In \(\mathbb{R}[T] \), a linear polynomial \(aT + b \) has exactly one root in \(\mathbb{R} \): \(at + b = 0 \) if and only if \(t = -b/a \). By the quadratic formula, a quadratic polynomial in \(\mathbb{R}[T] \) has at most 2 roots in \(\mathbb{R} \). Even though there is not an analogue of the quadratic formula for roots of all polynomials (especially in degree 5 and up), the bound we described on the number of roots in degrees 1 and 2 in \(\mathbb{R}[T] \) is valid in all degrees when the coefficients are in an arbitrary field and we will prove this by induction on the degree.

Theorem 1. Let \(f(T) \) be a nonzero polynomial of degree \(d \) with coefficients in a field \(F \). Then \(f(T) \) has at most \(d \) roots in \(F \).

We can’t replace “at most \(d \) roots” with “exactly \(d \) roots” since there are nonconstant polynomials with no roots: \(T^2 + 1 \) in \(\mathbb{R}[T] \) has no roots in \(\mathbb{R} \) and \(T^3 - 2 \) in \(\mathbb{Q}[T] \) has no roots in \(\mathbb{Q} \).

Proof. We induct on the degree of polynomials. Each step in the induction is about all polynomials of a common degree: the theorem in degree 0, then in degree 1, then in degree 2, then in degree 3, and so on.

The base case is degree 0. A polynomial of degree 0 in \(F[T] \) is a nonzero constant polynomial, so it has no roots at all.

Now assume the theorem is true for all polynomials in \(F[T] \) of degree \(d \) for some \(d \geq 0 \). We will prove the theorem is true for all polynomials in \(F[T] \) of degree \(d + 1 \).

A polynomial of degree \(d + 1 \) in \(F[T] \) has the form

\[
(1) \quad f(T) = c_{d+1}T^{d+1} + c_dT^d + \cdots + c_1T + c_0,
\]

where \(c_0, \ldots, c_{d+1} \in F \) and \(c_{d+1} \neq 0 \). To bound the number of roots of \(f(T) \) in \(F \), we consider two cases.

Case 1. If \(f(T) \) has no root in \(F \), then we’re done since \(0 \leq d + 1 \).

Case 2. If \(f(T) \) has a root in \(F \), say \(r \), then

\[
(2) \quad 0 = c_{d+1}r^{d+1} + c_d r^d + \cdots + c_1 r + c_0.
\]

From this condition we can show \(T - r \) is a factor of \(f(T) \): \(f(T) = (T - r)Q(T) \) for some \(Q(T) \) in \(F[T] \). Here are two different ways of doing that.

Method 1. Divide \(f(T) \) by \(T - r \) using the division algorithm in \(F[T] \). The remainder is 0 or is nonzero with degree less than \(\deg(T - r) = 1 \), so either way the remainder is constant:

\[
(3) \quad f(T) = (T - r)Q(T) + c
\]

for some \(c \in F \). To find \(c \), set \(T = r \): \(0 = 0 \cdot Q(0) + c = c \), so \(f(T) = (T - r)Q(T) \).

Method 2. Subtract (2) from (1). The constant terms \(c_0 \) cancel and we get

\[
(3) \quad f(T) = c_{d+1}(T^{d+1} - r^{d+1}) + c_d(T^d - r^d) + \cdots + c_1(T - r).
\]
Each difference $T^j - r^j$ for $j = 1, 2, \ldots, d + 1$ has $T - r$ as a factor:

$$T^j - r^j = (T - r)(T^{j-1} + rT^{j-2} + \cdots + r^tT^{j-1-i} + \cdots + r^jT + r^{j-1}).$$

Write the more complicated second factor, a polynomial of degree $j - 1$, as $Q_{j,r}(T)$. So (4)

$$T^j - r^j = (T - r)Q_{j,r}(T),$$

and substituting (4) into (3) gives

$$f(T) = \sum_{j=1}^{d+1} c_j(T - r)Q_{j,r}(T) = (T - r)\sum_{j=1}^{d+1} c_jQ_{j,r}(T) = (T - r)Q(T),$$

where $Q(T) = \sum_{j=1}^{d+1} c_jQ_{j,r}(T)$.

By either method, from $f(T) = (T - r)Q(T)$ we take degrees on both sides to see $d + 1 = 1 + \deg Q$, so $\deg Q = d$.

A root of $f(T)$ in F is either r or is a root of $Q(T)$. Indeed, for $s \in F$ we have

$$f(s) = (s - r)Q(s),$$

so if $f(s) = 0$ then $(s - r)Q(s) = 0$, which means $s - r = 0$ or $Q(s) = 0$: $s = r$ or s is a root of $Q(s)$. By the inductive hypothesis, $Q(T)$ has at most d roots in F, so $f(T)$ has at most $d + 1$ roots: s and the roots of $Q(T)$ in F.

Since $f(T)$ was an arbitrary polynomial of degree $d + 1$ in $F[T]$, we have shown that the d-th case of the theorem being true implies the $(d + 1)$-th case is true. By induction on the degree, the theorem is true for all nonconstant polynomials. □

Corollary 2. If F is a field and $f(T) \in F[T]$ is nonconstant, then for each $c \in F$ the equation $f(t) = c$ has at most $\deg f$ solutions in F.

Proof. A solution t to $f(t) = c$ is a root of the polynomial $f(T) - c$, and $\deg(f(T) - c) = \deg(f(T))$ since $f(T)$ is not constant. By Theorem 1 the number of roots of $f(T) - c$ in F is at most $\deg(f(T) - c) = \deg(f(T))$. □

Example 3. For a nonconstant polynomial $f(T) \in \mathbb{Z}[T]$ and $c \in \mathbb{Z}$, the equation $f(n) = c$ has finitely many integer solutions n since it has finitely many rational solutions n.

