# WIEFERICH PRIMES 

KEITH CONRAD

## 1. Introduction

Fermat's little theorem says that for prime $p$ and $a$ not divisible by $p, a^{p-1} \equiv 1 \bmod p$. We are going to consider the strengthened congruence

$$
\begin{equation*}
a^{p-1} \equiv 1 \bmod p^{2} . \tag{1.1}
\end{equation*}
$$

Unlike the congruence in Fermat's little theorem, (1.1) usually does not hold. When (1.1) holds, $p$ is called a Wieferich prime to base $a$.

In Section 2 we'll present examples and heuristics related to Wieferich primes. The next three sections give different settings where Wieferich primes appear: Fermat's last theorem in Section 3 (this is how Wieferich's name got associated to (1.1)), Catalan's conjecture in Section 4, and Mersenne numbers in Section 5. ${ }^{1}$

## 2. Numerical data

The only known Wieferich primes to base 2 and 1093 and 3511: they are prime and

$$
2^{1092} \equiv 1 \bmod 1093^{2}, \quad 2^{3510} \equiv 1 \bmod 3511^{2} .
$$

These were found by Meissner [5] in 1913 and Beegner [1] in 1922. The known Wieferich primes to a squarefree base $a \leq 10$ are in Table 1. Searches for Wieferich primes have been carried out for $p<1.25 \cdot 10^{15}$ when $a=2[4]$ and for $p<2^{32} \approx 10^{9.63}$ when $3 \leq a<100[7]$. Wieferich primes to a fixed base appear to be quite rare numerically, and for some bases none are known, e.g., no Wieferich primes to base 21 or 29 have been found.

| $a$ | Known Wieferich primes to base $a$ |
| :---: | :--- |
| 2 | 1093,3511 |
| 3 | 11,1006003 |
| 5 | $2,20771,40487,53471161,1645333507,6692367337,188748146801$ |
| 6 | $66161,534851,3152573$ |
| 7 | 5,491531 |
| 10 | $3,487,56598313$ |
|  | TABLE 1. Known Wieferich primes for squarefree bases up to 10 |

The difficulty in (1.1) is finding $p$ when we fix $a$, not finding $a$ when we fix $p$ : for each prime $p$, there are $p-1$ values of $a \bmod p^{2}$ making $a^{p-1} \equiv 1 \bmod p^{2}($ explicitly, the solutions are $a=b^{p} \bmod p^{2}$ for $1 \leq b \leq p-1$ ). Table 2 lists squarefree Wieferich bases for small primes.

[^0]| $p$ | Squarefree bases $a$ with Wieferich prime $p$ | As congruence $\bmod p^{2}$ |
| :--- | :--- | :--- |
| 2 | $5,13,17,21,29,33,37,41,53,57,61,65$ | $a \equiv 1 \bmod 4$ |
| 3 | $10,17,19,26,35,37,46,53,55,62,71,73$ | $a \equiv \pm 1 \bmod 9$ |
| 5 | $7,26,43,51,57,74,82,93,101,107,118$ | $a \equiv \pm 1, \pm 7 \bmod 25$ |
| 7 | $19,30,31,67,79,97,129,146,165,166$ | $a \equiv \pm 1, \pm 18, \pm 19 \bmod 49$ |
| TABLE 2. Squarefree bases $a$ having small Wieferich primes $p$ |  |  |

There is a probabilistic heuristic that both (i) supports the infrequent appearance of Wieferich primes to a fixed base and (ii) suggests there are infinitely many Wieferich primes to each base. When $p \nmid a, a^{p-1} \equiv 1 \bmod p$, so $a^{p-1} \equiv 1+p b \bmod p^{2}$, where $0 \leq b \leq p-1$. Here is the heuristic: assume $b$ takes each of the $p$ values $0,1, \ldots, p-1$ with equal probability. Since $b=0$ corresponds to $p$ being a Wieferich prime to base $a$, the "probability" some $p$ not dividing $a$ is a Wieferich prime to base $a$ is $1 / p$. Therefore the expected number of primes $p \leq x$ that are Wieferich primes to base $a$ is found by adding up the "probabilities". This is $\sum_{p \leq x} 1 / p$, which grows very slowly: it is asymptotic to $\log \log x$. Since $\log \log \left(2^{32}\right) \approx 3.1$, it is no surprise so few Wieferich primes for $p<2^{32}$ are known to any particular base. (Strictly speaking, $\sum_{p \leq x} 1 / p$ from the heuristic should not include $p$ dividing $a$, making the sum even smaller. The effect is negligible.)

