COUNTING ROOTS OF POLYNOMIALS

KEITH CONRAD

In R[T], a linear polynomial aT" + b has exactly one root in R: at + b = 0 if and only
if t = —b/a. By the quadratic formula, a quadratic polynomial in R[T] has at most 2
roots in R. Even though there is not an analogue of the quadratic formula for roots of all
polynomials (especially in degree 5 and up), the bound we described on the number of roots
in degrees 1 and 2 in R[T] is valid in all degrees when the coefficients are in an arbitrary
field and we will prove this by induction on the degree.

Theorem 1. Let f(T') be a nonzero polynomial of degree d with coefficients in a field F.
Then f(T) has at most d roots in F'.

We can’t replace “at most d roots” with “exactly d roots” since there are nonconstant
polynomials with no roots: 7% + 1 in R[T] has no roots in R and T3 — 2 in Q[T] has no
roots in Q.

Proof. We induct on the degree of polynomials. Each step in the induction is about all
polynomials of a common degree: the theorem in degree 0, then in degree 1, then in degree
2, then in degree 3, and so on.

The base case is degree 0. A polynomial of degree 0 in F[T] is a nonzero constant
polynomial, so it has no roots at all.

Now assume the theorem is true for all polynomials in F[T] of degree d for some d > 0.
We will prove the theorem is true for all polynomials in F[T] of degree d + 1.

A polynomial of degree d + 1 in F[T'] has the form

(1) F(T) = cap1T™ + cgT+ - + a1 T + c,

where ¢, ...,cqr1 € F and cg11 # 0. To bound the number of roots of f(T) in F, we
consider two cases.

Case 1. If f(T) has no root in F, then we're done since 0 < d + 1.

Case 2. If f(T) has a root in F, say r, then

(2) 0= Cd+17“0lJr1 +ear® + -+ ar + co.

From this condition we can show T'— 7 is a factor of f(T'): f(T) = (T —r)Q(T) for some
Q(T) in F[T]. Here are two different ways of doing that.

Method 1. Divide f(T") by T —r using the division algorithm in F[T]. The remainder is 0
or is nonzero with degree less than deg(T —r) = 1, so either way the remainder is constant:

() = (T =r)Q(T) +c
for some ¢ € F. To find ¢, set T =7: 0=0-Q(0) +c=c¢,s0 f(T) = (T —r)Q(T).
Method 2. Subtract (2) from (1). The constant terms ¢y cancel and we get

(3) () = cam (T — v cg(T 1) + -+ 1 (T — 7).
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Each difference 77 — 77 for j =1,2,...,d+ 1 has T — r as a factor:
T9 =) = (T —r) (T 4 rTI 2 4 P TI  pd 2 i),
Write the more complicated second factor, a polynomial of degree j — 1, as @, (7). So

(4) 17 =17 = (T = 1)Qjx(T),
and substituting (4) into (3) gives

d+1 d+1
FT) = ¢i(T = 1)Qjr(T) = (T = 1) ¢;Qr(T) = (T - r)Q(T),
j=1 j=1

where Q(T') = Zj’ii c;Qjr(T).

By either method, from f(T) = (T — r)Q(T) we take degrees on both sides to see
d+1=14deg@, so deg@ = d.
A root of f(T') in F is either r or is a root of Q(7T). Indeed, for s € F we have

fs) = (s =7)Q(s),
so if f(s) =0 then (s —7)Q(s) = 0, which means s —r =0 or Q(s) =0: s =r or s is a root
of Q(s). By the inductive hypothesis, Q(T') has at most d roots in F', so f(T') has at most
d + 1 roots: s and the roots of Q(T') in F'.
Since f(T') was an arbitrary polynomial of degree d 4+ 1 in F[T], we have shown that the
d-th case of the theorem being true implies the (d + 1)-th case is true. By induction on the
degree, the theorem is true for all nonconstant polynomials. ]

Corollary 2. If F is a field and f(T) € F[T] is nonconstant, then for each ¢ € F the
equation f(t) = ¢ has at most deg f solutions in F.

