
ZORN’S LEMMA AND SOME APPLICATIONS, II

KEITH CONRAD

We will describe some applications of Zorn’s lemma to field extensions, mostly involving
algebraically closed and real closed fields.

1. Zorn’s lemma and algebraic closures

An algebraic closure of a field K is an field extension of K that is both an algebraic
extension of K and is algebraically closed. That every field K has an algebraic closure is
proved in [2, p. 544] by an iterative procedure starting with a polynomial ring over K in
a very large number of variables and a suitably chosen maximal ideal of this ring. Such
a maximal ideal exists by Zorn’s lemma.1 A proof of the existence of an algebraic closure
of K that uses Zorn’s lemma in a more direct fashion is in [3, pp. 259–260], which uses
field structures on subsets of an infinite set with a well-chosen cardinality.2 In Zorn’s paper
[12] where Zorn’s lemma was introduced, the first application of it was to a proof of the
existence of algebraic closures.

We will use Zorn’s lemma here to prove all algebraic closures of a field are isomorphic to
each other. The first step in the proof, which is where Zorn’s lemma is used, is to extend a
field homomorphism to a larger field.

Theorem 1.1. Let L/K be an algebraic extension. Every field homomorphism ϕ : K → C,
where C is an algebraically closed field, can be extended to a homomorphism L→ C.

We are not requiring C to be an algebraic closure of K: it might be, but also it could be
much larger. For example, K could be Q( 4

√
2) and C could be C. Also, the extension of

ϕ : K → C to a homomorphism L→ C is very far from being unique.

Proof. Let S be the set of pairs (F, f) where F is an intermediate field between K and L
and f : F → C is a field homomorphism such that f |K = ϕ. Since (K,ϕ) ∈ S, S 6= ∅.

L // C

F

f

88

K

ϕ

@@

Partially order S by declaring (F, f) ≤ (F ′, f ′) if F ⊂ F ′ and f ′|F = f . For a totally
ordered subset {(Fα, fα)}α∈A in S, an upper bound can be produced as follows. Let F =

1A modification of this proof is in https://kconrad.math.uconn.edu/blurbs/galoistheory/algclosure

shorter.pdf.
2We can’t use Zorn’s lemma on “the set of all algebraic extensions of K” to build an algebraic closure of

K as a maximal algebraic extension of K, despite the intuitive appeal of this idea, because the collection of
all algebraic extensions of K is not a set. Zorn’s lemma is a property of partially ordered sets.

1

https://kconrad.math.uconn.edu/blurbs/galoistheory/algclosureshorter.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/algclosureshorter.pdf
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α∈A Fα. Since the Fα’s are totally ordered, it’s easy to check that F is a field. Define

f : F → C by f(x) = fα(x) when x ∈ Fα. If x is also in Fβ, we should check fα(x) = fβ(x)
so we know the definition of f(x) is independent of the choice of Fα containing x. Since our
subset of S is totally ordered, either (Fα, fα) ≤ (Fβ, fβ) or (Fβ, fβ) ≤ (Fα, fα). In the first
case, fβ restricts to fα on Fα, so fβ(x) = fα(x). The argument in the second case is the
same. For x ∈ K, we can view x in some Fα and then f(x) = fα(x) = ϕ(x) since fα|K = ϕ,
so f |K = ϕ. To prove f is a field homomorphism, view two elements of F in a common Fα
(total ordering) and use the fact that fα is a field homomorphism. Since f |Fα = fα, (F, f)
is an upper bound on all the (Fα, fα)’s.

Now we can apply Zorn’s lemma: S has a maximal element (F, σ). That is, F is a field
between K and L with a homomorphism σ : F → C such that σ|K = ϕ and there is no
extension of σ to a homomorphism from a larger intermediate field to C. We will prove
F = L, which means ϕ extends up to L.