## 3. Case I of Fermat's last theorem

Fermat's last theorem says that $x^{n}+y^{n}=z^{n}$ has no solution in positive integers $x$, $y$, and $z$ when $n \geq 3$. It was proposed by Fermat in the 1600 s and proved by Wiles in the 1990s. Before its proof in general, Fermat's last theorem had been settled for many individual exponents.

Each $n \geq 3$ is divisible by an odd prime or 4 . If there is no solution $(x, y, z)$ in $\mathbf{Z}^{+}$when the exponent is $n$ then there is also no solution when the exponent is a multiple of $n$. So to prove Fermat's last theorem, it suffices to assume $n$ is 4 or an odd prime. Fermat handled the case $n=4$. Before the work of Wiles, progress on Fermat's last theorem for odd prime exponenst ${ }^{2} p$ was divided into two cases:

- Case I: show no solutions where $p \nmid x y z$,
- Case II: show no solutions where $p \mid x y z$.

Wieferich [12] proved the following result about Case I in 1909.
Theorem 3.1. If Case I for exponent $p$ has a counterexample, then $2^{p-1} \equiv 1 \bmod p^{2}$.
That is, if $x^{p}+y^{p}=z^{p}$ in $\mathbf{Z}^{+}$where $p \nmid x y z$ then $2^{p-1} \equiv 1 \bmod p^{2}$. Note this says nothing about counterexamples to Fermat's last theorem in Case II.

The following year, it probably came as a surprise when Mirimanoff [6] proved the same theorem with another base.

Theorem 3.2. If Case $I$ for exponent $p$ has a counterexample, then $3^{p-1} \equiv 1 \bmod p^{2}$.
Wieferich primes to a single base already seem to be quite rare, so a prime being Wieferich to bases 2 and 3 together looks extraordinarily unlikely, and heuristics like those in Section 2 suggest it should happen only finitely many times. ${ }^{3}$ By the time Wiles announced a

[^1]proof of Fermat's last theorem in 1993, an analogue of Theorem 3.1 had been proved with 2 replaced by each prime up through 89 . Nowadays this use of Wieferich primes is only of historical interest, since the proof of Fermat's last theorem makes no use of the Case I/Case II distinction and Wieferich primes.

## 4. Catalan's conjecture

A perfect power in $\mathbf{Z}^{+}$is a number of the form $a^{m}$ where $a \in \mathbf{Z}^{+}$and $m \geq 2$. The sequence of perfect powers starts out as

$$
1,4,8,9,16,25,27,32,36,49,64,81,100,121,125,128,144,169,196,216, \ldots
$$

and Catalan [2] conjectured in 1844 that the only consecutive perfect powers are $8=2^{3}$ and $9=3^{2}$. That is, the only solution to $x^{m}-y^{n}=1$ in $\mathbf{Z}^{+}$with $m, n \geq 2$ are $(x, y, m, n)=$ $(3,2,2,3)$. This was proved by Mihailescu in 2004.

As with Fermat's last theorem, to prove Catalan's conjecture it suffices to assume $m$ and $n$ are prime, and they are necessarily distinct. We'll write the equation as $x^{p}-y^{q}=1$. The cases where $p$ or $q$ is 2 were completely settled by the 1960s. (Euler had treated the exponent pair with a solution, $p=2$ and $q=3$, in 1738.) Therefore $p$ and $q$ can be taken as odd primes, which allows us to regard the equation as being symmetric in $p$ and $q$ by aiming to prove there is no solution in nonzero integers rather than only in positive integers: if $x^{q}-y^{p}=1$ then $(-y)^{p}-(-x)^{q}=1$.

A breakthrough in work on Catalan's conjecture was Mihailescu's proof that if $x^{p}-y^{q}=1$ for nonzero integers $x$ and $y$ and odd primes $p$ and $q$, then $q^{p-1} \equiv 1 \bmod p^{2}$, so by symmetry $p^{q-1} \equiv 1 \bmod q^{2}$. Such primes are called a Wieferich pair. (This constraint had been proved earlier under additional assumptions on $p$ and $q$; Mihailescu derived it without extra assumptions.) Two examples of Wieferich pairs of odd primes are $(p, q)=(3,1006003)$ and $(p, q)=(5,1645333507)$. An overview of the proof of Catalan's conjecture in Schoof's book [10, pp. 3-5] describes how the Wieferich pair property is used in the proof.