Proof. A solution t to f(t) = c is a root of the polynomial f(7T) — ¢, and deg(f(T') — ¢) =
deg(f(T)) since f(T) is not constant. By Theorem 1 the number of roots of f(T) — ¢ in F
is at most deg(f(T) — ¢) = deg(f(T)). O

Example 3. For a nonconstant polynomial f(7") € Z[T] and ¢ € Z, the equation f(n) =c
has finitely many integer solutions n since it has finitely many rational solutions n.

This corollary is not true in general for polynomials whose coefficients are not in a field:
the polynomial 72 has degree 2 and if it is viewed as a polynomial with coefficients in Z/(8)
the equation t* = 1 has 4 solutions in Z/(8): 1, 3, 5, and 7. Note Z/(8) is not a field.

The most important qualitative consequence of Theorem 1 is that a polynomial in F[T
has finitely many roots in F.

Corollary 4. If F is an infinite field and two polynomials f(T) and g(T) in F[T] satisfy
ft) = g(t) for infinitely many t in F then f(t) = g(t) for allt € F.

As an example, if two polynomials in R[T] are equal at all numbers in the interval (0, 1)
then they are equal at all real numbers.

Proof. Look at the difference polynomial f(7T") — g(T"). By hypothesis, this polynomial has
infinitely many roots in F, so by Theorem 1 it can’t be a nonzero polynomial . Thus
f(T) — g(T) is the zero polynomial, so f(T") = ¢g(T"). Thus f(t) = g(t) for all t € F. O

When p is prime, F), = Z/(p) is a field of size p. This is a finite field.
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Corollary 5. For a prime p, a polynomial f(T') in F,[T]| of degree less than p is not
identically zero on F): there’s some t € F), such that f(t) # 0 mod p.

Proof. By Theorem 1, f(T) has at most deg f roots in F,,. Since deg f < p, the set of roots
of f(T) in F, is not all of F),, so there’s some t € F,, such that f(t) # 0 mod p. O

To appreciate this corollary, we have t3(t2 — 1) = 0 for all t in Z/(8): t = 0,2, 4, 6 satisfy
t3=0mod 8 and t = 1,3, 5, 7 satisfy 2 —1 = 0 mod 8. Therefore the polynomial 73(7? —1)
of degree 5 is identically 0 on the 8 elements of Z/(8). Note Z/(8) is not a field.

Theorem 6. Let f(T) be a nonconstant polynomial in Z[T]. For each k > 1 there is an
integer n such that f(n) has at least k different prime factors.

The meaning of this theorem is that it’s impossible for a polynomial with integral coef-
ficients to have its values all be of the form 42%3% or some other product of a fized set of
primes.

Proof. The argument below is from Jorge Miranda. It is a proof by induction on k.

First, since the equations f(n) = 1, and f(n) = —1 each have only finitely many solutions
in Z (see Example 3), some value f(n) is divisible by a prime. This settles the case k = 1.
Now suppose k > 2 and there are primes p1,...,pr—1 and a positive integer m such that

f(m) is divisible by p1,...,pr—1. We will find a new prime py and a value f(n) divisible by

b1, Dk—1,Pk-
If f(0) =0 then as a polynomial f(7") has no constant term:

f(T) =T+ cg T 4o+ 1T

with ¢; € Z. Therefore f(n) is divisible by n for all n, so letting pj be a prime other than
P, .-, Pk—1, the number f(p; ---px) is divisible by p1,. .., p.

Now suppose f(0) # 0. Write f(T) = cgT% + -+ a1T + co = Tg(T) + cy, where
co = f(0) and g(T') is a nonzero polynomial. Factor f(0) into primes as £p{* - - p;*7'. For
each positive integer n,

f(n) =ng(n) + f(0) = ng(n) £p* - --p,"".

If n is divisible by p&* Tt . .. pZ’“_‘fH then the power of each p; in f(n) is e; (why?). Therefore

f(n) = f(0)N where N is not divisible by any of pi,...,px—1. The equation f(n) =
+£(0) has only finitely many solutions in Z, while there are infinitely many multiples of
pott.. -pzk_’llﬂ, so there is an 7 that’s a multiple of pS*t.. ~pZ’“_’11H such that f(n) #
+f(0). Therefore f(n) = f(0)N where |[N| > 2. A prime factor of N is not any of

Pl .- Pk—1, SO f(n) has k prime factors. O



