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1. Introduction

Fermat’s little theorem says that for prime p and a not divisible by p, ap−1 ≡ 1 mod p.
We are going to consider the strengthened congruence

(1.1) ap−1 ≡ 1 mod p2.

Unlike the congruence in Fermat’s little theorem, (1.1) usually does not hold. When (1.1)
holds, p is called a Wieferich prime to base a.

In Section 2 we’ll present examples and heuristics related to Wieferich primes. The next
three sections give different settings where Wieferich primes appear: Fermat’s last theorem
in Section 3 (this is how Wieferich’s name got associated to (1.1)), Catalan’s conjecture in
Section 4, and Mersenne numbers in Section 5.1

2. Numerical data

The only known Wieferich primes to base 2 and 1093 and 3511: they are prime and

21092 ≡ 1 mod 10932, 23510 ≡ 1 mod 35112.

These were found by Meissner [5] in 1913 and Beegner [1] in 1922. The known Wieferich
primes to a squarefree base a ≤ 10 are in Table 1. Searches for Wieferich primes have been
carried out for p < 1.25 · 1015 when a = 2 [4] and for p < 232 ≈ 109.63 when 3 ≤ a < 100 [7].
Wieferich primes to a fixed base appear to be quite rare numerically, and for some bases
none are known, e.g., no Wieferich primes to base 21 or 29 have been found.

a Known Wieferich primes to base a
2 1093, 3511
3 11, 1006003
5 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
6 66161, 534851, 3152573
7 5, 491531
10 3, 487, 56598313

Table 1. Known Wieferich primes for squarefree bases up to 10

The difficulty in (1.1) is finding p when we fix a, not finding a when we fix p: for each
prime p, there are p−1 values of a mod p2 making ap−1 ≡ 1 mod p2 (explicitly, the solutions
are a = bp mod p2 for 1 ≤ b ≤ p − 1). Table 2 lists squarefree Wieferich bases for small
primes.

1Another setting for Wieferich primes, accessible to those who know algebraic number theory, is in the
calculation of the ring of integers of Q( n

√
a) when xn−a is irreducible: see Theorem 5.3 in https://kconrad.

math.uconn.edu/blurbs/gradnumthy/integersradical.pdf.
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p Squarefree bases a with Wieferich prime p As congruence mod p2

2 5, 13, 17, 21, 29, 33, 37, 41, 53, 57, 61, 65 a ≡ 1 mod 4
3 10, 17, 19, 26, 35, 37, 46, 53, 55, 62, 71, 73 a ≡ ±1 mod 9
5 7, 26, 43, 51, 57, 74, 82, 93, 101, 107, 118 a ≡ ±1,±7 mod 25
7 19, 30, 31, 67, 79, 97, 129, 146, 165, 166 a ≡ ±1,±18,±19 mod 49

Table 2. Squarefree bases a having small Wieferich primes p

There is a probabilistic heuristic that both (i) supports the infrequent appearance of
Wieferich primes to a fixed base and (ii) suggests there are infinitely many Wieferich primes
to each base. When p - a, ap−1 ≡ 1 mod p, so ap−1 ≡ 1 + pb mod p2, where 0 ≤ b ≤ p − 1.
Here is the heuristic: assume b takes each of the p values 0, 1, . . . , p−1 with equal probability.
Since b = 0 corresponds to p being a Wieferich prime to base a, the “probability” some p not
dividing a is a Wieferich prime to base a is 1/p. Therefore the expected number of primes
p ≤ x that are Wieferich primes to base a is found by adding up the “probabilities”. This
is
∑

p≤x 1/p, which grows very slowly: it is asymptotic to log log x. Since log log(232) ≈ 3.1,

it is no surprise so few Wieferich primes for p < 232 are known to any particular base.
(Strictly speaking,

∑
p≤x 1/p from the heuristic should not include p dividing a, making the

sum even smaller. The effect is negligible.)

