
ANALOGIES WITH POLYNOMIALS

KEITH CONRAD

Very early in our mathematical education – in fact in junior high school or
in high school itself – we are introduced to polynomials. For a seemingly
endless amount of time we are drilled, to the point of utter boredom, in
factoring them, multiplying them, dividing them, simplifying them. Facility
in factoring a quadratic becomes confused with genuine mathematical talent.

I. Herstein

1. The Basic Analogies

Similarities between Z and F [T] are an important theme in number theory. The following
table collects some analogous concepts in Z and in F [T].

Z F [T] Similarity
±1 nonzero constants the units

prime irreducible have only trivial factors
|n| deg f role in division theorem

positive monic (lead. coeff = 1) standard unit multiple

A polynomial is called monic when it has leading coefficient 1, such as T 2+7T +3 but not
2T 2 + 5T − 1. Every nonzero polynomial in F [T] has exactly one monic constant multiple:
just multiply through the polynomial by the inverse of the leading coefficient.

Example 1.1. In Q[T], the monic constant multiple of 2T 2 + 5T − 1 is 1
2(2T 2 + 5T − 1) =

T 2 + 5
2T −

1
2 . In F7, 2 · 4 = 1, so the monic constant multiple of 2T 2 + 5T − 1 in F7[T] is

4(2T 2 + 5T − 1) = T 2 + 6T + 3.

Positive integers are closed under multiplication and monic polynomials are closed under
multiplication. Positive integers are also closed under addition but monic polynomials are
not generally closed under addition. This is an important difference!

By definition, a prime in Z is a number which is not ±1 and its only factors are ±1 and
± itself. Similarly, a polynomial in F [T] is called irreducible when it is nonconstant (that
is, is not a unit) and its only factors are nonzero constants and nonzero constant multiples
of itself. Primes will be written as p and irreducible polynomials will be written as p(T).1

Here are some analogous results in Z and F [T]:

(1) In Z, |mn| = |m||n|. In F [T], deg fg = deg f + deg g.
(2) The units in Z have absolute value 1 (which is the smallest absolute value possible for

nonzero integers) and the units in F [T] have degree 0 (the smallest degree possible
for nonzero polynomials).

(3) In Z if a | b then |a| ≤ |b|. In F [T], if f | g then deg f ≤ deg g.

1Some people write irreducible polynomials as π(T), where that use of the letter π has nothing to do
with the number 3.1415926

1

2 KEITH CONRAD

(4) If a | b and b | a in Z then a = ±b, while if f | g and g | f in F [T] then f = cg for
some nonzero constant c.

(5) Every integer other than 0 and ±1 is a product of primes (allowing negative primes!),
while every polynomial in F [T] other than a constant is a product of irreducible
polynomials.

The most important similarity between Z and F [T] is the division theorem in both
settings. We state them without proof, using similar wording.

Theorem 1.2. For a, b ∈ Z with b 6= 0, there are unique q and r in Z such that a = bq + r
with 0 ≤ r < |b|.

Theorem 1.3. For f, g ∈ F [T] with g 6= 0, there are unique q and r in F [T] such that
f = gq + r with r = 0 or deg r < deg g.

The greatest common divisor of two integers is the common divisor largest in size (so
always positive). In F [T], the greatest common divisor of two polynomials is the common
monic factor with the largest degree. Examples will be worked out in the next section.

Two integers are called relatively prime when their only common factors are ±1. Simi-
larly, two polynomials in F [T] are called relatively prime when their only common factors
are nonzero constants. In both Z and F [T], relative primality means the only common
factors are units (±1 in Z and nonzero constants in F [T]). Euclid’s algorithm is the stan-
dard method to compute greatest common divisors in Z (so, in particular, to determine
relative primality) while a variant of Euclid’s algorithm in F [T] will perform the same role
for polynomials.

The standard chain of reasoning

div. thm. Euclid Bezout p | ab⇒ p | a or p | b unique factorization

in Z, where p is a prime, carries over to F [T] nearly verbatim, with only minor changes
needed in most proofs:

div. thm. Euclid Bezout p(T) | f(T)g(T)⇒ p(T) | f(T) or p(T) | g(T) u.f.

in F [T], where p(T) is an irreducible.
There is one important difference between Z and F [T]. Division in Z involves remainders

≥ 0, so if two integers are relatively prime Euclid’s algorithm will always have last nonzero
remainder 1. But this is false with polynomials: the last nonzero remainder in Euclid’s
algorithm for polynomials might be a nonzero constant other than 1, so writing an F [T]-
linear combination of relatively prime polynomials as 1 can involve some additional scaling
which we don’t have to do in Z.

Example 1.4. In R[T], let f(T) = T 2 + 1 and g(T) = T − 1. Certainly f(T) and g(T) are
relatively prime: they have no common factor in R[T] other than nonzero constants. When
we carry out Euclid’s algorithm on these two polynomials we find

T 2 + 1 = (T − 1)(T + 1) + 2

T − 1 = 2

(
1

2
T − 1

2

)
+ 0,

so the last nonzero remainder is 2. This is a nonzero constant in R[T] but it is not 1. By
convention we normalize the gcd of two polynomials to be monic, so the gcd of T 2 + 1 and
T − 1 is called 1, not 2.

ANALOGIES WITH POLYNOMIALS 3

2. Euclid and Bezout: an example in Q[T]

Bezout’s identity in Z says for a and b in Z that we can write

ax + by = (a, b)

for some integers x and y. Values for x and y can be found by using back-substitution into
Euclid’s algorithm for a and b. Similarly, Bezout’s identity for F [T] says for f(T) and g(T)
in F [T] that

f(T)u(T) + g(T)v(T) = (f, g),

for some u(T) and v(T) in F [T]. Here too the polynomials u(T) and v(T) can be found
using back-susbtitution into Euclid’s algorithm for f(T) and g(T).

Example 2.1. Let f(T) = T 4 +T 3 +T 2 +T + 1 and g(T) = T 3− 2T − 4. We will perform
Euclid’s algorithm to compute a greatest common divisor of f(T) and g(T) in Q[T]:

T 4 + T 3 + T 2 + T + 1 = (T 3 − 2T − 4)(T + 1) + (3T 2 + 7T + 5)(2.1)

T 3 − 2T − 4 = (3T 2 + 7T + 5)

(
1

3
T − 7

9

)
+

(
16

9
T − 1

9

)
3T 2 + 7T + 5 =

(
16

9
T − 1

9

)(
27

16
T +

1035

256

)
+

1395

256

16

9
T − 1

9
=

1395

256

(
4096

12555
T − 256

12555

)
+ 0.

In practice, once we reach a nonzero constant as a remainder we can stop, just as we do
when we get a remainder of 1 in Euclid’s algorithm for Z: the next step will definitely have
a remainder of 0, so the nonzero constant remainder 1395

256 will be the last nonzero remainder
and there is no point in performing the next step. Since the last nonzero remainder is
a nonzero constant, f and g are relatively prime in Q[T]. Even though the last nonzero
remainder is not 1, but some other nonzero constant, we still write “(f, g) = 1” because
(f, g) denotes the monic greatest common divisor.

Now let’s obtain Bezout’s identity for the f and g of Example 2.1 by back substitution
into Euclid’s algorithm from (2.1):

1395

256
= (3T 2 + 7T + 5)−

(
16

9
T − 1

9

)(
27

16
T +

1035

256

)
= (3T 2 + 7T + 5)−

(
(T 3 − 2T − 4)− (3T 2 + 7T + 5)

(
1

3
T − 7

9

))(
27

16
T +

1035

256

)
= (3T 2 + 7T + 5)

(
9

16
T 2 +

9

256
T − 549

256

)
− (T 3 − 2T − 4)

(
27

16
T +

1035

256

)
...

= f ·
(

9

16
T 2 +

9

256
T − 549

256

)
+ g ·

(
− 9

16
T 3 − 153

256
T 2 +

27

64
T − 243

128

)
.

