REVIEW OF LOGARITHMS

KEITH CONRAD

For a number $b>0$ with $b \neq 1$, the function b^{x} has a graph that looks like one of those below, depending on whether $b>1$ (left) or $0<b<1$ (right).

The function b^{x} for $b>0$ with $b \neq 1$ has domain the interval $(-\infty, \infty)$ of all real numbers and range the interval $(0, \infty)$ of all positive numbers. This function is either increasing (if $b>1$) or decreasing (if $0<b<1$). In both cases the function b^{x} is one-to-one:

$$
x_{1} \neq x_{2} \Longrightarrow b^{x_{1}} \neq b^{x_{2}}
$$

Therefore the function b^{x} has an inverse with domain $(0, \infty)$ and range $(-\infty, \infty)$: the inverse function at a positive number x is the number y fitting $b^{y}=x$. We call y the base- b $\operatorname{logarithm}$ of x, written as $\log _{b} x$, so $\log _{b} x$ is the one number for which b raised to that power is x. That is, $b^{\log _{b} x}=x$, and also $\log _{b}\left(b^{x}\right)=x$.

Example. Since $4=2^{2}$ and $8=2^{3}, \log _{2} 4=2$ and $\log _{2} 8=3$. Since $2^{1}<3<2^{2}, \log _{2} 3$ lies between the exponents 1 and 2 . More precisely, $\log _{2} 3=1.5849 \ldots:$ this solves $2^{y}=3$.

A graph of $y=\log _{b} x$ is formed by flipping the graph of $y=b^{x}$ across the line $y=x$, and is illustrated below. It has the y-axis as a vertical asymptote and no other asymptotes.

Exponential functions satisfy several basic identities:

$$
b^{u} b^{v}=b^{u+v}, \quad \frac{b^{u}}{b^{v}}=b^{u-v}, \quad\left(b^{u}\right)^{v}=b^{u v}
$$

Here are corresponding formulas for logarithms:

$$
\begin{gather*}
\log _{b}(x y)=\log _{b} x+\log _{b} y \text { for } x, y>0 \tag{1}\\
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y \text { for } x, y>0 \tag{2}\\
\log _{b}\left(x^{y}\right)=y \log _{b} x \text { for } x>0 \tag{3}
\end{gather*}
$$

To derive each of the formulas in (1)-(3) we rely on the characteristic property of a logarithm value: $\log _{b} x$ is the only number y satisfying the equation $b^{y}=x$.

Proof of (1): Let $u=\log _{b} x$ and $v=\log _{b} y$, so $b^{u}=x$ and $b^{v}=y$. Thus $x y=b^{u} b^{v}=b^{u+v}$, so $\log _{b}(x y)=u+v=\log _{b} x+\log _{b} y$.

Proof of (2): Let $u=\log _{b} x$ and $v=\log _{b} y$, so $b^{u}=x$ and $b^{v}=y$. Thus $x / y=b^{u} / b^{v}=$ b^{u-v}, so $\log _{b}(x / y)=u-v=\log _{b} x-\log _{b} y$.

Proof of (3): Let $u=\log _{b}\left(x^{y}\right)$, so $b^{u}=x^{y}$. Also $x=b^{\log _{b} x}$, so $x^{y}=\left(b^{\log _{b} x}\right)^{y}=b^{\left(\log _{b} x\right) y}=$ $b^{y \log _{b} x}$. Since $b^{u}=b^{y \log _{b} x}$ we get $u=y \log _{b} x$, so $\log _{b}\left(x^{y}\right)=y \log _{b} x$.

Example. Using formula (3), $\log _{2}(\sqrt{3})=\log _{2}\left(3^{1 / 2}\right)=\frac{1}{2} \log _{2} 3$ and $\log _{5}\left(1 / 3^{2}\right)=$ $\log _{5}\left(3^{-2}\right)=-2 \log _{5} 3$.

Example. While $x^{2}>0$ for $x \neq 0$, the formula $\log _{b}\left(x^{2}\right)=2 \log _{b} x$ is only true for $x>0$. The correct formula when $x \neq 0$ is $\log _{b}\left(x^{2}\right)=2 \log _{b}|x|$ since $x^{2}=|x|^{2}$ and $|x|>0$.

Warning. Avoid bogus algebraic identities. While there are formulas for logarithms of multiplicative expressions like $x y, x / y$, and x^{y}, there is no formula for logarithms of additive expressions: $\log _{b}(x+y)$ or $\log _{b}(x-y)$ can't be written in terms of $\log _{b} x$ and $\log _{b} y$. Unless you write the number inside a logarithm as a product, ratio, or power, there is no identity for it.

The logarithm formulas above all involve a single base. There is an additional formula for logarithms involving two bases b and c, called the change of base formula:

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

To derive this formula, rewrite it as a product: $\left(\log _{b} a\right)\left(\log _{c} b\right) \stackrel{?}{=} \log _{c} a$. We will show this equation is true by raising c to the left side:

$$
c^{\left(\log _{b} a\right)\left(\log _{c} b\right)}=\left(c^{\log _{c} b}\right)^{\log _{b} a}=b^{\log _{b} a}=a .
$$

The only solution to $c^{x}=a$ is $\log _{c} a$, so $\left(\log _{b} a\right)\left(\log _{c} b\right)=\log _{c} a$.
The change of base formula lets us write a logarithm function in any base b in terms of a logarithm function in any other base c :

$$
\log _{b} x=\frac{\log _{c} x}{\log _{c} b}=\frac{1}{\log _{c} b} \log _{c} x
$$

This means that up to a scaling factor there is basically only one logarithm function! For example, base 2 logarithms can be written in terms of base 10 logarithms and in terms of (base e) natural logarithms:

$$
\log _{2} x=\frac{\log _{10} x}{\log _{10} 2}=\frac{\ln x}{\ln 2}
$$

This kind of formula is important to be aware of if you want to calculate a logarithm to base 2 on a calculator and you only have buttons for $\log _{10}$ and \ln.

While base 10 logarithms are the main kind of logarithm seen in high school, in math and physics the preferred base for logarithms is e on account of special properties of natural logarithms in calculus. In computer science, due to the use of binary representations, the preferred base for logarithms is often 2.

