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1. Introduction

A definite integral such as ∫ 3

0
sin(x2) dx,

corresponding to the shaded region below, can’t be computed exactly. Methods of approx-
imating it, like the midpoint rule or trapezoid rule, depend on the number of subintervals
chosen (the value of n). As n grows, the approximation generally improves.
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If you want to approximate the integral to within a specified error1, say .01 or .001, then
you need to determine what choice of n gives an estimate within the desired error. This
depends on which approximation method is used.

Midpoint Rule: If

∫ b

a
f(x) dx is approximated by the midpoint rule with n subintervals,

then

(1.1)

∣∣∣∣∫ b

a
f(x) dx−Mn

∣∣∣∣ ≤ K2(b− a)3

24n2
,

where K2 is an upper bound on |f ′′(x)| over [a, b]: |f ′′(x)| ≤ K2 for a ≤ x ≤ b.

Trapezoid Rule: If

∫ b

a
f(x) dx is approximated by the trapezoid rule with n subinter-

vals, then

(1.2)

∣∣∣∣∫ b

a
f(x) dx− Tn

∣∣∣∣ ≤ K2(b− a)3

12n2
,

where K2 is an upper bound on |f ′′(x)| over [a, b]: |f ′′(x)| ≤ K2 for a ≤ x ≤ b.

1It makes no sense to insist on an exact error in the approximation, since that is tantamount to computing
the value exactly by adding the exact error to the approximation. Only bounds on error are practical. This
is similar to the use of confidence intervals in statistics.
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Simpson’s Rule: If

∫ b

a
f(x) dx is approximated by Simpson’s rule with n subintervals

(recall n must be even), then

(1.3)

∣∣∣∣∫ b

a
f(x) dx− Sn

∣∣∣∣ ≤ K4(b− a)5

180n4
,

where K4 is an upper bound on |f (4)(x)| over [a, b]: |f (4)(x)| ≤ K4 for a ≤ x ≤ b.

We want to discuss two aspects of applying these error bounds:

(1) Finding reasonable values for K2 and K4: how do you figure out an upper bound

on |f ′′(x)| or |f (4)(x)| over an interval?
(2) Converting the upper bounds on the desired error into lower bounds on the n to be

used in the approximation, e.g., if we want to find

∫ b

a
f(x) dx to within .001 using

the trapezoid rule, at least how many subintervals are needed in the trapezoid rule?

2. Upper Bounds on Functions

To find reasonable upper bounds for second and fourth derivatives of functions, we will
use combinations of the following five ideas:

B1) Triangle inequality: for any numbers a and b, |a±b| ≤ |a|+|b|. For three numbers
|a± b± c| ≤ |a|+ |b|+ |c|, and so on.

B2) Absolute values of sine and cosine are at most 1: | sin t| ≤ 1 and | cos t| ≤ 1 for all t.
B3) If h(x) is monotonic (always increasing or always decreasing) and positive on a closed

interval, then the largest value of |h(x)| is at an endpoint: the right endpoint if it’s
increasing and left endpoint if it’s decreasing. If h(x) is monotonic on an interval
but possibly negative, then the largest value of |h(x)| is at one of the endpoints.

B4) If 0 ≤ g(x) ≤ m and 0 ≤ h(x) ≤M , then g(x)h(x) ≤ mM .
B5) To make a ratio of positive numbers a/b larger, make a larger or b smaller (or both).

Example 2.1. (B3) On the interval [0, 3], ex ≤ e3 since ex is increasing.

Example 2.2. (B5) On the interval [0, 3], 1
2x2+3

≤ 1
3 since we can make 1

2x2+3
go up by

making 2x2 + 3 go down, and the least value of 2x2 + 3 on [0, 3] is 3.

Example 2.3. On the interval [0, 3], |x3 − x + 5| ≤ |x|3 + |x|+ 5 ≤ 33 + 3 + 5 = 35.

You may notice one “obvious” method missing from our list of methods to bound a
function: differential calculus. While differential calculus provides a standard technique for
finding the exact maximum value of a function, the simple ideas above, which don’t need
calculus, are usually sufficient for what we want to do here.

Let’s consider
∫ 3
0 sin(x2) dx. Here f(x) = sin(x2), whose first few derivatives are

f ′(x) = 2x cos(x2), f ′′(x) = −4x2 sin(x2) + 2 cos(x2),

f ′′′(x) = −8x3 cos(x2)− 12x sin(x2), f (4)(x) = (16x4 − 12) sin(x2)− 48x2 cos(x2).

To bound the error in approximating with the trapezoid rule, we seek a K2 such that

(2.1) | − 4x2 sin(x2) + 2 cos(x2)| ≤ K2 for 0 ≤ x ≤ 3,

while for Simpson’s rule we seek a K4 such that

(2.2) |(16x4 − 12) sin(x2)− 48x2 cos(x2)| ≤ K4 for 0 ≤ x ≤ 3.

Let’s see how our estimation methods are used to find good values of K2 and K4.
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Bounding the second derivative: On the left side of (2.1), by the triangle inequality

| − 4x2 sin(x2) + 2 cos(x2)| ≤ | − 4x2 sin(x2)|+ |2 cos(x2)|.

