ) = cdT
d + cd−1T

d−1 + · · ·+ c1T

with cj ∈ Z. Therefore f(n) is divisible by n for all n, so letting pk be a prime other than
p1, . . . , pk−1, the number f(p1 · · · pk) is divisible by p1, . . . , pk.

Now suppose f(0) 6= 0. Write f(T ) = cdT
d + · · · + c1T + c0 = Tg(T ) + c0, where

c0 = f(0) and g(T ) is a nonzero polynomial. Factor f(0) into primes as ±pe11 · · · p
ek−1

k−1 . For
each positive integer n,

f(n) = ng(n) + f(0) = ng(n)± pe11 · · · p
ek−1

k−1 .

If n is divisible by pe1+1
1 · · · pek−1+1

k−1 then the power of each pi in f(n) is ei (why?). Therefore
f(n) = f(0)N where N is not divisible by any of p1, . . . , pk−1. The equation f(n) =
±f(0) has only finitely many solutions in Z, while there are infinitely many multiples of

pe1+1
1 · · · pek−1+1

k−1 , so there is an n that’s a multiple of pe1+1
1 · · · pek−1+1

k−1 such that f(n) 6=
±f(0). Therefore f(n) = f(0)N where |N | ≥ 2. A prime factor of N is not any of
p1, . . . , pk−1, so f(n) has k prime factors. �


