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The “escape velocity” from Earth is the minimum velocity needed in order to leave Earth’s
gravitational field. This is the speed needed by rockets going outside of Earth orbit (to the
moon, to Mars, and so on). Computing this velocity is a nice use of improper integrals. To
follow the calculation you’ll need to know about kinetic energy (12mv2), which is the energy
associated to motion, and the concept of work in physics.

To find the escape velocity, we ask: how much work is needed to move an object, against
the force of gravity alone, infinitely far from the Earth? Surprisingly, it turns out only a
finite amount of work is needed! This is based on Newton’s law of gravitation, which says
the gravitational force between two objects of mass m1 and m2 and distance r is

F = G
m1m2

r2
,

where G is a universal constant, called the gravitational constant. It is approximately

6.673×10−11 m3

kg·sec2 . The gravitational force due to Earth is what we must act against when

we want to move an object from the planet’s surface out to infinity.
The gravitational force between a planet and an object above it is F (r) = GMm/r2,

where M is the planet’s mass, m is the object’s mass, and r is the distance from the object
to the center of the planet. (This is based on the assumption that the planet is spherical.)
The work needed to move an object against the force of Earth’s gravity starting at a distance
r from the center of Earth out to a distance r + dr is F (r) dr = (GMm/r2)dr. Letting R
be the radius of the Earth, the total work needed to move an object an infinite distance
from the Earth’s surface is the integrated force of gravity times the infinitesimal distance
dr from r = R out to r =∞:

W =

∫ ∞
R

F (r) dr =

∫ ∞
R

G
Mm

r2
dr.

This is an improper integral, and its value is finite because
∫∞
R dr/r2 converges:

W = GMm

∫ ∞
R
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R
.

Blasting the object off the Earth at an initial velocity v0 gives it initial kinetic energy
1
2mv20 (recall m denotes the object’s mass). The escape velocity is the velocity that would
convert all the kinetic energy to the work W . Equate W and initial kinetic energy:

GMm

R
=

1

2
mv20 =⇒ v20 =

2GM

R
=⇒ v0 =

√
2GM

R
.

Feeding into this the estimates G ≈ 6.673 × 10−11 m3

kg·sec2 , M ≈ 5.9736 × 1024 kg, and

R ≈ 6.4× 106 m, we get v0 ≈ 11161 m/sec, or roughly 11.2 km/sec, which is about 7 miles
per second. This is very fast: it’s over 30 times the speed of sound. (The fastest spacecraft
ever, according to this page, is the Parker Solar Probe, which in 2024 will be traveling
around the Sun at 120 miles per second or 192 km per second.)

https://en.wikipedia.org/wiki/Escape_velocity
https://www.space.com/41447-parker-solar-probe-fastest-spacecraft-ever.html
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An interesting aspect of this calculation is how m, the object’s own mass, canceled when
we set the work equal to the kinetic energy: the escape velocity v0 is independent of the
mass of the object being launched away from Earth.

Remark. For a spacecraft to reach Earth orbit, the necessary orbital velocity is less
than the escape velocity since we’re not trying to leave the influence of the Earth’s gravity
completely. It turns out orbital velocity is smaller than escape velocity by a factor of

√
2:

it is
√
GM/R =

√
2GM/R/

√
2 = v0/

√
2 ≈ 7.9 km/sec, or 4.9 miles/sec.

Knowing the escape velocity, we can work out how much of a spaceflight’s initial mass can
be taken up by anything other than fuel (such as astronauts, satellites, the rocket structure
itself, etc.) if the rocket is going to escape the Earth’s gravitational pull. If a rocket with

• initial mass m0,
• final mass mf (the mass after the fuel is used up, not “mass of fuel”),
• and exhaust velocity vex (the speed of exhaust pushed out the back of the rocket)

achieves a final velocity vf then the rocket equation says

vf = vex ln

(
m0

mf

)
.

Solving this for the mass ratio,
m0

mf
= evf/vex .

A typical value for the exhaust velocity vex is 4 km/sec. Setting vf to be the escape velocity
11.2 km/sec, we get

m0

mf
≈ e11.2/4 ≈ 16.4,

so the proportion of rocket mass at launch that is not fuel is

mf

m0
=

1

16.4
≈ .06 = 6%.

To escape Earth’s graviational pull we need vf ≥ 11.2 km/sec, so m0/mf ≥ 16.4. Thus
mf/m0 ≤ 6%: over 90% of the rocket mass at launch is the fuel.

If the exhaust velocity goes down, then the rocket has less thrust and it makes sense that
even more fuel is needed in the rocket to achieve escape velocity. For example, if vex changes
from 4 km/sec to 3 km/sec then m0/mf = e11.2/3 ≈ 41.8 so mf/m0 ≈ 1/41.8 ≈ .024 = 2.4%:
less than 3% of the initial rocket mass is now available for things other than fuel.

If the mass of the earth doubled, keeping the same radius, then the escape velocity on
Earth would change from 11.2 km/sec to

√
2G(2M)/R ≈

√
2(11.2) ≈ 15.8 km/sec. A

rocket with the same exhaust velocity as initially mentioned, 4 km/sec, would now need

m0/mf = e15.8/4 ≈ 52 (over three times the previous value of 16.4) to reach escape velocity,
making the proportion of rocket mass at launch that’s not fuel equal to 1/52 ≈ 1.9%.
Previously that proportion was 6%. Since 6/1.9 ≈ 3.15, the proportion of rocket mass at
launch that’s not fuel has shrunk by over a factor of 3. If the mass of the earth increased
by a factor of 10, keeping the same radius, then the escape velocity from Earth would be√

10(11.2) ≈ 35.4 km/sec, over a 3-fold increase of the actual value 11.2 km/sec, and a rocket

with exhaust velocity 4 km/sec would reach escape velocity only if m0/mf = e35.4/4 ≈ 6974,
so mf/m0 ≈ .0001: that’s 1/100-th of 1%. Such a rocket is essentially all fuel at launch,
making meaningful space travel totally impractical.

The lesson here is that even though we say human civilization now is in the “space age”,
we are lucky to be able to launch anything into orbit at all.

https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