If F 6= L then there is some a ∈ L with a 6∈ F . Then F (a)/F is a finite extension of
degree greater than 1. We’re going to extend σ to a homomorphism F (a)→ C. Let g(X) be
the minimal polynomial for a in F [X], so there is an F -isomorphism F (a) ∼= F [X]/(g(X)).
Applying σ to the coefficients of g(X) gives a polynomial gσ(X) ∈ C[X]. Since C is
algebraically closed, gσ(X) has a root in C, say r. Let F [X]→ C by acting as σ on F and
sending X to r. This is a ring homomorphism that sends g(X) to gσ(r) = 0, so we get an
induced homomorphism F [X]/(g(X))→ C acting as σ on F and sendingX to r. Composing
this with the isomorphism F (a) ∼= F [X]/(g(X)) from before gives us a homomorphism
τ : F (a) → C acting as σ on F . Thus (F, σ) ≤ (F (a), τ) and (F, σ) 6= (F (a), τ) since
F 6= F (a). This is impossible by maximality of (F, σ), so F = L. �

Corollary 1.2. Let K be a field and i : K → L be a homomorphism to a field L such
that L/i(K) is an algebraic extension. For each field homomorphism ϕ : K → C to an
algebraically closed field C, there is a field homomorphism σ : L→ C such that σ ◦ i = ϕ.

L
σ // C

K

i

OO

ϕ

88

Proof. Since i is a field homomorphism it is injective: K and i(K) are isomorphic fields
using i. Run through the above proof with the following change: S is the set of pairs (F, f)
where F is a field between i(K) and L and f ◦ i = ϕ (rather than f |K = ϕ as we used
before). Define the partial ordering as before: (F, f) ≤ (F ′, f ′) when F ⊂ F ′ and f ′|F = f .
It is left to the reader to check that S satisfies the assumptions of Zorn’s lemma and that
a maximal element of S provides a solution to our problem. �

Now we can establish the desired result about comparing two algebraic closures of a field.

Corollary 1.3. All algebraic closures of a field are isomorphic. More precisely, if C1 and
C2 are algebraic closures of a field K with embeddings i1 : K → C1 and i2 : K → C2, there
is a field isomorphism σ that makes the following diagram commute.

C1
σ // C2

K
i1

``

i2

>>
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Proof. Since C2 is algebraically closed and C1 is an algebraic extension of i1(K), Corollary
1.2 implies there is a field homomorphism σ : C1 → C2 such that σ◦i1 = i2. The image σ(C1)
is an algebraically closed field that contains σ(i1(K)) = i2(K). Since C2 is an algebraic
extension of i2(K), C2/σ(C1) is an algebraic extension of algebraically closed fields, so the
extension has to be trivial: σ(C1) = C2. Thus σ : C1 → C2 is a field isomorphism and
σ ◦ i1 = i2. �

There is a huge number of isomorphisms between two algebraically closed fields, so the
construction in Corollary 1.3 is not at all canonical. While some of the fundamental appli-
cations of Zorn’s lemma in part I3 are known to be equivalent to Zorn’s lemma, this is not
true for existence of algebraic closures of all fields or the isomorphism between the algebraic
closures of a field (in general): each of these can be proved using the Boolean ultrafilter
theorem, which is known to be weaker than Zorn’s lemma [1].

Remark 1.4. That every field has an algebraic closure and that two algebraic closures of
a field are isomorphic were first proved by Steinitz in 1910 in a long paper [11] that created
from scratch the general theory of fields as part of abstract algebra. The influence of this
paper on the development of algebra was enormous; for an indication of this, see [8]. Steinitz
was hindered in this work by the primitive state of set theory at that time and he used the
well-ordering principle rather than Zorn’s lemma (which only became widely known in the
1930s [12]). Steinitz’s proof of the existence of algebraic closures and their uniqueness up
to isomorphism, together with his account of set theory, took up 20 pages [11, Sect. 19–21].

Corollary 1.5. Let K1 and K2 be isomorphic fields with respective algebraic closures C1

and C2. Each isomorphism K1 → K2 extends to an isomorphism C1 → C2. In particular,
if K is a field with algebraic closure C then every field homomorphism f : K → C such that
C/f(K) is algebraic extends to a field automorphism of C.

There is nothing canonical about the extension: an isomorphism K1 → K2 will generally
have many extensions to an isomorphism C1 → C2.

