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The tests for divisibility by 3, 9, and 11 all have a similar flavor: for a positive integer

(1) n = ad10d + ad−110d−1 + · · ·+ a110 + a0,

where 0 ≤ ai ≤ 9, we have

n ≡ 0 mod 3 ⇐⇒ ad + ad−1 + ad−2 + · · ·+ a0 ≡ 0 mod 3,

n ≡ 0 mod 9 ⇐⇒ ad + ad−1 + ad−2 + · · ·+ a0 ≡ 0 mod 9,

n ≡ 0 mod 11 ⇐⇒ ad − ad−1 + ad−2 − · · ·+ (−1)da0 ≡ 0 mod 11.

These tests are convenient to use because the sum of the digits of n and the alternating
sum of the digits of n are much smaller than n, so we can turn the divisibility problem for
n into a divisibility problem for a smaller number. Moreover, we can iterate the test again
and again until we are left with a very small number to test.

These three tests generalize to a test for divisibility by any integer m relatively prime to
10 (that is, m is not a multiple of 2 or 5). So we will get, for instance, divisibility tests by
7, 13, and 29. The general test will involve the operation of taking off the units’ digit of a
positive integer, e.g., turning 1634 into 163 or 78325 into 7832. For n ≥ 1, let n′ be the
number that we get after taking off the units’ digit of n. So if n is written as in (1),

(2) n′ = ad10d−1 + ad−110d−2 + · · ·+ a1 =
n− a0

10
.

In (2) we removed the digit a0 and shifted all the other digits into the next lower position
(a1 fills the position previously taken by a0, and so on).

Here is the universal divisibility test.

Theorem 1. When (m, 10) = 1, choose b so that 10b ≡ 1 mod m. Then

n ≡ 0 mod m⇐⇒ n′ + ba0 ≡ 0 mod m.

We will look at a number of examples of this before we discuss the proof.

Example 2. Take m = 7. Then 10 · 5 ≡ 1 mod 7, so

(3) n ≡ 0 mod 7⇐⇒ n′ + 5a0 ≡ 0 mod 7.

Let’s try n = 11382. We have n′ = 1138 and n′+5a0 = 1138+5 ·2 = 1148, so 7|n if and only
if 7|1148. Since 1148 is still big, we apply the test again to 1148: 114+5·8 = 114+40 = 154,
so 7|1148 if and only if 7|154. Then we replace 154 with 15 + 5 · 4 = 15 + 20 = 35, which is
divisible by 7. Thus the original number 11382 is divisible by 7 (because the test is an “if
and only if” criterion, so it works in both directions). Explicitly,

n = 11382 = 7 · 1626.

Let’s summarize our successive computations in the following way:

11382 1138 + 5 · 2 = 1148 114 + 5 · 8 = 154 15 + 5 · 4 = 35.
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Any b fitting 10b ≡ 1 mod 7 can be used in place of 5 in this test. Since 10(−2) ≡ 1 mod 7,
for instance, we also get a test for divisibility by 7 as

(4) n ≡ 0 mod 7⇐⇒ n′ − 2a0 ≡ 0 mod 7.

This is more convenient to use than (3) since −2 is smaller in magnitude than 5. Of course
(3) and (4) are the same test, since 5 ≡ −2 mod 7, but the integers they lead to are different.
Let’s apply (4) to 11382. The successive numbers we get now are

11382 1138− 2 · 2 = 1134 113− 2 · 4 = 105 10− 2 · 5 = 0,

which is divisible by 7, so the original number 11382 is divisible by 7.

Example 3. Take m = 13. Then 10 · 4 ≡ 1 mod 13, so

n ≡ 0 mod 13⇐⇒ n′ + 4a0 ≡ 0 mod 13.

Taking n = 11382 again, the successive numbers under the operation n n′ + 4a0 are

11382 1138 + 4 · 2 = 1146 114 + 4 · 6 = 138 13 + 4 · 8 = 45 4 + 4 · 5 = 24,

which is not divisible by 13, so 11382 is not divisible by 13. (We didn’t have to stop there:
24 2 + 4 · 4 = 18, which is not divisible by 13.) Trying now n = 78325, we compute

78325 7832 + 4 · 5 = 7852 785 + 4 · 2 = 793 79 + 4 · 3 = 91 9 + 4 = 13,

so 78325 is divisible by 13. Explicitly,

78325 = 13 · 6025.

For m < 50 with (10,m) = 1, Table 1 below lists the inverse of 10 mod m in the second
column, using the representative that is smallest in absolute value (so for m = 7 we choose
−2 rather than 5).

Example 4. From Table 1,

n ≡ 0 mod 17⇐⇒ n′ − 5a0 ≡ 0 mod 17,

n ≡ 0 mod 19⇐⇒ n′ + 2a0 ≡ 0 mod 19,

n ≡ 0 mod 21⇐⇒ n′ − 2a0 ≡ 0 mod 21,

n ≡ 0 mod 23⇐⇒ n′ + 7a0 ≡ 0 mod 23,

n ≡ 0 mod 27⇐⇒ n′ − 8a0 ≡ 0 mod 27,

and

n ≡ 0 mod 29⇐⇒ n′ + 3a0 ≡ 0 mod 29.