3. Case I of Fermat’s last theorem

Fermat’s last theorem says that xn + yn = zn has no solution in positive integers x,
y, and z when n ≥ 3. It was proposed by Fermat in the 1600s and proved by Wiles in
the 1990s. Before its proof in general, Fermat’s last theorem had been settled for many
individual exponents.

Each n ≥ 3 is divisible by an odd prime or 4. If there is no solution (x, y, z) in Z+ when
the exponent is n then there is also no solution when the exponent is a multiple of n. So to
prove Fermat’s last theorem, it suffices to assume n is 4 or an odd prime. Fermat handled
the case n = 4. Before the work of Wiles, progress on Fermat’s last theorem for odd prime
exponenst2 p was divided into two cases:

• Case I: show no solutions where p - xyz,
• Case II: show no solutions where p | xyz.

Wieferich [12] proved the following result about Case I in 1909.

Theorem 3.1. If Case I for exponent p has a counterexample, then 2p−1 ≡ 1 mod p2.

That is, if xp+yp = zp in Z+ where p - xyz then 2p−1 ≡ 1 mod p2. Note this says nothing
about counterexamples to Fermat’s last theorem in Case II.

The following year, it probably came as a surprise when Mirimanoff [6] proved the same
theorem with another base.

Theorem 3.2. If Case I for exponent p has a counterexample, then 3p−1 ≡ 1 mod p2.

Wieferich primes to a single base already seem to be quite rare, so a prime being Wieferich
to bases 2 and 3 together looks extraordinarily unlikely, and heuristics like those in Section
2 suggest it should happen only finitely many times.3 By the time Wiles announced a

2The proof by Wiles has p ≥ 5 for technical reasons. The case p = 3 was handled by Euler in the 1700s.
3See https://math.stackexchange.com/questions/2893111.

https://math.stackexchange.com/questions/2893111
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proof of Fermat’s last theorem in 1993, an analogue of Theorem 3.1 had been proved with
2 replaced by each prime up through 89. Nowadays this use of Wieferich primes is only of
historical interest, since the proof of Fermat’s last theorem makes no use of the Case I/Case
II distinction and Wieferich primes.

4. Catalan’s conjecture

A perfect power in Z+ is a number of the form am where a ∈ Z+ and m ≥ 2. The
sequence of perfect powers starts out as

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, . . .

and Catalan [2] conjectured in 1844 that the only consecutive perfect powers are 8 = 23 and
9 = 32. That is, the only solution to xm − yn = 1 in Z+ with m,n ≥ 2 are (x, y,m, n) =
(3, 2, 2, 3). This was proved by Mihailescu in 2004.

As with Fermat’s last theorem, to prove Catalan’s conjecture it suffices to assume m and
n are prime, and they are necessarily distinct. We’ll write the equation as xp − yq = 1.
The cases where p or q is 2 were completely settled by the 1960s. (Euler had treated the
exponent pair with a solution, p = 2 and q = 3, in 1738.) Therefore p and q can be taken
as odd primes, which allows us to regard the equation as being symmetric in p and q by
aiming to prove there is no solution in nonzero integers rather than only in positive integers:
if xq − yp = 1 then (−y)p − (−x)q = 1.

A breakthrough in work on Catalan’s conjecture was Mihailescu’s proof that if xp−yq = 1
for nonzero integers x and y and odd primes p and q, then qp−1 ≡ 1 mod p2, so by symmetry
pq−1 ≡ 1 mod q2. Such primes are called a Wieferich pair. (This constraint had been
proved earlier under additional assumptions on p and q; Mihailescu derived it without extra
assumptions.) Two examples of Wieferich pairs of odd primes are (p, q) = (3, 1006003) and
(p, q) = (5, 1645333507). An overview of the proof of Catalan’s conjecture in Schoof’s book
[10, pp. 3–5] describes how the Wieferich pair property is used in the proof.