This corollary is not true in general for polynomials whose coefficients are not in a field: the polynomial T^2 has degree 2 and if it is viewed as a polynomial with coefficients in $\mathbb{Z}/(8)$ the equation $t^2 = 1$ has 4 solutions in $\mathbb{Z}/(8)$: 1, 3, 5, and 7. Note $\mathbb{Z}/(8)$ is not a field.

The most important qualitative consequence of Theorem 1 is that a polynomial in $F[T]$ has finitely many roots in F.

Corollary 4. If F is an infinite field and two polynomials $f(T)$ and $g(T)$ in $F[T]$ satisfy $f(t) = g(t)$ for infinitely many t in F then $f(t) = g(t)$ for all $t \in F$.

As an example, if two polynomials in $\mathbb{R}[T]$ are equal at all numbers in the interval $(0, 1)$ then they are equal at all real numbers.

Proof. Look at the difference polynomial $f(T) - g(T)$. By hypothesis, this polynomial has infinitely many roots in F, so by Theorem 1 it can’t be a nonzero polynomial. Thus $f(T) - g(T)$ is the zero polynomial, so $f(T) = g(T)$. Thus $f(t) = g(t)$ for all $t \in F$. □

When p is prime, $F_p = \mathbb{Z}/(p)$ is a field of size p. This is a finite field.
Corollary 5. For a prime \(p \), a polynomial \(f(T) \) in \(\mathbb{F}_p[T] \) of degree less than \(p \) is not identically zero on \(\mathbb{F}_p \): there’s some \(t \in \mathbb{F}_p \) such that \(f(t) \neq 0 \) mod \(p \).

Proof. By Theorem 1, \(f(T) \) has at most \(\deg f \) roots in \(\mathbb{F}_p \). Since \(\deg f < p \), the set of roots of \(f(T) \) in \(\mathbb{F}_p \) is not all of \(\mathbb{F}_p \), so there’s some \(t \in \mathbb{F}_p \) such that \(f(t) \neq 0 \) mod \(p \). \(\square \)

To appreciate this corollary, we have \(t^3(t^2 - 1) = 0 \) for all \(t \in \mathbb{Z}/(8) \): \(t = 0, 2, 4, 6 \) satisfy \(t^3 \equiv 0 \) mod \(8 \) and \(t = 1, 3, 5, 7 \) satisfy \(t^2 - 1 \equiv 0 \) mod \(8 \). Therefore the polynomial \(T^3(T^2 - 1) \) of degree 5 is identically 0 on the 8 elements of \(\mathbb{Z}/(8) \). Note \(\mathbb{Z}/(8) \) is not a field.

Theorem 6. Let \(f(T) \) be a nonconstant polynomial in \(\mathbb{Z}[T] \). For each \(k \geq 1 \) there is an integer \(n \) such that \(f(n) \) has at least \(k \) different prime factors.

The meaning of this theorem is that it’s impossible for a polynomial with integral coefficients to have its values all be of the form \(\pm 2^n3^b \) or some other product of a fixed set of primes.

Proof. The argument below is from Jorge Miranda. It is a proof by induction on \(k \).

First, since the equations \(f(n) = 1 \) and \(f(n) = -1 \) each have only finitely many solutions in \(\mathbb{Z} \) (see Example 3), some value \(f(n) \) is divisible by a prime. This settles the case \(k = 1 \).

Now suppose \(k \geq 2 \) and there are primes \(p_1, \ldots, p_{k-1} \) and a positive integer \(m \) such that \(f(m) \) is divisible by \(p_1, \ldots, p_{k-1} \). We will find a new prime \(p_k \) and a value \(f(n) \) divisible by \(p_1, \ldots, p_{k-1}, p_k \).

If \(f(0) = 0 \) then as a polynomial \(f(T) \) has no constant term:

\[f(T) = c_dT^d + c_{d-1}T^{d-1} + \cdots + c_1T \]

with \(c_j \in \mathbb{Z} \). Therefore \(f(n) \) is divisible by \(n \) for all \(n \), so letting \(p_k \) be a prime other than \(p_1, \ldots, p_{k-1} \), the number \(f(p_1 \cdots p_k) \) is divisible by \(p_1, \ldots, p_k \).

Now suppose \(f(0) \neq 0 \). Write \(f(T) = c_dT^d + \cdots + c_1T + c_0 = Tg(T) + c_0 \), where \(c_0 = f(0) \) and \(g(T) \) is a nonzero polynomial. Factor \(f(0) \) into primes as \(\pm p_1^{e_1} \cdots p_k^{e_k} \). For each positive integer \(n \),

\[f(n) = ng(n) + f(0) = ng(n) \pm p_1^{e_1} \cdots p_k^{e_k} \cdot p_k^{-1} \cdot \cdots \cdot p_1^{-1} \cdot \]

If \(n \) is divisible by \(p_1^{e_1+1} \cdots p_k^{e_k+1} \) then the power of each \(p_i \) in \(f(n) \) is \(e_i \) (why?). Therefore \(f(n) = f(0)N \) where \(N \) is not divisible by any of \(p_1, \ldots, p_{k-1} \). The equation \(f(n) = \pm f(0) \) has only finitely many solutions in \(\mathbb{Z} \), while there are infinitely many multiples of \(p_1^{e_1+1} \cdots p_k^{e_k+1} \), so there is an \(n \) that’s a multiple of \(p_1^{e_1+1} \cdots p_k^{e_k+1} \) such that \(f(n) \neq \pm f(0) \). Therefore \(f(n) = f(0)N \) where \(|N| \geq 2 \). A prime factor of \(N \) is not any of \(p_1, \ldots, p_{k-1} \), so \(f(n) \) has \(k \) prime factors. \(\square \)