Proof. Let f : K1 → K2 be a field isomorphism and i1 : K1 → C1 and i2 : K2 → C2 be
embeddings into algebraic closures. Composing f with the embedding i2 : K2 → C2 gives
us a field homomorphism i2 ◦ f : K1 → C2. In Corollary 1.2 use L = C1 and ϕ = i2 ◦ f to
see there is a field homomorphism σ : C1 → C2 such that σ ◦ i1 = ϕ = i2 ◦ f , so we have a
commutative diagram

C1
σ // C2

K1

i1

OO

f //

ϕ
==

K2

i2

OO

that shows σ(C1) is a subfield of C2 containing σ(i1(K1)) = i2(f(K1)) = i2(K2) = K2.
Since C2 is an algebraic closure of K2, K2 ⊂ σ(C1) ⊂ C2, and σ(C1) is algebraically closed,
we must have σ(C1) = C2, so σ is an isomorphism.

If the field K has algebraic closure C and f : K → C is a field homomorphism, then
f : K → σ(K) is a field isomorphism (a homomorphism, surjective, and injective since all
field homomorphisms are injective). When C is algebraic over f(K), C is an algebraic

3See Section 6 of https://kconrad.math.uconn.edu/blurbs/zorn1.pdf

https://kconrad.math.uconn.edu/blurbs/zorn1.pdf
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closure of f(K), so f : K → f(K) extends to an isomorphism C → C by using K1 = K,
K2 = f(K), C1 = C2 = C, and i1 : K → C and i2 : f(K)→ C are inclusions.

C
σ // C

K

i1

OO

f // f(K)

i2

OO

�

2. Zorn’s lemma and real closed fields

Every field has an algebraic closure. Certain fields have another, smaller, kind of closure
called a real closure. Before we define a real closure, we have to define a real field. A field is
called real (some use the label formally real) if −1 is not a sum of squares in the field. For
instance, R is a real field. A subfield of a real field is also real. More generally, a field that
can be embedded into a real field is real. For example, the abstract field Q(θ) where θ4 = 2
is a real field since it is isomorphic to Q( 4

√
2), which is real because it is a subfield of R.

The fields C and Q(i) are not real since −1 is a square in these fields. The field Q(
√
−2)

is not real since −1 is a sum of two squares in this field: −1 = (
√
−2/2)2 + (

√
−2/2)2.

The concept of a real field is closely connected with the concept of an ordered field (a field
in which there is a reasonable notion of positive and negative): a field has some ordering
– not necessarily just one – precisely when it is a real field. That is, the orderable fields
are the real fields. For example, Q(θ) where θ4 = 2 has two orderings, based on the two
embeddings into R (θ 7→ 4

√
2 and θ 7→ − 4

√
2). For more information about real fields, see

[5, Chap. XI].
A real closure of a field K is an extension field L that is algebraic over K, real, and

admits no proper real algebraic extension. A real closure is essentially a maximal algebraic
extension in which −1 is not a sum of squares. For example, the field of real algebraic
numbers is a real closure of Q. Real closures are not algebraically closed since X2 + 1 has
no root in real fields.

Since a real closure is a real field and subfields of real fields are real, K can only have a
real closure if K is real. And indeed they all do, as we now prove.

Theorem 2.1. Every real field admits a real closure.

Proof. Let K be a real field. That is, −1 is not a sum of squares in K. A real closure of K,
if it exists, is a particular kind of algebraic extension of K, so we will work inside a fixed
algebraic closure C ⊃ K.

Since a real closure should be a maximal real algebraic extension of K, the way to use
Zorn’s lemma should be obvious: take for S the set of all real algebraic extensions of K
inside of C. We know S 6= ∅ since K ∈ S. Define a partial ordering on S by inclusion:
F ≤ F ′ if F ⊂ F ′. If {Fα}α∈A is a totally ordered subset of S then the union F =

⋃
α∈A Fα

is a field (by the usual proof) that is inside of C and it contains each Fα. To see that F
is real, assume otherwise: −1 =

∑n
i=1 c

2
i where ci ∈ F . These finitely many ci’s are in

some common Fα (since the Fα’s are totally ordered), but then the equation −1 =
∑n

i=1 c
2
i

violates the property of Fα being real. So −1 is not a sum of squares in F , which means F
is real and thus F is an upper bound on {Fα}α∈A in S.

