AN EXAMPLE OF PARTIAL FRACTIONS

KEITH CONRAD

We describe here how to calculate

$$
\int \frac{x+7}{x^{3}+9 x} d x
$$

by first getting the partial fraction decomposition of $(x+7) /\left(x^{3}+9 x\right)$ in two ways.
The decomposition takes the form

$$
\frac{x+7}{x^{3}+9 x}=\frac{x+7}{x\left(x^{2}+9\right)}=\frac{A}{x}+\frac{B+C}{x^{2}+9}
$$

since the quadratic factor $x^{2}+9$ in the denominator does not factor further. Clearing the denominator, we have

$$
\begin{equation*}
x+7=A\left(x^{2}+9\right)+(B x+C) x \tag{1}
\end{equation*}
$$

We present two ways to find A, B, and C from (1).
Method 1. Setting $x=0$ in (1) kills off the second term, and we get

$$
7=A(9)+0=9 A \Longrightarrow A=\frac{7}{9}
$$

so now we know A. Unfortunately there is not a number we can plug in for x in (1) to isolate just B or just C. Instead let's plug in two simple choices, say 1 and -1 (since we haven't use them yet; if we had then we could try 2 and -2 , or 2 and 3 , or ...). At $x=1$ and at $x=-1$, (1) becomes

$$
\begin{aligned}
& 8=10 A+B+C=\frac{70}{9}+B+C \\
& 6=10 A+(-B+C)(-1)=\frac{70}{9}+B-C
\end{aligned}
$$

Adding the two equations cancels C :

$$
14=\frac{140}{9}+2 B \Longrightarrow 7=\frac{70}{9}+B \Longrightarrow B=7-\frac{70}{9}=\frac{63}{9}-\frac{70}{9}=-\frac{7}{9} .
$$

Now we know B, so we can solve for C as

$$
C=8-\frac{70}{9}-B=\frac{72}{9}-\frac{70}{9}+\frac{7}{9}=\frac{72-70+7}{9}=\frac{9}{9}=1 .
$$

Method 2. Collect like powers of x together on both sides of (1):

$$
x+7=(A+B) x^{2}+C x+9 A .
$$

Coefficients of like powers of x on both sides must agree, so

$$
A+B=0, \quad C=1, \quad 9 A=7 .
$$

The last equation tells us $A=7 / 9$ and the first equation then tells us $B=-A=-7 / 9$.
Now that we have (by either method) the partial fraction decomposition

$$
\frac{x+7}{x\left(x^{2}+9\right)}=\frac{7 / 9}{x}+\frac{-(7 / 9) x+1}{x^{2}+9}
$$

we can integrate the left side by integrating the right side:

$$
\begin{equation*}
\int \frac{x+7}{x\left(x^{2}+9\right)} d x=\int \frac{7 / 9}{x} d x+\int \frac{-(7 / 9) x+1}{x^{2}+9} d x=\frac{7}{9} \int \frac{1}{x} d x+\int \frac{-(7 / 9) x+1}{x^{2}+9} d x . \tag{2}
\end{equation*}
$$

On the right, an antiderivative of $1 / x$ is $\ln |x|$. The second integral can be split up:

$$
\int \frac{-(7 / 9) x+1}{x^{2}+9} d x=\int \frac{-(7 / 9) x}{x^{2}+9} d x+\int \frac{1}{x^{2}+9} d x=-\frac{7}{9} \int \frac{x}{x^{2}+9} d x+\int \frac{1}{x^{2}+9} d x .
$$

The first integral on the right, using the substitution $u=x^{2}+9$ (so $d u=2 x d x$ and $\left.x d x=\frac{1}{2} d u\right)$ becomes

$$
\int \frac{x}{x^{2}+9} d x=\int \frac{(1 / 2)}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(x^{2}+9\right)+C,
$$

where we can drop the absolute value signs because $x^{2}+9$ is always positive. An antiderivative of $1 /\left(x^{2}+9\right)$ is $\frac{1}{3} \arctan (x / 3)$ (use the substitution $x=3 t$ to write the integral in terms of t if you want to carry out the details of that), so

$$
-\frac{7}{9} \int \frac{x}{x^{2}+9} d x+\int \frac{1}{x^{2}+9} d x=-\frac{7}{18} \ln \left(x^{2}+9\right)+\frac{1}{3} \arctan \left(\frac{x}{3}\right)+C .
$$

Feeding this into (2), we finally get

$$
\int \frac{x+7}{x\left(x^{2}+9\right)} d x=\frac{7}{9} \ln |x|-\frac{7}{18} \ln \left(x^{2}+9\right)+\frac{1}{3} \arctan \left(\frac{x}{3}\right)+C .
$$

As a check on your understanding, use Method 1 and Method 2 above to derive the partial fraction decomposition

$$
\frac{x^{2}+3 x+1}{x\left(x^{2}+25\right)}=\frac{1 / 25}{x}+\frac{(24 / 25) x+3}{x^{2}+25}
$$

and then use that to show

$$
\int \frac{x^{2}+3 x+1}{x\left(x^{2}+25\right)} d x=\frac{1}{25} \ln |x|+\frac{12}{25} \ln \left(x^{2}+25\right)+\frac{3}{5} \arctan \left(\frac{x}{5}\right)+C .
$$