5. Squarefree Mersenne numbers and a generalization

A Mersenne number is a number of the form 2n − 1. These numbers can have square
factors bigger than 1, such as

26 − 1 = 63 = 32 · 7, 220 − 1 = 52 · 3 · 11 · 31 · 41, 221 − 1 = 72 · 127 · 337.

It is conjectured that 2q − 1 is squarefree for all primes q. The next theorem suggests
counterexamples are rare: a repeated prime factor of 2q − 1 is a Wieferich prime to base 2.

Theorem 5.1. For prime numbers p and q, the following conditions are equivalent and
each implies q | (p− 1):

(i) p2 | (2q − 1),
(ii) p | (2q − 1) and 2p−1 ≡ 1 mod p2.

Proof. Neither condition holds when q = 2. Now let q be an odd prime.

(i) ⇒ (ii): This argument is a simplfication of [11].4 Trivially p | (2q − 1) . Since 2q − 1

is odd, p is odd.

4The paper [11] is a rare case of a published paper in pure math where the author names are not listed
alphabetically.
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Write p | (2q − 1) as 2q ≡ 1 mod p, so the order of 2 mod p is q since q is prime and
2 6≡ 1 mod q. Then q | (p − 1). In Z+, if m | n then (am − 1) | (an − 1) for a ≥ 2, so

(2q − 1) | (2p−1 − 1). Since p2 is a factor 2q − 1, p2 | (2p−1 − 1) .

(ii) ⇒ (i): This argument is from [8, p. 342]. Since 2q ≡ 1 mod p and 2 6≡ 1 mod p,
2 mod p has order q. Thus q | (p− 1). Write 2q = 1 + bp and p− 1 = qr for b, r ∈ Z+. Then

2p−1 = (1 + bp)r ≡ 1 + rbp mod p2, so p | rb. Since r < p, p | b. Thus 2q ≡ 1 mod p2 . �

Remark 5.2. The only known Wieferich primes to base 2 are 1093 and 3511, and neither
is a repeated factor of 2q − 1 for a prime q: if either were a repeated prime factor p then
Theorem 5.1 says q | (p−1), and that limits the choices for q. The prime factors of 1093−1
are 2, 3, 7, and 13, and the prime factors of 3511 − 1 are 2, 3, 5, and 13, and for no such
prime q is 2q − 1 divisible by 1093 or 3511.

Corollary 5.3. If 2q − 1 is not squarefree for infinitely many primes q then there are
infinitely many Wieferich primes to base 2.

Proof. For a ≥ 2 and positive integers m and n, (am−1, an−1) = a(m,n)−1, so the numbers
2q − 1 for different primes q are all pairwise relatively prime. Therefore different numbers
2q − 1 have no common prime factors. The previous theorem tell us each 2q − 1 that is not
squarefree has a prime factor that is Wieferich to base 2, so if 2q − 1 is not squarefree for
infinitely many q then their repeated prime factors will be a list of infinitely many Wieferich
primes to base 2.5 �

We’ll now extend the reasoning in the proof of Theorem 5.1 to numbers of the form

aq − 1

a− 1
= 1 + a + a2 + · · ·+ aq−1

for a ≥ 2 and prime q. When a = 2 this number is 2q−1. For many a > 2, (aq−1)/(a−1) can
have a repeated prime factor. See Table 3. For instance, (35−1)/(3−1) and (95−1)/(9−1)
are both divisible by 112, while (515 − 1)/(51− 1) is divisible by 412.

a 3 9 18 22 27 30 44 51 53 53 56 58
q 5 5 3 3 5 3 19 5 23 29 19 5
p 11 11 7 13 11 7 229 41 47 59 647 131
Table 3. Repeated prime factor p of (aq − 1)/(a− 1).

First we’ll determine when (aq − 1)/(a− 1) can have q as a repeated prime factor.

Theorem 5.4. If a ≥ 2 and q is a prime, then q2 - (aq − 1)/(a − 1) unless q = 2 and
a ≡ 3 mod 4.