By Zorn’s lemma, S contains a maximal element. Denote one as R. Then R is a real
algebraic extension field of K. To show R is a real closure of K we need to show R has no
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proper real algebraic extension. There is no such extension of R in C because R is maximal
with respect to inclusion among real algebraic extensions of K in C. If there is a field
extension R ↪→ R′ outside of C where R′ is real and algebraic over R, then by Theorem
1.1 we can embed R′ into C by a map fixing R. (The field C is an algebraic closure of
R since it is an algebraic closure of K and R/K is algebraic.) In particular, the image of
an embedding R′ ↪→ C fixing R pointwise will be a (necessarily) real field in C of degree
greater than 1 over R, but that contradicts maximality of R in S. So R fits the definition
of being a real closure of K. �

As with algebraic closures, Zorn’s lemma can be used to prove all real closures of a real
field are isomorphic to each other [5, p. 455]. The proof requires some preliminary work on
“real roots” of polynomials that would be a bit of a diversion for us to review here.

In a real field, none of the polynomials
∑n

i=1X
2
i + 1 have solutions. If we only avoid

fields with solutions to the single polynomial X2 + 1, such maximal extensions need not
be isomorphic. That is, Zorn’s lemma implies that a field not containing a square root of
−1 has a maximal algebraic extension not containing a square root of −1, but two such
maximal extensions need not be isomorphic. For example, the fields Q(

√
2) and Q(

√
−2)

don’t contain a square root of −1 so each of these fields has a maximal algebraic extension
F/Q(

√
2) and F ′/Q(

√
−2) not containing

√
−1. Both F and F ′ are also maximal algebraic

extensions of Q not containing
√
−1, but F 6∼= F ′ since X2 − 2 has a root in F but not in

F ′: if F ′ has a square root of 2 then its ratio with
√
−2 ∈ F ′ is a square root of −1 in F ′,

and that’s impossible.

3. Zorn’s lemma and transcendence bases

So far we have focused on applications of Zorn’s lemma to algebraic field extensions
(specifically, algebraic closures and real closures). Zorn’s lemma is just as important in
dealing with non-algebraic field extensions, such as K(X,Y ) where X and Y are indetermi-
nantes over K. The central notion here is a transcendence basis for a field extension L/K,
which is a nonlinear generalization of a basis for L/K.

Definition 3.1. In a field extension L/K, a finite subset {s1, . . . , sn} of L is called alge-
braically dependent overK if f(s1, . . . , sn) = 0 for some nonzero polynomial f(X1, . . . , Xn) ∈
K[X1, . . . , Xn]. A finite subset of L that is not algebraically dependent over K is called
algebraically independent over K. An arbitrary subset of L is called algebraically dependent
over K if some finite subset is algebraically dependent over K and it is called algebraically
independent over K when every finite subset is algebraically independent over K (that is,
no finite subset is algebraically dependent over K).

If we only use linear polynomials f(X1, . . . , Xn) = a1X1 + · · · + anXn in this definition
then we get the concepts of linear dependence and linear independence over K. That is why
algebraic dependence and independence over K is a higher-degree generalization of linear
dependence and independence over K. We consider ∅ in L to be algebraically independent
over K, just as ∅ in L is linearly independent over K.

Example 3.2. In R, {π, π+
√

2} is linearly independent over Q (since
√

2 is algebraic and
π is transcendental), but is algebraically dependent over Q since f(π, π +

√
2) = 0 where

f(X,Y ) = (X − Y )2 − 2.
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Example 3.3. In R, {π2 − 2, 3π +
√

2} is algebraically dependent over Q: f(π2 − 2, 3π +√
2) = 0 where f(X,Y ) = (X + 2− (Y −

√
2)2/9)(X + 2− (Y +

√
2)2/9) = X2 + (32/9)X +

Y 4/81− (2/9)XY 2 − (40/81)Y 2 + 256/81.

Example 3.4. A one-element subset {s} of L is algebraically independent over K if and
only if it s is transcendental over K.

Example 3.5. The extension L/K is algebraic if and only if the only subset of L that is
algebraically independent over K is ∅.

Example 3.6. It is expected that π and e are algebraically independent over Q, but this
is still an open problem. It would follow from Schanuel’s conjecture [6, Theorem 21.3].

Example 3.7. In the rational function field in n variables, K(u1, . . . , un), {u1, . . . , un} is
algebraically independent over K.

Definition 3.8. In a field extension L/K, a subset S of L is called a transcendence basis
over K if S is algebraically independent over K and S is not strictly contained in any other
algebraically independent subset over K.