Multiplying through by the constant 256/1395 makes the left side 1:

(2.2) 1 = f ·
(

16

155
T 2 +

1

155
T − 61

155

)
+ g ·

(
− 16

155
T 3 − 17

155
T 2 +

12

155
T − 54

155

)
.

4 KEITH CONRAD

3. Modular arithmetic in Q[T]

In Z, modular arithmetic concerns the congruence relation

a ≡ b mod m,

which means m | (a− b) or a = b + mk for some k ∈ Z. Every integer is congruent modulo
m to its remainder under division by m, and we can add and multiply modulo m without
worrying about which representatives we use:

a ≡ b mod m, c ≡ d mod m =⇒ a + c ≡ b + d mod m, ac ≡ bd mod m.

All of this can be adapted to polynomials in F [T] for a field F : for a nonconstant
m(T) ∈ F [T], define f(T) ≡ g(T) mod m(T) when m(T) | (f(T) − g(T)), or equivalently
when f(T) = g(T) + m(T)k(T) for some k(T) ∈ F [T].

Example 3.1. In Q[T] we have T 7 ≡ T 5 + 2T 3 mod T 2 − 2 since

T 7 − (T 5 + 2T 3) = T 3(T 4 − T 2 − 2) = T 3(T 2 − 2)(T 2 + 1),

which is a multiple of T 2 − 2.
Every polynomial when divided by T 2 − 2 has a remainder of the form aT + b, so every

polynomial in Q[T] is congruent modulo T 2 − 2 to a polynomial of the form aT + b. For
example,

T 7 = (T 2 − 2)(T 5 + 2T 3 + 4T) + 8T =⇒ T 7 ≡ 8T mod T 2 − 2.

When degm(T) = d, every polynomial in F [T] is congruent to a unique “remainder” of
the form a0 + a1T + · · ·+ ad−1Td− 1.

We can make the calculation in the previous example more efficiently by using the fact
that m(T) ≡ 0 mod m(T). From T 2 − 2 ≡ 0 mod T 2 − 2 we have T 2 ≡ 2 mod T 2 − 2, so

T 3 = T 2T ≡ 2T mod T 2 − 2,

T 4 = T 3T ≡ (2T)T ≡ 2T 2 ≡ 2(2) ≡ 4 mod T 2 − 2,

T 7 = T 3T 4 ≡ (2T)(4) ≡ 8T mod T 2 − 2.

Example 3.2. In Q[T] let f(T) = T 4 + T 3 + T 2 + T + 1 and g(T) = T 3 − 2T − 4 as
in Example 2.1. We found in (2.2), from Euclid’s algorithm and back-substitution (and
multiplication by the reciprocal of the last nonzero remainder) that

1 = f ·
(

16

155
T 2 +

1

155
T − 61

155

)
+ g ·

(
− 16

155
T 3 − 17

155
T 2 +

12

155
T − 54

155

)
.

Reducing both sides mod g,

f ·
(

16

155
T 2 +

1

155
T − 61

155

)
≡ 1 mod g.

Reducing both sides mod f ,

1 ≡ g ·
(
− 16

155
T 3 − 17

155
T 2 +

12

155
T − 54

155

)
mod f.

In this way we found inverses of f mod g and g mod f .

ANALOGIES WITH POLYNOMIALS 5

4. Solving simultaneous congruences: an example in Q[T]

In Z, if we want to solve the pair of congruence conditions

x ≡ 2 mod 5, x ≡ 11 mod 19,

we lift the first congruence to Z in the form x = 2 + 5y for some y ∈ Z and substitute that
into the second congruence and solve for y:

2 + 5y ≡ 11 mod 19⇒ 5y ≡ 9 mod 19⇒ y ≡ 17 mod 19.

Thus y = 17 + 19z for some integer z, so x = 2 + 5(17 + 19z) = 87 + 95z, so x ≡ 87 mod 95.
Conversely, if x ≡ 87 mod 95 then x ≡ 2 mod 5 and x ≡ 11 mod 19 since 87 fits both
conditions and the modulus 95 is divisible by 5 and 19.

