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1. Introduction

The Jacobi symbol satisfies many formulas that the Legendre symbol does, such as these:
for a, b ∈ Z and odd m,n ∈ Z+,

(1) a ≡ b mod n⇒ ( a
n) = ( b

n),

(2) (abn ) = ( a
n)( b

n),

(3) (−1n ) = (−1)(n−1)/2 and ( 2
n) = (−1)(n

2−1)/8,

(4) ( n
m) = (−1)(m−1)/2·(n−1)/2(mn ).

But there is one basic rule about Legendre symbols that is not listed above for Jacobi
symbols: an analogue of Euler’s congruence a(p−1)/2 ≡ (ap ) mod p if 1 ≤ a ≤ p − 1. The

natural analogue of this for an odd composite modulus n would be

(1.1) 1 ≤ a ≤ n− 1 =⇒ a(n−1)/2 ≡
(a
n

)
mod n.

It turns out that this congruence has lots of counterexamples for a whenever n is odd and
composite (Corollary 3.3 below), and this leads to a probabilistic primality test.

2. Euler witnesses

Definition 2.1. If n > 1 is an odd integer then an integer a ∈ {1, . . . , n − 1} such that

either (i) (a, n) > 1 or (ii) (a, n) = 1 and a(n−1)/2 6≡ ( a
n) mod n is called an Euler witness

for n. All other integers in {1, . . . , n− 1} are Euler nonwitnesses for n.

If n is an odd prime then neither (i) nor (ii) holds for any a from 1 to n − 1, so n has
no Euler witnesses. Therefore if n has even a single Euler witness, then n is composite.
Knowing an Euler witness does not tell us how to factor n.

The condition (a, n) > 1 is equivalent to ( a
n) = 0, so we don’t need to test if (a, n) > 1 or

(a, n) = 1 separately when checking if a is an Euler witness: the process of testing whether

or not a(n−1)/2 ≡ ( a
n) mod n will reveal if (a, n) > 1 when the right side is 0.

It’s a little easier to say when a is an Euler nonwitness for n than when it is an Euler
witness: a being an Euler nonwitness for n means

(2.1) (a, n) = 1 and a(n−1)/2 ≡
(a
n

)
mod n,

and the condition that (a, n) = 1 is equivalent to ( a
n) = ±1. For instance, 1 is always an

Euler nonwitness for n, and n− 1 is too since (n−1n ) = (−1n ) = (−1)(n−1)/2.
Euler witnesses are a more general concept than Fermat witnesses: every Fermat witness

is an Euler witness. The proof is left to the reader. (Hint: prove the contrapositive, that a
number that an Euler nonwitness for n is a Fermat nonwitness for n.)
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Example 2.2. Let n = 1387. Since

2(n−1)/2 = 2693 ≡ 512 6≡ ±1 mod 1387,

2 is an Euler witness for n. It is not a Fermat witness since 2n−1 ≡ 1 mod n. The number
of Euler witnesses for n in {1, . . . , n− 1} is 1224, which is ≈ 88.2% of the numbers in that
range.

Example 2.3. Let n = 49141. From the table below, 5 is an Euler witness.

a a(n−1)/2 mod n ( a
n)

2 −1 −1
3 1 1
4 1 1
5 8163 1

The number of Euler witnesses for n in {1, . . . , n− 1} is 36972, which is about 75.2% of the
numbers in that range.

Example 2.4. Let n = 75361. From the table below, 7 is an Euler witness.

a a(n−1)/2 mod n ( a
n)

2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 −1

Unlike the previous two examples, the first Euler witness a = 7 has a(n−1)/2 ≡ ±1 mod n,
but the sign is not ( a

n). The congruence in (1.1) is more precise than a(n−1)/2 ≡ ±1 mod n.
The number of Euler witnesses for n in {1, . . . , n− 1} is 46560, which is about 61.7% of

the numbers in that range.

3. The theorems of Solovay and Strassen

If we to try to determine primality of n with the Fermat test by seeking a in {2, . . . , n−1}
such that an−1 ≡ 1 mod n, then the proportion of such a (the Fermat witnesses for n) is
greater than 50% if n is composite and not a Carmichael number (that is, if n is composite
and an−1 6≡ 1 mod n for some a where (a, n) = 1). If n is a Carmichael number, then
the only Fermat witnesses for n are the a in {1, . . . , n − 1} such that (a, n) > 1. The
proportion of such a could be very small. The following theorem and corollary, due to
Solovay and Strassen, say this problem never occurs for Euler’s congruence: there is nothing
like Carmichael numbers for (1.1).

Theorem 3.1 (Solovay–Strassen). Let n be an odd composite positive integer. There is an

integer a in {1, . . . , n− 1} such that (a, n) = 1 and a(n−1)/2 6≡ ( a
n) mod n.

The key point is that a(n−1)/2 ≡ ( a
n) mod n fails for some a that is relatively prime to n.

Proof. We take two cases: n is squarefree and n has a repeated prime factor.
Suppose n is composite and squarefree, so n = p1p2 · · · pr with r ≥ 2 (n is not prime!) and

the pi’s are distinct odd primes. Half the nonzero numbers mod p1 are not squares, so there
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is b ∈ Z such that ( b
p1

) = −1. By the Chinese remainder theorem some a ∈ {1, . . . , n − 1}
satisfies

a ≡ b mod p1, a ≡ 1 mod p2 · · · pr.
Since b 6≡ 1 mod p, a 6= 1. Then a is relatively prime to p1 and to p2 · · · pr, so (a, n) = 1.
Also ( a

p1
) = ( b

p1
) = −1 and ( a

pi
) = ( 1

pi
) = 1 for i > 1, so(a

n

)
=

(
a

p1

)(
a

p2

)
· · ·
(

a

pr

)
=

(
a

p1

)
= −1.