Example 3.9. For a field K, each nonconstant rational function a(u)/b(u) ∈ K(u) is a
transcendence basis: a(u)/b(u) is transcendental over K because K(u)/K(a/b) is algebraic
(u is a root of a(X) − (a(u)/b(u))b(X) ∈ K(a/b)[X], which is not 0) and K(u)/K is not
algebraic. No subset of K(u) strictly containing {a(u)/b(u)} is algebraically independent
since K(u)/K(a/b) is algebraic.

Example 3.10. In the rational function field K(u1, . . . , un), the subset {u1, . . . , un} is a
transcendence basis: it is algebraically independent over K, and for a rational function
r = a(u1, . . . , un)/b(u1, . . . , un), the polynomial

f(X1, . . . , Xn, Xn+1) = b(X1, . . . , Xn)Xn+1 − a(X1, . . . , Xn) ∈ K[X1, . . . , Xn, Xn+1]

is nonzero (why?) and f(u1, . . . , un, r) = 0. Therefore tr.deg(K(u1, . . . , un)/K) = n.

Theorem 3.11. Every field extension L/K has a transcendence basis and every subset of
L that is algebraically independent over K can be extended to a transcendence basis of L/K.

Proof. To show L/K has a transcendence basis, consider the collection of all subsets of L
that are algebraically independent over K, partially ordered by containment. This is not an
empty collection since ∅ is algebraically independent over K by definition. For every totally
ordered subset {Sα}α∈A of algebraically independent subsets over K, the union S =

⋃
α Sα

is an algebraically independent subset over K because every finite set of elements of S is in
some Sα and Sα is an algebraically independent subset over K. Therefore by Zorn’s lemma
there is a subset of L that is (i) algebraically independent over K and (ii) not strictly
contained in a subset of L that is algebraically independent over K. Properties (i) and (ii)
describe a transcendence basis of L/K.

To show every subset S0 of L that is algebraically independent over K can be extended
to a transcendence basis of L/K, run through the previous argument using algebraically
independent subsets of L that contain S0. �

Theorem 3.12. All transcendence bases of L/K have the same cardinality.

Proof. See [3, Chap. VI, Theorems 1.8, 1.9]. �
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The common cardinality of all transcendence bases for L/K is called the transcendence
degree of L/K and is denoted tr. deg(L/K). This cardinal number is well-defined by Theo-
rem 3.12.

Example 3.13. We have tr. deg(L/K) = 0 if and only if L/K is algebraic.

Example 3.14. We have tr. deg(K(u1, . . . , un)/K) = n.

Example 3.15. The field K(x, y) where x is transcendental over K and y2 = x3 − 1 has
transcendence degree 1 over K, with transcendence basis {x}.

See [5, Chap. VIII] or [9, pp. 357–373] for a detailed discussion of transcendence bases
and [2, Sect. 14.9] for a survey on transcendence bases without proofs.

When L/K has a transcendence basis S, the intermediate field K(S) is purely transcen-
dental over K, in the sense that it is generated over K by elements that are algebraically
independent over K. The extension L/K(S) is algebraic: if some α ∈ L were transcendental
over K(S) then S ∪ {α} would be algebraically independent over K (why?), which contra-
dicts the maximality of a transcendence basis. Therefore every field extension L/K can be
broken up into a tower L/K(S)/K where K(S)/K is purely transcendental and L/K(S)
is algebraic. In particular, if L is algebraically closed then L is an algebraic closure of the
field K(S) that is purely transcendental over K.

Example 3.16. If C is an algebraically closed field of characteristic 0 and S is a transcen-
dence basis of C/Q then C = Q(S).

Example 3.17. If C is an algebraically closed field of characteristic p and S is a transcen-
dence basis of C/Fp then C = Fp(S).

Remark 3.18. A transcendence basis S for L/K such that the algebraic extension L/K(S)
is separable is called a separating transcendence basis. When K is perfect, every finitely
generated extension field of K has a separating transcendence basis over K. We will not
use this concept here.

Theorem 3.19. If C is an algebraically closed field and K is a subfield then every auto-
morphism of K can be extended to an automorphism of C.