We can solve polynomial congruences in the same way. Consider in Q[T] the two con-
gruence conditions

(4.1) f(T) ≡ 3T mod T 2 + 1, f(T) ≡ 2T 2 + 1 mod T 3.

Here the unknown we are looking for is f(T), not T : T is just a variable for the polynomials.
We want an f(T) in Q[T] that fits both congruence conditions in (4.1).

Lift the first congruence into Q[T] by writing it as

(4.2) f(T) = 3T + (T 2 + 1)g(T)

for some g(T) ∈ Q[T]. Substitute this into the second congruence:

3T + (T 2 + 1)g(T) ≡ 2T 2 + 1 mod T 3.

Subtracting 3T from both sides,

(4.3) (T 2 + 1)g(T) ≡ 2T 2 − 3T + 1 mod T 3.

We now need to invert T 2 + 1 mod T 3. This will be done with Euclid’s algorithm: in Q[T],

T 3 = (T 2 + 1)T − T,

T 2 + 1 = (−T)(−T) + 1,

so

1 = T 2 + 1− (−T)(−T)

= T 2 + 1 + (T)(−T)

= T 2 + 1 + (T)(T 3 − (T 2 + 1)T)

= T 2 + 1 + (T)(T 3)− (T 2 + 1)(T 2)

= (T 2 + 1)(−T 2 + 1) + (T 3)(T),

so (T 2 + 1)(−T 2 + 1) ≡ 1 mod T 3 . Therefore in Q[T], the inverse of T 2 + 1 mod T 3 is

−T 2 + 1. Multiplying both sides of (4.3) by −T 2 + 1 gives

g(T) ≡ (−T 2 + 1)(2T 2 − 3T + 1) mod T 3

≡ −2T 4 + 3T 3 + T 2 − 3T + 1 mod T 3

≡ T 2 − 3T + 1 mod T 3

6 KEITH CONRAD

since T 3 ≡ 0 mod T 3 and T 4 ≡ 0 mod T 3. Therefore g(T) = T 2 − 3T + 1 + (T 3)h(T) for
some h(T) ∈ Q[T], and substituting this formula for g(T) into (4.2) shows an f(T) fitting
the two original congruence conditions must have the form

f(T) = 3T + (T 2 + 1)(T 2 − 3T + 1 + (T 3)h(T))

= T 4 − 3T 3 + 2T 2 + 1 + (T 2 + 1)(T 3)h(T),

so

f(T) ≡ T 4 − 3T 3 + 2T 2 + 1 mod (T 2 + 1)(T 3).

As a check that T 4 − 3T 3 + 2T 2 + 1 fits the original two congruence conditions, in Q[T]

(T 4 − 3T 3 + 2T 2 + 1)− 3T = T 4 − 3T 3 + 2T 2 − 3T + 1 = (T 2 + 1)(T 2 − 3T + 1)

and

(T 4 − 3T 3 + 2T 2 + 1)− (2T 2 + 1) = T 4 − 3T 3 = T 3(T − 3).

Therefore T 4 − 3T 3 + 2T 2 + 1 works, and more generally any polynomial f(T) in Q[T]
such that

f(T) ≡ T 4 − 3T 3 + 2T 2 + 1 mod (T 2 + 1)T 3

satisfies the two congruence conditions in (4.1) and such f(T) form the complete set of
solutions to the two congruences in (4.1).

5. Examples in Fp[T]

Using the same polynomials f(T) = T 4 + T 3 + T 2 + T + 1 and g(T) = T 3 − 2T − 4
as before, now we will do calculations with them in Fp[T] for small p. Here think of the
coefficients of f and g as integers modulo p.