Proof. If q = 2 then (aq−1)/(a−1) = a+1, which is divisible by 4 if and only if a ≡ 3 mod 4.
Now take q 6= 2. We will show that q divides (aq − 1)/(a− 1) at most once.
Assume q | (aq − 1)/(a − 1), so q | (aq − 1). Then aq ≡ 1 mod q, so a ≡ 1 mod q. Let

qe be the highest power of q dividing a − 1, so a − 1 = qeb where e ≥ 1 and q - b. Then
a = 1 + qeb. Raising both sides to the qth power,

aq = (1 + qeb)q = 1 +

q∑
i=1

(
q

i

)
(qeb)i = 1 + qe+1b +

q∑
i=2

(
q

i

)
qiebi,

5This corollary, in its contrapositive form, was first proved by Rotkiewicz [9, Théorème 2].
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so

aq − 1 = qe+1b +

q∑
i=2

(
q

i

)
qiebi.

All terms in the summation over i are more highly divisible by q then qe+1:

• For i ≥ 3, ie ≥ 3e > e + 1 since e ≥ 1.
• For i = 2,

(
q
2

)
q2e = q2e+1(q − 1)/2 and 2e + 1 > e + 1 (the factor (q − 1)/2 is an

integer since q is odd).

Therefore the highest power of q in aq − 1 is qe+1. Since the highest power of q in a− 1 is
qe, the highest power of q in the ratio (aq − 1)/(a− 1) is qe+1−e = q. �

Lemma 5.5. For a ≥ 2 and a prime q, gcd(a− 1, (aq − 1)/(a− 1)) is 1 or q.

Proof. Let d be a common divisor of a− 1 and (aq − 1)/(a− 1). From d | (a− 1), we have
a ≡ 1 mod d. Then (aq − 1)/(a− 1) = 1 + a + · · ·+ aq−1 ≡ q mod d, so d | q. By primality
of q, d is 1 or q. �

Here is the generalization of Theorem 5.1 allowing bases other than 2. It is similar to [3,
Theorem 18], which is about aq − 1 rather than (aq − 1)/(a− 1).

Theorem 5.6. Let a ≥ 2. For distinct primes p and q, the following conditions are equiv-
alent 6 and each implies q | (p− 1):

(i) p2 | (aq − 1)/(a− 1),
(ii) p | (aq − 1)/(a− 1) and ap−1 ≡ 1 mod p2.

This theorem is consistent with Table 3, e.g., 112 | (35− 1)/(3− 1) and 11 is a Wieferich
prime to base 3.

Proof. (i) ⇒ (ii): Trivially p | (aq − 1)/(a− 1) , so aq ≡ 1 mod p. We have p - (a− 1) since

Lemma 5.5 tells us the only possible common factors of a−1 and (aq−1)/(a−1) are 1 and
q. Therefore a 6≡ 1 mod p, so a mod p has order q. Thus q | (p− 1), so (aq − 1) | (ap−1− 1).

Since p2 | (aq − 1) by condition (i), p2 | (ap−1 − 1). Thus ap−1 ≡ 1 mod p2 .

(ii) ⇒ (i): From p | (aq − 1)/(a − 1), a mod p has order q as in the proof of (i) ⇒ (ii),
so q | (p − 1). Write aq = 1 + bp and p − 1 = qr for b, r ∈ Z+. Then ap−1 = (1 + bp)r ≡
1 + rbp mod p2, so p | rb. Since r < p, p | b. Thus aq ≡ 1 mod p2, so p2 | (aq − 1). Since
p - (a− 1) by Lemma 5.5, p2 | (aq − 1)/(a− 1). �

By Theorems 5.4 and 5.6, for a ≥ 2 and an odd prime q, a repeated prime factor p of
(aq − 1)/(a− 1) has to be a Wieferich prime to base a and p ≡ 1 mod q.
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