This is not Corollary 1.5, but is more general, since here C is not necessarily the algebraic
closure of K. It could be bigger. We will use Corollary 1.5 in the proof of Theorem 3.19.

Proof. Let S be a transcendence basis of C/K, so C = K(S). Each field automorphism σ
of K extends in a unique way to an automorphism of the polynomial ring K[S] by behaving
like σ on K and fixing all the elements of S. (We can think of K[S] as a polynomial ring
in S because elements of S are algebraically independent over K.) This automorphism of
K[S] extends in a unique way to an automorphism of its fraction field K(S). Since C is
an algebraic closure of K(S), by Corollary 1.5 every automorphism of K(S) extends to an
automorphism of C. Thus σ extends (usually in many ways) to an automorphism of C. �

Example 3.20. On the field Q( 4
√

2) there is a unique automorphism sending 4
√

2 to − 4
√

2.
Theorem 3.19 tells us there is an automorphism of C sending 4

√
2 to − 4

√
2. In particular, this

automorphism of C is not the identity or complex conjugation since they both fix all real
numbers. Similarly, every automorphism of a finite extension of Q extends (in many ways)
to an automorphism of C. It is basically hopeless to expect we can write down formulas on
all of C for automorphisms other than the identity or complex conjugation. The existence
of such automorphisms is entirely due to Zorn’s lemma.
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Our next application of transcendence bases is a surprising result about uncountable
algebraically closed fields.

Theorem 3.21. Two uncountable algebraically closed fields are isomorphic if and only if
they have the same characteristic and cardinality.

For instance, every algebraically closed field of characteristic 0 whose cardinality is the
same as that of C is isomorphic to C as an abstract field. (Examples of this situation really
do occur, e.g., the algebraic closure of the p-adic numbers.)

Theorem 3.21 is false for countable algebraically closed fields. For instance, the algebraic
closures of Q and Q(X) are both countable of characteristic 0, but they are not isomorphic
fields since we can’t embed Q(X) inside an algebraic closure of Q: the element X is not
algebraic over Q.

To prove Theorem 3.21 we will use the following two lemmas about transcendence bases.

Lemma 3.22. Let C and C ′ be algebraically closed fields. Then C is isomorphic to C ′ if
and only if the fields have the same characteristic and the same transcendence degree over
their prime subfield (Q or Fp).

Proof. Suppose C and C ′ are isomorphic fields and f : C → C ′ is an isomorphism. Certainly
the characteristics of C and C ′ are the same. Let F be the common prime subfield of
C and C ′ (either Q or Fp). Then f is the identity map on F . For a transcendence
basis S of C/F , check that its image f(S) is a transcendence basis for C ′/F . Therefore
tr. deg(C/F ) = cardS = tr. deg(C ′/F ).

Conversely, suppose C and C ′ have the same characteristic and the same transcendence
degree over their common prime subfield F . Let S be a transcendence basis for C/F and
S′ be a transcendence basis for C ′/F , so by hypothesis S and S′ have the same cardinality:
there is a bijection S → S′. This bijection extends uniquely to a ring isomorphism F [S]→
F [S′] (fixing the elements of F ), which extends uniquely to a field isomorphism of fraction
fields F (S) → F (S′). By Corollary 1.5, the field isomorphism F (S) → F (S′) extends (by
Zorn’s lemma, so in many ways) to a field isomorphism of the algebraic closures, which are
C and C ′. �

This lemma tells us that an algebraically closed field is determined up to isomorphism
by its characteristic and its transcendence degree over its prime subfield. Computing the
transcendence degree of a field extension might seem formidable: what are tr.deg(R/Q) or
tr. deg(C/Q)?

Lemma 3.23. Let F be a field that is finite or countably infinite and {Xi}i∈I be an infinite
set of algebraically independent indeterminates over F . The cardinality of F ({Xi}i∈I) equals
card I.

Proof. We will prove the polynomial ring R := F [{Xi}i∈I ] has cardinality card I. That
suffices, since every infinite integral domain has the same cardinality as its fraction field.