Example 5.1. We’ll calculate (f, g) in Fp[T] for p = 2, 3, 5, and 7.
In F2[T], g(T) = T 3 (the linear and constant terms in g(T) are 0 in F2). Then Euclid’s

algorithm on f(T) and g(T) in F2[T] is

T 4 + T 3 + T 2 + T + 1 = (T 3)(T + 1) + (T 2 + T + 1)(5.1)

T 3 = (T 2 + T + 1)(T + 1) + 1,

and we stop at the nonzero constant remainder: (f, g) = 1 in F2[T].
In F3[T], g(T) = T 3 + T + 2 and Euclid’s algorithm on f(T) and g(T) is

T 4 + T 3 + T 2 + T + 1 = (T 3 + T + 2)(T + 1) + (T + 2)(5.2)

T 3 + T + 2 = (T + 2)(T 2 + T + 2) + 1,

so (f, g) = 1 in F3[T].
In F5[T], g(T) = T 3 + 3T + 1 and Euclid’s algorithm on f(T) and g(T) is

T 4 + T 3 + T 2 + T + 1 = (T 3 + 3T + 1)(T + 1) + (3T 2 + 2T)(5.3)

T 3 + 3T + 1 = (3T 2 + 2T)(2T + 2) + (4T + 1)

3T 2 + 2T = (4T + 1)(2T) + 0,

so the last nonzero remainder is not constant: f(T) and g(T) have greatest common divisor
4T + 1 in F5[T], so their monic gcd is its monic scalar multiple: (f, g) = −(4T + 1) = T + 4.
We can explicitly factor out T + 4 from both f and g in F5[T]:

f(T) = (T + 4)(T 3 + 2T 2 + 3T + 4), g(T) = (T + 4)(T 2 + T + 4).

ANALOGIES WITH POLYNOMIALS 7

In F7[T], g(T) = T 3 + 5T + 3 and Euclid’s algorithm on f(T) and g(T) is

T 4 + T 3 + T 2 + T + 1 = (T 3 + 5T + 3)(T + 1) + (3T 2 + 5)(5.4)

T 3 + 5T + 3 = (3T 2 + 5)(5T) + (T + 3)

3T 2 + 5 = (T + 3)(3T + 5) + 4,

and we stop since we have reached a nonzero constant, 4. The gcd of f and g in F7[T] is 1.
Table 1 summarizes our computations. We list both the last nonzero remainder in Euclid’s

algorithm and the (monic) gcd.

F [T] Last Remainder (f, g)
Q[T] 1395/256 1
F2[T] 1 1
F3[T] 1 1
F5[T] 4T + 1 T + 4
F7[T] 4 1

Table 1. Euclid’s algorithm on f(T) = T 4 + T 3 + T 2 + T + 1, g(T) = T 3 − 2T − 4

Remark 5.2. In F5[T] there is a nonconstant gcd. There is one prime p 6= 5 such that
f(T) and g(T) are not relatively prime in Fp[T]: in F31[T], (f(T), g(T)) = T − 2.

The denominator 155 in the coefficients of (2.2) factors as 5 · 31. This is related to the
roles of 5 and 31 as primes where f(T) mod p and g(T) mod p have nonconstant gcd.

Example 5.3. Now we figure out how to write (f, g) in Fp[T] as a combination of f(T) mod
p and g(T) mod p for p = 2, 3, 5, and 7.

In F2[T] we get by back-substitution in Euclid’s algorithm from (5.1)

1 = g − (T 2 + T + 1)(T + 1)

= g − (f − g(T + 1))(T + 1))

= f · (T + 1) + g · (1 + (T + 1)(T + 1))

= f · (T + 1) + g · T 2.

Using back-substitution in F3[T] from (5.2),

1 = g − (T + 2)(T 2 + x + 2)

= g − (f − g(T + 1))(T 2 + T + 2)

= f · (2T 2 + 2T + 1) + g · (1 + (T + 1)(T 2 + T + 2))

= f · (2T 2 + 2T + 1) + g · (T 3 + 2T 2).

In F5[T] from (5.3),

4T + 1 = g − (3T 2 + 2T)(2T + 2)

= g − (f − g(T + 1)(2T + 2))

= f · (3T + 3) + g · (1 + (T + 1)(2T + 2))

= f · (3T + 3) + g · (2T 2 + 4T + 3).

8 KEITH CONRAD

The gcd we found in Euclid’s algorithm, 4T + 1, is not monic. To write the monic gcd of f
and g as an F5[T]-linear combination of f and g we simply multiply through the equations
by −1 = 4:

T + 4 = f · (2T + 2) + g · (3T 2 + T + 2).