## 5. Squarefree Mersenne numbers and a generalization

A Mersenne number is a number of the form $2^{n}-1$. These numbers can have square factors bigger than 1 , such as

$$
2^{6}-1=63=3^{2} \cdot 7, \quad 2^{20}-1=5^{2} \cdot 3 \cdot 11 \cdot 31 \cdot 41, \quad 2^{21}-1=7^{2} \cdot 127 \cdot 337 .
$$

It is conjectured that $2^{q}-1$ is squarefree for all primes $q$. The next theorem suggests counterexamples are rare: a repeated prime factor of $2^{q}-1$ is a Wieferich prime to base 2 .

Theorem 5.1. For prime numbers $p$ and $q$, the following conditions are equivalent and each implies $q \mid(p-1)$ :
(i) $p^{2} \mid\left(2^{q}-1\right)$,
(ii) $p \mid\left(2^{q}-1\right)$ and $2^{p-1} \equiv 1 \bmod p^{2}$.

Proof. Neither condition holds when $q=2$. Now let $q$ be an odd prime.
(i) $\Rightarrow$ (ii): This argument is a simplfication of [11]. ${ }^{4}$ Trivially $p \mid\left(2^{q}-1\right)$. Since $2^{q}-1$ is odd, $p$ is odd.

[^2]Write $p \mid\left(2^{q}-1\right)$ as $2^{q} \equiv 1 \bmod p$, so the order of $2 \bmod p$ is $q$ since $q$ is prime and $2 \not \equiv 1 \bmod q$. Then $q \mid(p-1)$. In $\mathbf{Z}^{+}$, if $m \mid n$ then $\left(a^{m}-1\right) \mid\left(a^{n}-1\right)$ for $a \geq 2$, so $\left(2^{q}-1\right) \mid\left(2^{p-1}-1\right)$. Since $p^{2}$ is a factor $2^{q}-1, p^{2} \mid\left(2^{p-1}-1\right)$.
(ii) $\Rightarrow$ (i): This argument is from $\left[8\right.$, p. 342]. Since $2^{q} \equiv 1 \bmod p$ and $2 \not \equiv 1 \bmod p$, $2 \bmod p$ has order $q$. Thus $q \mid(p-1)$. Write $2^{q}=1+b p$ and $p-1=q r$ for $b, r \in \mathbf{Z}^{+}$. Then $2^{p-1}=(1+b p)^{r} \equiv 1+r b p \bmod p^{2}$, so $p \mid r b$. Since $r<p, p \mid b$. Thus $2^{q} \equiv 1 \bmod p^{2}$.
Remark 5.2. The only known Wieferich primes to base 2 are 1093 and 3511, and neither is a repeated factor of $2^{q}-1$ for a prime $q$ : if either were a repeated prime factor $p$ then Theorem 5.1 says $q \mid(p-1)$, and that limits the choices for $q$. The prime factors of $1093-1$ are $2,3,7$, and 13 , and the prime factors of $3511-1$ are $2,3,5$, and 13 , and for no such prime $q$ is $2^{q}-1$ divisible by 1093 or 3511 .
Corollary 5.3. If $2^{q}-1$ is not squarefree for infinitely many primes $q$ then there are infinitely many Wieferich primes to base 2.
Proof. For $a \geq 2$ and positive integers $m$ and $n,\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$, so the numbers $2^{q}-1$ for different primes $q$ are all pairwise relatively prime. Therefore different numbers $2^{q}-1$ have no common prime factors. The previous theorem tell us each $2^{q}-1$ that is not squarefree has a prime factor that is Wieferich to base 2 , so if $2^{q}-1$ is not squarefree for infinitely many $q$ then their repeated prime factors will be a list of infinitely many Wieferich primes to base $2 .{ }^{5}$

We'll now extend the reasoning in the proof of Theorem 5.1 to numbers of the form

$$
\frac{a^{q}-1}{a-1}=1+a+a^{2}+\cdots+a^{q-1}
$$

for $a \geq 2$ and prime $q$. When $a=2$ this number is $2^{q}-1$. For many $a>2,\left(a^{q}-1\right) /(a-1)$ can have a repeated prime factor. See Table 3. For instance, $\left(3^{5}-1\right) /(3-1)$ and $\left(9^{5}-1\right) /(9-1)$ are both divisible by $11^{2}$, while $\left(51^{5}-1\right) /(51-1)$ is divisible by $41^{2}$.

| $a$ | 3 | 9 | 18 | 22 | 27 | 30 | 44 | 51 | 53 | 53 | 56 | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | 5 | 5 | 3 | 3 | 5 | 3 | 19 | 5 | 23 | 29 | 19 | 5 |
| $p$ | 11 | 11 | 7 | 13 | 11 | 7 | 229 | 41 | 47 | 59 | 647 | 131 |
| TABLE 3. Repeated prime factor $p$ of $\left(a^{q}-1\right) /(a-1)$. |  |  |  |  |  |  |  |  |  |  |  |  |