In R, the set of powers Xmi
i with mi ≥ 1 is in bijection with Z+× I, which is in bijection

with I since I is infinite. The set of pure monomials Xm1
i1
· · ·Xmk

ik
(coefficient is 1, exponents

are ≥ 1) is in bijection with the set F of finite subsets of Z+ × I by sending each finite
subset to the product of the corresponding powers (send ∅ to 1). The set of finite subsets of
an infinite set S has the same cardinality as S, so cardF = card(Z+ × I) = card I. The set
M of all monomials in R (allowing arbitrary coefficients from F ) is in bijection with F ×F,
so cardM = card(F × F) = card(F × I).
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Let En be the set of elements of R that are a sum of at most n monomials, so En ⊂ En+1

and R =
⋃
n≥1En. Addition of polynomials gives us a surjection Mn → En, so card(En) ≤

card(Mn). Since M is infinite, card(Mn) = cardM = card(F×I). ThereforeR is a countable
union of sets En that each have cardinality ≤ card(F × I), so cardR ≤ card(F × I).

Up to now we have not used the fact that F is finite or countably infinite. Now we use
that: it tells us card(F × I) = card I. Therefore cardR ≤ card I. Since R contains {Xi}i∈I ,
cardR ≥ card I, so the Schroeder–Bernstein theorem tells us cardR = card I. �

Now we can prove Theorem 3.21.

Proof. Let C be an algebraically closed field. By Lemma 3.22, C is determined up to
isomorphism by its characteristic and its transcendence degree over its prime subfield F .
We will show when C is uncountable that tr.deg(C/F ) = cardC, so C is determined up to
isomorphism by its characteristic and cardinality.

Let S be a transcendence basis of C/F , so C = F (S). Since C is uncountable, S has
to be infinite: if S were finite then, since F is finite or countable, an algebraic closure
of F (S) would be countable. By definition, tr.deg(C/F ) = cardS. Lemma 3.23 tells us
cardS = card(F (S)). Since F (S) is infinite and C/F (S) is algebraic, cardC = cardF (S).
Thus cardC = cardS = tr.deg(C/F ). �

The proof of Theorem 3.21 used the fact that C is algebraically closed in its appeal to
Lemma 3.22 and nowhere else. Therefore the reasoning in the proof shows that if L is an
arbitrary uncountable field with prime subfield F , tr.deg(L/F ) = cardL.

Example 3.24. The extensions C/Q and R/Q have transcendence degree equal the car-
dinality of the continuum.

4. More extension problems using Zorn’s lemma

Zorn’s lemma is the standard method used to extend functions to a field when starting
with a function on a subset of the field. This has been done so far with field homomorphisms.
Here we describe two other kinds of functions that occur in field theory: derivations and
absolute values. Motivation for interest in these concepts comes from commutative algebra,
algebraic geometry, and number theory.

Example 4.1. For a field extension L/K, a derivation d : K → L is a mapping such that
(i) d(x + y) = d(x) + d(y) and (ii) d(xy) = xd(y) + yd(x). This can be regarded as an
abstract version of differentiation. For instance, differentiation with respect to u on the
rational function field F (u) is a derivation F (u) → F (u). The zero function on a field is
also a derivation (it’s the only derivation on Q).

If L/K is a separable algebraic field extension, possibly of infinite degree, then every
derivation K → L extends uniquely to a derivation L → L. The proof of this reduces,
by Zorn’s lemma, to the case when L = K(α) is a finite separable extension [4, Cor. 2.4,
Chap. 4], [5, ??].

Example 4.2. An absolute value on a field F is a function | · | : F → R such that (i) |x| ≥ 0
for all x ∈ F , with equality if and only if x = 0, (ii) |xy| = |x||y|, and (iii) |x+y| ≤ |x|+ |y|.
When (iii) is replaced by the more restrictive condition |x+ y| ≤ max(|x|, |y|), the absolute
value | · | is called non-Archimedean. (The terminology “non-Archimedean” come from the
condition |x| < |y| not implying there is an integer n such that |nx| > |y|, which is the
Archimedean property of the real numbers.)
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Krull’s theorem about the extension of absolute values says that for every field exten-
sion L/K, a non-archimedean absolute value on a field K can be extended (generally not
uniquely) to a non-archimedean absolute value on L. By Zorn’s lemma, the proof of this
reduces to the case of a simple extension L = K(t), and then the cases when t is algebraic
over K or transcendental over K are treated separately [10, pp. 36–39]. For an alternate
proof of Krull’s theorem using Zorn’s lemma, see [7, pp. 107–108].
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