Since the absolute value is multiplicative2 we have

| − 4x2 sin(x2)| = | − 4||x2|| sin(x2)| = 4|x|2| sin(x2)| ≤ 4|x|2.

Similarly, |2 cos(x2)| = |2|| cos(x2)| ≤ 2. Therefore

| − 4x2 sin(x2) + 2 cos(x2)| ≤ 4|x|2 + 2.

Since 0 ≤ x ≤ 3, |x|2 is at most 9, so our final estimate is

| − 4x2 sin(x2) + 2 cos(x2)| ≤ 4 · 9 + 2 = 36 + 2 = 38.

This is not saying 38 is the biggest value of the left side for 0 ≤ x ≤ 3, but only that 38 is
an upper bound on the left side. The actual maximum value of | − 4x2 sin(x2) + 2 cos(x2)|
for 0 ≤ x ≤ 3 is around 32, so the bound we found with the triangle inequality is not super
sharp, but it’s not that far off either. As basic techniques go, the triangle inequality does a
good job. We can use

K2 = 38.

Bounding the fourth derivative: For the left side of (2.2), the triangle inequality tells us

|(16x4 − 12) sin(x2)− 48x2 cos(x2)| ≤ |(16x4 − 12) sin(x2)|+ |48x2 cos(x2)|.

From multiplicativity of the absolute value,

|(16x4 − 12) sin(x2)| = |16x4 − 12|| sin(x2)| ≤ |16x4 − 12| ≤ |16x4|+ 12 = 16|x|4 + 12.

and

|48x2 cos(x2)| = |48||x|2| cos(x2)| ≤ 48|x|2.
Therefore

|(16x4 − 12) sin(x2)− 48x2 cos(x2)| ≤ 16|x|4 + 12 + 48|x|2.
For 0 ≤ x ≤ 3, |x|2 is at most 9, so

|(16x4 − 12) sin(x2)− 48x2 cos(x2)| ≤ 16|x|4 + 12 + 48|x|2 = 16 · 81 + 12 + 48 · 9 = 1740.

As before, 1740 is not the biggest value of the left side of the inequality; it’s just an upper
bound on the left side. (The actual maximum value of the left side is around 1164, which
would need techniques more sophisticated than the triangle inequality to find.) We will use

K4 = 1740.

Putting these values for K2 and K4 into (1.1), (1.2), and (1.3), we have

(2.3)

∣∣∣∣∫ 3

0
sin(x2) dx−Mn

∣∣∣∣ ≤ 38(3− 0)3

24n2
=

1026

24n2
,

(2.4)

∣∣∣∣∫ 3

0
sin(x2) dx− Tn

∣∣∣∣ ≤ 38(3− 0)3

12n2
=

1026

12n2
,

(2.5)

∣∣∣∣∫ 3

0
sin(x2) dx− Sn

∣∣∣∣ ≤ 1740(3− 0)4

180n2
=

422820

180n4
,

2That is, |ab| = |a||b| for all a and b.
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3. Lower Bounds on n

In equations (2.3)–(2.5) we have simple expressions in n that bound the error (the differ-
ence between the integral and the estimate Mn, Tn, or Sn) from above: the expressions are
each bigger than the error. Therefore if we want to make the error small, make the upper
bounds on the error that small.

Question: For which n does Mn estimate

∫ 3

0
sin(x2) dx to within .001?

This is asking for which n we can be sure that the error |
∫ 3
0 sin(x2) dx−Mn| is ≤ .001.

By (2.3), the way to guarantee the error doesn’t exceed .001 is to make sure the larger value
1026/(24n2) doesn’t exceed .001. That is, the inequality 1026/(24n2) ≤ .001 is sufficient to
be sure the error by .001.

Using some algebra,

1026

24n2
≤ .001⇐⇒ 1026

24n2
≤ 1

1000
⇐⇒ 1026(1000)

24
≤ n2 ⇐⇒ n ≥

√
(1026)(1000)/24 ≈ 206.7

so we can use n = 207 (or higher).

Question: For which n does Tn estimate

∫ 3

0
sin(x2) dx to within .001?

Using (2.4), we can answer the question using n that makes 1026/(12n2) ≤ .001:

1026

12n2
≤ .001⇐⇒ 1026

12n2
≤ 1

1000
⇐⇒ 1026(1000)

12
≤ n2 ⇐⇒ n ≥

√
(1026)(1000)/12 ≈ 292.4,

so use n = 293 (or higher).

Question: For which (even!) n does Sn estimate

∫ 3

0
sin(x2) dx to within .001?

Using (2.5) we want to pick n that makes 422820/(180n4) ≤ .001:

422820

180n4
≤ .001⇐⇒ 422820 · 1000

180
≤ n4 ⇐⇒ n ≥ 4

√
422820 · 1000/180 ≈ 39.1,

so use n = 40 (or higher even integers).

While n at or above the bounds in each answer are guaranteed to lead to approximations
within .001 of the integral, we are not saying for smaller values of n that the approximations
don’t estimate the integral to within .001. What we are after here are sufficient conditions
for an approximation to be close, and the bounds in each answer give us such n.
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