
LINEARIZATION AND DIFFERENTIALS

KEITH CONRAD

For a function y(x) that is differentiable at a number a, the function

L(x) = y(a) + y′(a)(x− a)

is called the linearization of y(x) at a. This is the linear function whose graph is the tangent
line to the graph of y(x) at x = a. Here are several examples of linearizations, with the
graph of y(x) in blue and the graph of L(x) in red.

Example 1. Linearize x3 − x2 + x at 1.
Here y(x) = x3 − x2 + x and a = 1. Since y′(x) = 3x2 − 2x + 1, the linearization of y(x)

at 1 is
L(x) = y(1) + y′(1)(x− 1) = 1 + 2(x− 1) = 2x− 1.
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Example 2. Linearize
1 + 2x

3 + 4x
at 0.

Here y(x) = (1 + 2x)/(3 + 4x) and a = 0. Using y′(x) = 2/(3 + 4x)2, the linearization of
y(x) at 0 is

L(x) = y(0) + y′(0)(x− 0) =
1

3
+

2

9
x.
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Example 3. Linearize 1/x at 2.
Here y(x) = 1/x, so y′(x) = −1/x2 and the linearization of y(x) at 2 is

L(x) = y(2) + y′(2)(x− 2) =
1

2
− 1

4
(x− 2) = −1

4
x + 1.

x

y

2

Example 4. Linearize 3
√
x at 1.

Here y(x) = 3
√
x, so y′(x) = 1

3x
−2/3. The linearization of y(x) at 1 is

L(x) = y(1) + y′(1)(x− 1) = 1 +
1

3
(x− 1) =

1

3
x +

2

3
.
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To illustrate the use of linearizations in making approximations, suppose we want to
estimate 3

√
1729.03. The number 1729.03 is close to 1728 = 123, a perfect cube, so write

3
√

1729.03 =
3

√
1728

1729.03

1728
=

3
√

1728
3

√
1729.03

1728
= 12

3

√
1729.03

1728
= 12

3

√
1 +

1.03

1728
.

We want to estimate 3
√

1 + x when x = 1.03/1728, a rather small number. The linearization
of the function y(x) = 3

√
1 + x at x = 0 is

y(0) + y′(0)(x− 0) = 1 +
1

3
(x− 0) = 1 +

1

3
x.
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Therefore

12
3

√
1 +

1.03

1728
≈ 12

(
1 +

1

3
· 1.03

1728

)
= 12 + 4

1.03

1728
= 12.002384 . . .

and by comparison the actual value of 3
√

1729.03 is 12.002383 . . ., so the linearization of
3
√

1 + x at 0 gave us an estimate of the cube root of 1729.03 that is correct to 5 digits after
the decimal point.

This cube root calculation is based on a story the physicist Richard Feynman told about
being challenged to calculate with pencil and paper against an abacus salesman to see who
worked faster. See http://www.ee.ryerson.ca/∼elf/abacus/feynman.html. Feynman
wrote in the middle of his story “I had learned in calculus that for small fractions, the cube
root’s excess is one-third of the number’s excess,” which is saying in words that for small
x, 3
√

1 + x ≈ 1 + 1
3x or equivalently 3

√
1 + x− 1 ≈ 1

3(1 + x− 1).

Besides their role in making approximations, linearizations are useful in error estimates:
they help us estimate the error in y(x) when x undergoes a small change. For historical
reasons a small change in x is written in calculus as dx instead of ∆x, and it is just any small
number. The corresponding change in the linearization of y at x is called the differential of
y and is denoted dy. If x changes by dx and the corresponding change in the linearization
of y at x is written as dy then

dy = L(x + dx)− L(x)

= (y(x) + y′(x)(x + dx− x))− (y(x) + y′(x)(x− x))

= (y(x) + y′(x)dx)− y(x)

= y′(x)dx.

Writing dy = y′(x)dx in Leibniz notation makes it dy =
dy

dx
dx, which looks like a rule of

fractions. But watch out: in this equation, dy on the left and dy in dy/dx are not the same
thing, and likewise the dx in dy/dx and the second factor dx are not the same thing. The
whole expression dy/dx is a symbol for the derivative y′(x), while the separate symbol dx
is a small change in x and the separate symbol dy is the change in the linearization of y

at x corresponding to the change by dx in x. The equation dy =
dy

dx
dx is suggestive, but

writing it as dy = y′(x)dx may help in working with this formula.
Let’s go back to the previous four examples and write down dy. We just multiply the

derivative y′(x) by dx each time.

Example 1. If y = x3 − x2 + x then dy = (3x2 − 2x + 1)dx.

Example 2. If y =
1 + 2x

3 + 4x
then dy =

2

(3 + 4x)2
dx.

Example 3. If y =
1

x
then dy = − 1

x2
dx.

Example 4. If y = 3
√
x then dy =

1

3
x−2/3dx.

What do these equations with differentials really mean? They tell us a good estimate for
the change in y when x changes by a small amount dx. We will look at the four examples
using dx = .01 each time.

Example 1. If y = x3 − x2 + x, then when x = 1 and dx = .01 we have dy =
(3x2 − 2x + 1)dx = (3 − 2 + 1)(.01) = .02. For comparison, the exact change in y when x

http://www.ee.ryerson.ca/~elf/abacus/feynman.html
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changes from 1 to x + dx = 1.01 is

∆y = y(1.01)− y(1) = 1.020201− 1 = .020201,

and dy = .02 is a good approximation to this.
If instead x = 2 and dx = .01 then dy = (3x2 − 2x + 1)dx = (3 · 22 − 2 · 2 + 1)(.01) = .09

while the exact change in y when we pass from x = 2 to x + dx = 2.01 is not far from this:

∆y = y(2.01)− y(2) = .0905.

Example 2. If y =
1 + 2x

3 + 4x
, then when x = 0 and dx = .01 we have dy =

2

(3 + 4x)2
dx =

2

32
(.01) = .0022 . . .. The exact change in y when we move from x = 0 to x + dx = .01 is

∆y = y(.01)− y(0) =
1.02

3.04
− 1

3
= .00219 . . . ,

and dy = .0022 . . . is a good approximation to ∆y.

Example 3. If y =
1

x
, then when x = 2 and dx = .01 we have dy = − 1

x2
dx = −1

4
(.01) =

−.0025. The exact change in y when x changes from 2 to x + dx = 2.01 is

∆y = y(2.01)− y(2) =
1

2.01
− 1

2
= −.00248 . . . ,

and the differential dy = −.0025 approximates this well.

Example 4. If y = 3
√
x, then when x = 1 and dx = .01 we have dy =

1

3
x−2/3dx =

1

3
(1)(.01) = .00333 . . .. The exact change in y when x changes from 1 to x + dx = 1.01 is

∆y = y(1.01)− y(1) =
3
√

1.01− 3
√

1 = .003322 . . . ,

which is approximated well by dy = .00333 . . .


