DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

KEITH CONRAD

There are six basic trigonometric functions:

$$
\sin x, \quad \cos x, \quad \tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x}
$$

We will always regard the angle x as being in radians. To compute the derivatives of these functions, we start with $\sin x$ and $\cos x$. The derivatives of the other trigonometric functions will follow from these two using the quotient rule.

Below are the graphs of $\sin x$ and $\cos x$.

First we find the derivatives of $\sin x$ and $\cos x$ at $x=0$:

$$
\begin{equation*}
\sin ^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin h}{h}, \quad \cos ^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos h-1}{h} . \tag{1}
\end{equation*}
$$

The graph of $\cos x$ has a horizontal tangent line at $x=0$, so $\cos ^{\prime}(0)=0$. Determining $\sin ^{\prime}(0)$ is more subtle. From the graph of $\sin x$ we can see that $\sin ^{\prime}(0)>0$. Using radian measure for angles we will show $\sin ^{\prime}(0)$ in fact is 1 .

Claim. $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.
Proof of Claim: Pick a small $h>0$. In the figure below we mark off an angle h with respect to the positive x-axis. Let L be the length of a circular arc having radius 1 and angle h, and M be the length of a circular arc starting at ($\cos h, 0$) with angle h.

We will make a comparison of arc lengths. The circular arc with length L is clearly longer than the vertical segment with length $\sin h$, and this vertical segment in turn is longer than the circular arc with with length $M: M<\sin h<L$. What are L and M ?

When an angle θ is measured in radians, the length of a circular arc it cuts out along a circle of radius r is $r \theta$. The arc with length L is on a circle with radius 1 and the arc with length M is on a circle with radius cosh, so if we measure h in radians we get $L=1 \cdot h=h$ and $M=(\cos h) h$. Thus the inequality $M<\sin h<L$ we found above says $(\cos h) h<\sin h<h$, and if we divide by h we get

$$
\begin{equation*}
\cos h<\frac{\sin h}{h}<1 . \tag{2}
\end{equation*}
$$

This was derived for small $h>0$. Since $\cos h$ and $(\sin h) / h$ are even functions, the inequality (2) is true for small $h<0$ too, and hence it's true for all small $h \neq 0$.

As $h \rightarrow 0$ we have $\cos h \rightarrow \cos 0=1$ by continuity. Thus (2) tells us $(\sin h) / h \rightarrow 1$ as $h \rightarrow 0$ by the squeeze theorem. This proves $\sin ^{\prime}(0)=1$ when angles are in radians.

To find the derivatives of $\sin x$ and $\cos x$ for general x we use their addition formulas:

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b, \quad \cos (a+b)=\cos a \cos b-\sin a \sin b
$$

The ratio in the limit definition of the derivative of $\sin x$ is

$$
\begin{aligned}
\frac{\sin (x+h)-\sin x}{h} & =\frac{(\sin x \cos h+\cos x \sin h)-\sin x}{h} \\
& =\sin x \frac{\cos h-1}{h}+\cos x \frac{\sin h}{h}
\end{aligned}
$$

Letting $h \rightarrow 0$ and looking back at (1) tells us

$$
\begin{aligned}
\sin ^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =(\sin x)\left(\cos ^{\prime}(0)\right)+(\cos x)\left(\sin ^{\prime}(0)\right) \\
& =(\sin x) \cdot 0+(\cos x) \cdot 1 \\
& =\cos x .
\end{aligned}
$$

Turning to the derivative of $\cos x$,

$$
\begin{aligned}
\cos ^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\cos x \cos h-\sin x \sin h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \cos x \frac{\cos h-1}{h}-\sin x \frac{\sin h}{h} \\
& =\cos x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =(\cos x)\left(\cos ^{\prime}(0)\right)-(\sin x)\left(\sin ^{\prime}(0)\right) \\
& =-\sin x .
\end{aligned}
$$

Using the quotient rule we get the derivative of $\tan x=\sin x / \cos x$:

$$
\tan ^{\prime} x=\frac{\sin ^{\prime} x \cos x-\cos ^{\prime} x \sin x}{\cos ^{2} x}=\frac{\cos x \cos x-(-\sin x) \sin x}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} .
$$

Since $\sin ^{2} x+\cos ^{2} x=1$ the formula simplifies to $\tan ^{\prime} x=1 / \cos ^{2} x=\sec ^{2} x$. The derivatives of the other trigonometric functions can be found in a similar way:
$\cot ^{\prime} x=\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{\left(\cos ^{\prime} x\right)(\sin x)-(\cos x) \sin ^{\prime} x}{\sin ^{2} x}=\frac{-\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x$
and

$$
\sec ^{\prime} x=\left(\frac{1}{\cos x}\right)^{\prime}=\frac{-\cos ^{\prime} x}{\cos ^{2} x}=\frac{\sin x}{\cos ^{2} x}=\sec x \tan x
$$

and

$$
\csc ^{\prime} x=\left(\frac{1}{\sin x}\right)^{\prime}=\frac{-\sin ^{\prime} x}{\sin ^{2} x}=-\frac{\cos x}{\sin ^{2} x}=-\csc x \cot x .
$$

Remark. It is critical that we measure angles in radians for the above derivative formulas to be correct. If we measure angles in degrees then the formulas are wrong. Compare the graphs of $\sin x$ and $\cos x$ below, all drawn to the same scale, when x is measured first in radians and then in degrees. For example, when we measure angles in degrees the number $\sin ^{\prime}(0)$ is nearly 0 Precisely, when angles are in degrees $\sin ^{\prime}(0)=\pi / 180 \approx .0174$.

	y $y=\cos x$ x in degrees
$-\pi$	

