LINEARIZATION AND DIFFERENTIALS

KEITH CONRAD

For a function $y(x)$ that is differentiable at a number a, the function

$$
L(x)=y(a)+y^{\prime}(a)(x-a)
$$

is called the linearization of $y(x)$ at a. This is the linear function whose graph is the tangent line to the graph of $y(x)$ at $x=a$. Here are several examples of linearizations, with the graph of $y(x)$ in blue and the graph of $L(x)$ in red.

Example 1. Linearize $x^{3}-x^{2}+x$ at 1 .
Here $y(x)=x^{3}-x^{2}+x$ and $a=1$. Since $y^{\prime}(x)=3 x^{2}-2 x+1$, the linearization of $y(x)$ at 1 is

$$
L(x)=y(1)+y^{\prime}(1)(x-1)=1+2(x-1)=2 x-1 .
$$

Example 2. Linearize $\frac{1+2 x}{3+4 x}$ at 0 .
Here $y(x)=(1+2 x) /(3+4 x)$ and $a=0$. Using $y^{\prime}(x)=2 /(3+4 x)^{2}$, the linearization of $y(x)$ at 0 is

$$
L(x)=y(0)+y^{\prime}(0)(x-0)=\frac{1}{3}+\frac{2}{9} x .
$$

Example 3. Linearize $1 / x$ at 2.
Here $y(x)=1 / x$, so $y^{\prime}(x)=-1 / x^{2}$ and the linearization of $y(x)$ at 2 is

$$
L(x)=y(2)+y^{\prime}(2)(x-2)=\frac{1}{2}-\frac{1}{4}(x-2)=-\frac{1}{4} x+1 .
$$

Example 4. Linearize $\sqrt[3]{x}$ at 1.
Here $y(x)=\sqrt[3]{x}$, so $y^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. The linearization of $y(x)$ at 1 is

$$
L(x)=y(1)+y^{\prime}(1)(x-1)=1+\frac{1}{3}(x-1)=\frac{1}{3} x+\frac{2}{3} .
$$

To illustrate the use of linearizations in making approximations, suppose we want to estimate $\sqrt[3]{1729.03}$. The number 1729.03 is close to $1728=12^{3}$, a perfect cube, so write

$$
\sqrt[3]{1729.03}=\sqrt[3]{1728 \frac{1729.03}{1728}}=\sqrt[3]{1728} \sqrt[3]{\frac{1729.03}{1728}}=12 \sqrt[3]{\frac{1729.03}{1728}}=12 \sqrt[3]{1+\frac{1.03}{1728}} .
$$

We want to estimate $\sqrt[3]{1+x}$ when $x=1.03 / 1728$, a rather small number. The linearization of the function $y(x)=\sqrt[3]{1+x}$ at $x=0$ is

$$
y(0)+y^{\prime}(0)(x-0)=1+\frac{1}{3}(x-0)=1+\frac{1}{3} x .
$$

Therefore

$$
12 \sqrt[3]{1+\frac{1.03}{1728}} \approx 12\left(1+\frac{1}{3} \cdot \frac{1.03}{1728}\right)=12+4 \frac{1.03}{1728}=12.002384 \ldots
$$

and by comparison the actual value of $\sqrt[3]{1729.03}$ is $12.002383 \ldots$, so the linearization of $\sqrt[3]{1+x}$ at 0 gave us an estimate of the cube root of 1729.03 that is correct to 5 digits after the decimal point.

This cube root calculation is based on a story the physicist Richard Feynman told about being challenged to calculate with pencil and paper against an abacus salesman to see who worked faster. See http://www.ee.ryerson.ca/~elf/abacus/feynman.html. Feynman wrote in the middle of his story "I had learned in calculus that for small fractions, the cube root's excess is one-third of the number's excess," which is saying in words that for small $x, \sqrt[3]{1+x} \approx 1+\frac{1}{3} x$ or equivalently $\sqrt[3]{1+x}-1 \approx \frac{1}{3}(1+x-1)$.