Let’s see if 1634 is divisible by 29. The operation is n n′ + 3a0 in this case, and

1634 163 + 3 · 4 = 175 17 + 3 · 5 = 32,

which is not a multiple of 29, so 1634 is not divisible by 29. Now trying 13108, we get

13108 1310 + 3 · 8 = 1334 133 + 3 · 4 = 145 14 + 3 · 5 = 29,

which is divisible by 29, so 13108 is divisible by 29. Explicitly,

13108 = 29 · 452.

Now that we see how Theorem 1 works in practice, let’s prove it. The proof will be very
short! It depends on writing n as 10n′ + a0 and doing one multiplication mod m.
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m b
3 1
7 −2
9 1
11 −1
13 4
17 −5
19 2
21 −2
23 7
27 −8
29 3
31 −3
33 10
37 −11
39 4
41 −4
43 13
47 −14
49 5

Table 1. A solution to 10b ≡ 1 mod m

Proof. Since n = 10n′ + a0,

n ≡ 0 mod m⇐⇒ 10n′ + a0 ≡ 0 mod m.

Since 10 mod m is invertible, with inverse b,

10n′ + a0 ≡ 0 mod m ⇐⇒ b(10n′ + a0) ≡ 0 mod m

⇐⇒ n′ + ba0 ≡ 0 mod m.

�

All that really happened in the proof is that we divided by 10 working modulo m. If
we allow ourselves to use ordinary fractional notation, 10n′ + a0 ≡ 0 mod m if and only if
n′ + a0/10 ≡ 0 mod m and the legal form of 1/10 mod m is b mod m since 10b ≡ 1 mod m.

Although we said at the start that the divisibility test in Theorem 1 generalizes the divis-
ibility tests for 3, 9, and 11, which involve adding (or alternately adding and subtracting)
all the digits of a number, the usual tests for 3, 9, and 11 don’t actually look like the test
in Theorem 1. So let’s see how Theorem 1 implies the usual tests for 3, 9, and 11. Looking
at Table 1, where b = 1 for m = 3 and 9, and b = −1 for m = 11, Theorem 1 says

n ≡ 0 mod 3 ⇐⇒ n′ + a0 ≡ 0 mod 3,

n ≡ 0 mod 9 ⇐⇒ n′ + a0 ≡ 0 mod 9,

n ≡ 0 mod 11 ⇐⇒ n′ − a0 ≡ 0 mod 11.

Since 10 ≡ 1 mod 3, by (2)

n′ ≡ ad + ad−1 + · · ·+ a1 mod 3,
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so
n′ + a0 ≡ ad + ad−1 + · · ·+ a1 + a0 mod 3.

Therefore the test for divisibility by 3 in Theorem 1 is the same as

n ≡ 0 mod 3⇐⇒ ad + ad−1 + · · ·+ a1 + a0 ≡ 0 mod 3,

which is the usual test for divisibility by 3. Since 10 ≡ 1 mod 9, Theorem 1 implies the
usual test for divisibility by 9 in the same way. As for 11, since 10 ≡ −1 mod 11 we have

n′ ≡ ad(−1)d−1 + ad−1(−1)d−2 + · · ·+ a1 mod 11,

so
n′ − a0 ≡ ad(−1)d−1 + ad−1(−1)d−2 + · · ·+ a1 − a0 mod 11.

Therefore Theorem 1 says

n ≡ 0 mod 11 ⇐⇒ n′ − a0 ≡ 0 mod 11

⇐⇒ ad(−1)d−1 + ad−1(−1)d−2 + · · ·+ a1 − a0 mod 11

⇐⇒ (−1)d−1(ad − ad−1 + · · ·+ (−1)d−1a1 + (−1)da0) ≡ 0 mod 11

⇐⇒ ad − ad−1 + · · ·+ (−1)d−1a1 + (−1)da0 ≡ 0 mod 11,

which is the usual for divisibility by 11.

Remark 5. If we try out the universal divisibility test for m on a number that is too small
(relative to m), we may produce larger numbers in the recursion. For example, take m = 13
(and b = 4). Testing for divisibility of 28 by 13, we get

28 2 + 4 · 8 = 34 3 + 4 · 4 = 19 1 + 4 · 9 = 37 3 + 4 · 7 = 31 3 + 4 · 1 = 7,

which is not divisible by 13 so 28 isn’t divisible by 13 either. Notice the sequence went up
and down a couple of times before getting very small.

It can also happen that the recursion enters a loop. For example, if we want to test 351
for divisibility by 13 then we get

351 35 + 4 · 1 = 39 3 + 4 · 9 = 39 39 39 . . . .

It can be shown that the “universal” test for divisibility by m will lead to rising numbers
or a loop only at a stage where the numbers are small relative to m (of size less than 10m,
in fact), at which point you could just stop and do a direct divisibility check.