First we'll determine when $\left(a^{q}-1\right) /(a-1)$ can have $q$ as a repeated prime factor.
Theorem 5.4. If $a \geq 2$ and $q$ is a prime, then $q^{2} \nmid\left(a^{q}-1\right) /(a-1)$ unless $q=2$ and $a \equiv 3 \bmod 4$.
Proof. If $q=2$ then $\left(a^{q}-1\right) /(a-1)=a+1$, which is divisible by 4 if and only if $a \equiv 3 \bmod 4$.
Now take $q \neq 2$. We will show that $q$ divides $\left(a^{q}-1\right) /(a-1)$ at most once.
Assume $q \mid\left(a^{q}-1\right) /(a-1)$, so $q \mid\left(a^{q}-1\right)$. Then $a^{q} \equiv 1 \bmod q$, so $a \equiv 1 \bmod q$. Let $q^{e}$ be the highest power of $q$ dividing $a-1$, so $a-1=q^{e} b$ where $e \geq 1$ and $q \nmid b$. Then $a=1+q^{e} b$. Raising both sides to the $q$ th power,

$$
a^{q}=\left(1+q^{e} b\right)^{q}=1+\sum_{i=1}^{q}\binom{q}{i}\left(q^{e} b\right)^{i}=1+q^{e+1} b+\sum_{i=2}^{q}\binom{q}{i} q^{i e} b^{i},
$$

[^3]SO

$$
a^{q}-1=q^{e+1} b+\sum_{i=2}^{q}\binom{q}{i} q^{i e} b^{i}
$$

All terms in the summation over $i$ are more highly divisible by $q$ then $q^{e+1}$ :

- For $i \geq 3, i e \geq 3 e>e+1$ since $e \geq 1$.
- For $i=2,\binom{q}{2} q^{2 e}=q^{2 e+1}(q-1) / 2$ and $2 e+1>e+1$ (the factor $(q-1) / 2$ is an integer since $q$ is odd).
Therefore the highest power of $q$ in $a^{q}-1$ is $q^{e+1}$. Since the highest power of $q$ in $a-1$ is $q^{e}$, the highest power of $q$ in the ratio $\left(a^{q}-1\right) /(a-1)$ is $q^{e+1-e}=q$.
Lemma 5.5. For $a \geq 2$ and a prime $q, \operatorname{gcd}\left(a-1,\left(a^{q}-1\right) /(a-1)\right)$ is 1 or $q$.
Proof. Let $d$ be a common divisor of $a-1$ and $\left(a^{q}-1\right) /(a-1)$. From $d \mid(a-1)$, we have $a \equiv 1 \bmod d$. Then $\left(a^{q}-1\right) /(a-1)=1+a+\cdots+a^{q-1} \equiv q \bmod d$, so $d \mid q$. By primality of $q, d$ is 1 or $q$.

Here is the generalization of Theorem 5.1 allowing bases other than 2. It is similar to [3, Theorem 18], which is about $a^{q}-1$ rather than $\left(a^{q}-1\right) /(a-1)$.

Theorem 5.6. Let $a \geq 2$. For distinct primes $p$ and $q$, the following conditions are equivalent ${ }^{6}$ and each implies $q \mid(p-1)$ :
(i) $p^{2} \mid\left(a^{q}-1\right) /(a-1)$,
(ii) $p \mid\left(a^{q}-1\right) /(a-1)$ and $a^{p-1} \equiv 1 \bmod p^{2}$.

This theorem is consistent with Table 3, e.g., $11^{2} \mid\left(3^{5}-1\right) /(3-1)$ and 11 is a Wieferich prime to base 3 .
Proof. (i) $\Rightarrow$ (ii): Trivially $\overline{p \mid\left(a^{q}-1\right) /(a-1)}$, so $a^{q} \equiv 1 \bmod p$. We have $p \nmid(a-1)$ since Lemma 5.5 tells us the only possible common factors of $a-1$ and $\left(a^{q}-1\right) /(a-1)$ are 1 and $q$. Therefore $a \not \equiv 1 \bmod p$, so $a \bmod p$ has order $q$. Thus $q \mid(p-1)$, so $\left(a^{q}-1\right) \mid\left(a^{p-1}-1\right)$. Since $p^{2} \mid\left(a^{q}-1\right)$ by condition (i), $p^{2} \mid\left(a^{p-1}-1\right)$. Thus $a^{p-1} \equiv 1 \bmod p^{2}$.
(ii) $\Rightarrow$ (i): From $p \mid\left(a^{q}-1\right) /(a-1), a \bmod p$ has order $q$ as in the proof of (i) $\Rightarrow$ (ii), so $q \mid(p-1)$. Write $a^{q}=1+b p$ and $p-1=q r$ for $b, r \in \mathbf{Z}^{+}$. Then $a^{p-1}=(1+b p)^{r} \equiv$ $1+r b p \bmod p^{2}$, so $p \mid r b$. Since $r<p, p \mid b$. Thus $a^{q} \equiv 1 \bmod p^{2}$, so $p^{2} \mid\left(a^{q}-1\right)$. Since $p \nmid(a-1)$ by Lemma 5.5, $p^{2} \mid\left(a^{q}-1\right) /(a-1)$.