Besides their role in making approximations, linearizations are useful in error estimates: they help us estimate the error in $y(x)$ when x undergoes a small change. For historical reasons a small change in x is written in calculus as $d x$ instead of Δx, and it is just any small number. The corresponding change in the linearization of y at x is called the differential of y and is denoted $d y$. If x changes by $d x$ and the corresponding change in the linearization of y at x is written as $d y$ then

$$
\begin{aligned}
d y & =L(x+d x)-L(x) \\
& =\left(y(x)+y^{\prime}(x)(x+d x-x)\right)-\left(y(x)+y^{\prime}(x)(x-x)\right) \\
& =\left(y(x)+y^{\prime}(x) d x\right)-y(x) \\
& =y^{\prime}(x) d x
\end{aligned}
$$

Writing $d y=y^{\prime}(x) d x$ in Leibniz notation makes it $d y=\frac{d y}{d x} d x$, which looks like a rule of fractions. But watch out: in this equation, $d y$ on the left and $d y$ in $d y / d x$ are not the same thing, and likewise the $d x$ in $d y / d x$ and the second factor $d x$ are not the same thing. The whole expression $d y / d x$ is a symbol for the derivative $y^{\prime}(x)$, while the separate symbol $d x$ is a small change in x and the separate symbol $d y$ is the change in the linearization of y at x corresponding to the change by $d x$ in x. The equation $d y=\frac{d y}{d x} d x$ is suggestive, but writing it as $d y=y^{\prime}(x) d x$ may help in working with this formula.

Let's go back to the previous four examples and write down $d y$. We just multiply the derivative $y^{\prime}(x)$ by $d x$ each time.

Example 1. If $y=x^{3}-x^{2}+x$ then $d y=\left(3 x^{2}-2 x+1\right) d x$.
Example 2. If $y=\frac{1+2 x}{3+4 x}$ then $d y=\frac{2}{(3+4 x)^{2}} d x$.
Example 3. If $y=\frac{1}{x}$ then $d y=-\frac{1}{x^{2}} d x$.
Example 4. If $y=\sqrt[3]{x}$ then $d y=\frac{1}{3} x^{-2 / 3} d x$.
What do these equations with differentials really mean? They tell us a good estimate for the change in y when x changes by a small amount $d x$. We will look at the four examples using $d x=.01$ each time.

Example 1. If $y=x^{3}-x^{2}+x$, then when $x=1$ and $d x=.01$ we have $d y=$ $\left(3 x^{2}-2 x+1\right) d x=(3-2+1)(.01)=.02$. For comparison, the exact change in y when x
changes from 1 to $x+d x=1.01$ is

$$
\Delta y=y(1.01)-y(1)=1.020201-1=.020201,
$$

and $d y=.02$ is a good approximation to this.
If instead $x=2$ and $d x=.01$ then $d y=\left(3 x^{2}-2 x+1\right) d x=\left(3 \cdot 2^{2}-2 \cdot 2+1\right)(.01)=.09$ while the exact change in y when we pass from $x=2$ to $x+d x=2.01$ is not far from this:

$$
\Delta y=y(2.01)-y(2)=.0905
$$

Example 2. If $y=\frac{1+2 x}{3+4 x}$, then when $x=0$ and $d x=.01$ we have $d y=\frac{2}{(3+4 x)^{2}} d x=$ $\frac{2}{3^{2}}(.01)=.0022 \ldots$. The exact change in y when we move from $x=0$ to $x+d x=.01$ is

$$
\Delta y=y(.01)-y(0)=\frac{1.02}{3.04}-\frac{1}{3}=.00219 \ldots,
$$

and $d y=.0022 \ldots$ is a good approximation to Δy.
Example 3. If $y=\frac{1}{x}$, then when $x=2$ and $d x=.01$ we have $d y=-\frac{1}{x^{2}} d x=-\frac{1}{4}(.01)=$ -.0025 . The exact change in y when x changes from 2 to $x+d x=2.01$ is

$$
\Delta y=y(2.01)-y(2)=\frac{1}{2.01}-\frac{1}{2}=-.00248 \ldots,
$$

and the differential $d y=-.0025$ approximates this well.
Example 4. If $y=\sqrt[3]{x}$, then when $x=1$ and $d x=.01$ we have $d y=\frac{1}{3} x^{-2 / 3} d x=$ $\frac{1}{3}(1)(.01)=.00333 \ldots$. The exact change in y when x changes from 1 to $x+d x=1.01$ is

$$
\Delta y=y(1.01)-y(1)=\sqrt[3]{1.01}-\sqrt[3]{1}=.003322 \ldots,
$$

which is approximated well by $d y=.00333 \ldots$