In F7[T] from (5.4),

4 = (3T 2 + 5)− (T + 3)(3T + 5)

= (3T 2 + 5)− (g − (3T 2 + 5)(5T))(3T + 5)

= (3T 2 + 5)(1 + 5T (3T + 5)) + g(4T + 2)

= (3T 2 + 5)(T 2 + 4T + 1) + g(4T + 2)

= (f − g(T + 1))(T 2 + 4T + 1) + g(4T + 2)

= f · (T 2 + 4T + 1) + g · (6T 3 + 2T 2 + 6T + 1).

Multiplying through by 4−1 = 2,

1 = f · (2T 2 + T + 2) + g · (5T 3 + 4T 2 + 5T + 2).

Example 5.4. Similar to the solution of simultaneous congruences in Q[T] in Section 4,
now consider in F5[T] the two congruence conditions

(5.5) f(T) ≡ 3T mod T 2 + 1, f(T) ≡ 2T 2 + 1 mod T 3.

To find f(T) in F5[T] fitting both congruence conditions, we carry out the same procedure
as in Q[T], but now all calculations are in F5[T].

Lift the first congruence into F5[T] as

(5.6) f(T) = 3T + (T 2 + 1)g(T)

where g(T) ∈ F5[T]. Substituting this into the second congruence,

3T + (T 2 + 1)g(T) ≡ 2T 2 + 1 mod T 3.

Subtracting 3T from both sides (note −3T = 2T in F5[T]),

(5.7) (T 2 + 1)g(T) ≡ 2T 2 + 2T + 1 mod T 3.

To invert T 2 + 1 mod T 3 we use Euclid’s algorithm: F5[T],

T 3 = (T 2 + 1)T + 4T,

T 2 + 1 = 4T (4T) + 1,

so

1 = T 2 + 1− 4T (4T)

= T 2 + 1− 4T (T 3 − (T 2 + 1)T)

= (T 2 + 1)(4T 2 + 1) + T 3(−4T).

Therefore (T 2 + 1)(4T 2 + 1) ≡ 1 mod T 3 , so in F5[T], the inverse of T 2 + 1 mod T 3 is

4T 2 + 1. That tells us to multiply both sides of (5.7) by 4T 2 + 1, and we get

g(T) ≡ (4T 2 + 1)(2T 2 + 2T + 1) mod T 3

≡ 3T 4 + 3T 3 + T 2 + 2T + 1 mod T 3

≡ T 2 + 2T + 1 mod T 3.

ANALOGIES WITH POLYNOMIALS 9

Lifting this into F5[T] as g(T) = T 2 + 2T + 1 + T 3h(T) for h(T) ∈ F5[T], substitute this
formula for g(T) into (5.6) to obtain a formula for f(T): any f(T) fitting the congruence
conditions in (5.5) is

f(T) = 3T + (T 2 + 1)(T 2 + 2T + 1 + T 3h(T))

= T 4 + 2T 3 + 2T 2 + 1 + (T 2 + 1)T 3h(T),

so

f(T) ≡ T 4 + 2T 3 + 2T 2 + 1 mod (T 2 + 1)T 3.

To check that T 4 + 2T 3 + 2T 2 + 1 fits the conditions in (5.5), in F5[T]

(T 4 + 2T 3 + 2T 2 + 1)− 3T = (T 2 + 1)(T + 1)

and
(T 4 + 2T 3 + 2T 2 + 1)− (2T 2 + 1) = T 3(T + 2).

Therefore T 4 + 2T 3 + 2T 2 + 1 works, and more generally every polynomial f(T) in F5[T]
such that

f(T) ≡ T 4 + 2T 3 + 2T 2 + 1 mod (T 2 + 1)T 3

satisfies the two congruence conditions in (5.5) and such f(T) form the complete set of
solutions to the two congruences in (5.5).

	1. The Basic Analogies
	2. Euclid and Bezout: an example in Q[T]
	3. Modular arithmetic in Q[T]
	4. Solving simultaneous congruences: an example in Q[T]
	5. Examples in Fp[T]

