VOLUME WITH UNIT SQUARE BASE AND HEIGHT 4

Make horizontal slices starting from a base unit square up to a point at height 4 above the center of the base square. See the figure on the left with the shaded slice at height y, so $0 \leq y \leq 4$.

The y-slice is a square, say of side length $s(y)$, so the area of the y-slice is $A(y)=s(y)^{2}$. The volume will be

$$
\int_{0}^{4} A(y) d y=\int_{0}^{4} s(y)^{2} d y
$$

We will use a similar triangle argument to find $s(y)$. If you cut through the total solid vertically (not horizontally like the slices being made), parallel to two sides of the base and through the middle, you'll get a tall triangle with base 1 and height 4 (see figure above on the right). Within this triangle there is a smaller similar triangle with the same top part and its base has length $s(y)$. What is the height of this smaller triangle? Its base is y units above the bottom, and the total height of the solid is 4 , so this smaller triangle has height $4-y$.

Thus we have two similar triangles, one (big) triangle with base 1 and height 4 and another (smaller) triangle tucked into its top with base $s(y)$ and height $4-y$. Since they are similar,

$$
\frac{\text { base }}{\text { height }}=\frac{1}{4}=\frac{s(y)}{4-y} \Longrightarrow s(y)=\frac{4-y}{4}=1-\frac{y}{4}
$$

As a check on our work, this formula says $s(0)=1$ and $s(4)=0$, which makes geometric sense: when $y=0$ we're at the bottom, where the y-slice has side length 1 , and when $y=4$ we're at the top (a point) where the y-slice is a point with "side length" 0 .

Feed this formula for the side length of the y-slice into the volume integral:

$$
\int_{0}^{4} A(y) d y=\int_{0}^{4} s(y)^{2} d y=\int_{0}^{4}\left(1-\frac{y}{4}\right)^{2} d y
$$

This is a polynomial integral which you can check is $\frac{4}{3}$.