By Theorems 5.4 and 5.6 , for $a \geq 2$ and an odd prime $q$, a repeated prime factor $p$ of $\left(a^{q}-1\right) /(a-1)$ has to be a Wieferich prime to base $a$ and $p \equiv 1 \bmod q$.

## References

[1] N. G. W. H. Beegner, "On a new case of the congruence $2^{p-1}=1\left(\bmod p^{2}\right)$," Messenger of Mathematics 51 (1922), 149-150. URL https://archive.org/details/messengerofmathe5051cambuoft/page/ 148/mode/2up
[2] E. Catalan, "Note extraite dune lettre adressée à l'éditeur, J. Reine Angew. Mathematik 27 (1844), 192. URL https://eudml.org/doc/147217.
[3] J. Klas̆ka, "Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem," J. Integer Sequences 26 (2023), Article 23.3.8 (21 pages). URL https://cs.uwaterloo.ca/ journals/JIS/VOL26/Klaska/klaska6.pdf.

[^4][4] J. Knauer and J. Richstein, "The Continuing Search for Wieferich Primes," Math. Comp. 74 (2005), 1559-1563.
[5] W. Meissner, "Über die Teilbarkeit von $2^{p}-2$ durch das Quadrat der Primzahl $p=1093$," Sitzungsber. der Königl. Preuss. Akad. der Wiss. Berlin 35 (1913), 663-667. URL https://oeis.org/A001917/ a001917.pdf.
[6] D. Mirimanoff, "Sur le dernier théorème de Fermat," Comptes rendus hebdomadaires des séances de l'Académie des Sciences 150 (1910), 204-206. URL https://gallica.bnf.fr/ark:/12148/ bpt6k6294283c/f12.item.
[7] P. Montgomery, "New Solutions of $a^{p}-1 \equiv 1 \bmod p^{2}$, Math. Comp. 61 (1993), 361-363.
[8] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996.
[9] A. Rotkiewicz, "Sur les nombres de Mersenne depourves de diviseurs carres et sur les nombres naturels

[10] R. Schoof, Catalan's Conjecture, Springer-Verlag, 2009.
[11] L. J. Warren and H. G. Bray, "On the square-freeness of Fermat and Mersenne numbers," Pacific J. Math. 22 (1967), 563-564. URL https://msp.org/pjm/1967/22-3/pjm-v22-n3-p15-p.pdf.
[12] A. Wieferich, "Zum letzten Fermatschen Theorem," J. Reine Angew. Mathematik 136 (1909), 293-302. URL https://eudml.org/doc/149315.


[^0]:    ${ }^{1}$ Another setting for Wieferich primes, accessible to those who know algebraic number theory, is in the calculation of the ring of integers of $\mathbf{Q}(\sqrt[n]{a})$ when $x^{n}-a$ is irreducible: see Theorem 5.3 in https://kconrad. math.uconn.edu/blurbs/gradnumthy/integersradical.pdf.

[^1]:    ${ }^{2}$ The proof by Wiles has $p \geq 5$ for technical reasons. The case $p=3$ was handled by Euler in the 1700 s.
    ${ }^{3}$ See https://math.stackexchange.com/questions/2893111.

[^2]:    ${ }^{4}$ The paper [11] is a rare case of a published paper in pure math where the author names are not listed alphabetically.

[^3]:    ${ }^{5}$ This corollary, in its contrapositive form, was first proved by Rotkiewicz [9, Théorème 2].

[^4]:    ${ }^{6}$ When $p=q>2$, conditions (i) and (ii) in Theorem 5.6 are not equivalent: (i) doesn't happen by Theorem 5.4, while (ii) happens when $a \equiv 1 \bmod p^{2}$.

