ETYMOLOGY OF TRIGONOMETRIC FUNCTION NAMES

KEITH CONRAD

In trigonometry, the name "sine" comes through Latin from a Sanskrit word meaning "chord". In the picture of a unit circle below, $\overline{A B}$ has length $\sin \theta$ and this is half a chord of the circle.

The co-functions are functions of complementary angles: $\cos \theta=\sin (\pi / 2-\theta), \cot \theta=$ $\tan (\pi / 2-\theta)$, and $\csc \theta=\sec (\pi / 2-\theta)$. The names "tangent" and "secant" come from lengths of line segments that are either tangent to the unit circle or cut through a unit circle; a line that cuts through a circle is called a secant line. ${ }^{1}$ The figure below will lead to an explanation of these names.

Triangle $O A B$ in the first quadrant of the unit circle is drawn with angle θ at the origin. Its legs, by definition, have lengths $|\overline{O A}|=\cos \theta$ and $|\overline{A B}|=\sin \theta$. The tangent line to the circle at the point $B=(\cos \theta, \sin \theta)$ is drawn perpendicularly to the circle and the x and y-axes are secant lines of the circle. Mark where these secant lines meet the tangent line as points C and D. How long are the segments $\overline{B C}, \overline{O C}, \overline{B D}$, and $\overline{O D}$?

Right triangles $O A B$ and $O B C$ are similar, as they have an angle θ. Since $|\overline{O B}|=1$,

$$
\frac{|\overline{B C}|}{|\overline{O B}|}=\frac{|\overline{A B}|}{|\overline{O A}|} \Longrightarrow|\overline{B C}|=\frac{\sin \theta}{\cos \theta}=\tan \theta \text { and } \frac{|\overline{O C}|}{|\overline{O B}|}=\frac{|\overline{O B}|}{|\overline{O A}|} \Longrightarrow|\overline{O C}|=\frac{1}{\cos \theta}=\sec \theta .
$$

The measure of $\angle B O D$ is $\pi / 2-\theta$ and $\angle O B D$ is a right angle, so $\angle O D B$ has measure θ. Therefore the right triangles $O B D$ and $O A B$ have an angle θ, so they are similar. Reasoning as above,

$$
\frac{|\overline{B D}|}{|\overline{O B}|}=\frac{|\overline{O A}|}{|\overline{A B}|} \Longrightarrow|\overline{B D}|=\frac{\cos \theta}{\sin \theta}=\cot \theta \text { and } \frac{|\overline{O D}|}{|\overline{O B}|}=\frac{|\overline{O B}|}{|\overline{A B}|} \Longrightarrow|\overline{O D}|=\frac{1}{\sin \theta}=\csc \theta .
$$

[^0]The figure below replaces the question marks with the lengths we found, giving geometric interpretations of $\tan \theta$ and $\cot \theta$ as tangent line segment lengths coming from complementary angles, and $\sec \theta$ and $\csc \theta$ as secant line segment lengths coming from complementary angles.

The figures below are an alternate explanation for the tangent and secant function (and co-function) names, using tangent lines at the points $(1,0)$ and $(0,1)$ instead of at the point $(\cos \theta, \sin \theta)$ and the secant line $O B$ instead of the axes. They show $\tan \theta, \sec \theta, \cot \theta$, and $\csc \theta$ are line segment lengths along alternate tangent and secant lines: in the first figure $\tan \theta=|\overline{C D}|$ and $\sec \theta=|\overline{O D}|$, and in the second figure $\cot \theta=|\overline{C D}|$ and $\csc \theta=|\overline{O D}|$.

Historically there were more trigonometric function names (e.g., versin θ for $1-\cos \theta$), but they are now obsolete. Maybe new ones are on the way: see http://www.theonion. com/article/nations-math-teachers-introduce-27-new-trig-functi-33804.

[^0]: ${ }^{1}$ In Latin, tangere means "to touch" and secare means "to cut". Compare with "section."