Assume a(n−1)/2 ≡ ( a
n) mod n, so a(n−1)/2 ≡ −1 mod n. Since p2 divides n, we can reduce

the congruence a(n−1)/2 ≡ −1 mod n to modulus p2, getting

1 ≡ −1 mod p2

since a ≡ 1 mod p2. This is a contradiction since the modulus p2 is greater than 2.
Now suppose n has a repeated prime factor,1 say p. Then n = pkm where k ≥ 2 and

(p,m) = 1. By the Chinese remainder theorem, there is an a ∈ {1, . . . , n− 1} satisfying

a ≡ 1 + p mod p2, a ≡ 1 mod m.

Therefore a 6= 1, a is not divisible by p, and (a,m) = 1, so (a, n) = 1. If a(n−1)/2 ≡ ( a
n) mod

n then squaring gives us an−1 ≡ 1 mod n, and we’re going to show that is impossible.
Reduce the congruence to modulus p2 (a factor of n) to obtain an−1 ≡ 1 mod p2. Since
a ≡ 1 + p mod p2 we get (1 + p)n−1 ≡ 1 mod p2. Using the binomial theorem, (1 + p)n−1 ≡
1 + (n− 1)p mod p2, so 1 + (n− 1)p ≡ 1 mod p2. Subtracting 1 from both sides, (n− 1)p ≡
0 mod p2, so n− 1 ≡ 0 mod p. But n is a multiple of p, so we have a contradiction. �

Corollary 3.2. Let n > 1 be an odd composite integer. Then

|{1 ≤ a ≤ n− 1 : (a, n) = 1 and a(n−1)/2 ≡ ( a
n) mod n}|

n− 1
<

1

2
.

This theorem says for odd composite n > 1, less than 50% of the numbers in {1, . . . , n−1}
are Euler nonwitnesses for n.

Proof. Recall first that ( a
n) = ±1 if (a, n) = 1 and ( a

n) = 0 if (a, n) > 1. Set

A =
{

1 ≤ a ≤ n− 1 : (a, n) = 1 and a(n−1)/2 ≡
(a
n

)
mod n

}
,

B =
{

1 ≤ a ≤ n− 1 : (a, n) = 1 and a(n−1)/2 6≡
(a
n

)
mod n

}
,

C = {1 ≤ a ≤ n− 1 : (a, n) > 1}.
The sets A,B, and C are disjoint and fill up all the integers from 1 to n − 1. Together

B and C are the Euler witnesses for n. The set C is not empty since n is composite. By
Theorem 3.1, B is provably not empty too. The numbers a = 1 and a = n− 1 are both in
A. What we want to show is equivalent to |A| < (n− 1)/2.

Pick a number in B, say b0. We will show the set Ab0 = {ab0 mod n : a ∈ A} is inside B,
where “ab0 mod n” means the remainder when we divide ab0 by n. Indeed, for any a ∈ A,
the product ab0 is relatively prime to n and

(ab0)
(n−1)/2 ≡ a(n−1)/2b

(n−1)/2
0 ≡

(a
n

)
b
(n−1)/2
0 mod n.

1The proof of Theorem 3.1 in the original paper of Solovay and Strassen [11] did not cover a special case
of this, when n is a perfect square. They filled in that gap later [12].
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Either ab0 mod n is in A or B. If ab0 mod n ∈ A then (ab0)
(n−1)/2 ≡ (ab0n ) = ( a

n)( b0n ) mod n,

so ( a
n)( b0n ) ≡ ( a

n)b
(n−1)/2
0 mod n. Since (a, n) = 1 we have ( a

n) = ±1, so we can cancel ( a
n)

on both sides of the congruence to get ( b0n ) ≡ b
(n−1)/2
0 mod n, which contradicts b0 being in

B. Thus ab0 mod n ∈ B for all a ∈ A, so Ab0 ⊂ B.
For a and a′ in A, if ab0 ≡ a′b0 mod n then cancel b0 to get a ≡ a′ mod n, so a = a′

because numbers in A are in {1, . . . , n− 1}. Thus the number of elements in Ab0 is |A|, so
from Ab0 ⊂ B we have |A| = |Ab0| ≤ |B|. Therefore

n− 1 = |A|+ |B|+ |C| ≥ |A|+ |A|+ 1 = 2|A|+ 1 > 2|A|,
so |A| < (n− 1)/2. �

Corollary 3.3. For an odd composite n > 1, the proportion of integers from 2 to n−2 that
are Euler witnesses for n is over 50%.

Proof. Among the integers from 1 to n − 1, Corollary 3.2 says the proportion that are
Euler nonwitnesses for n is less than 50%, so the proportion that are Euler witnesses for
n has to be over 50%. Let W be the number of Euler witnesses for n in {1, . . . , n− 1}, so
W/(n−1) > 1/2. The Euler witnesses don’t include 1 or n−1, so the proportion of integers
from 2 to n − 2 that are Euler witnesses for n is W/(n − 3) > W/(n − 1) > 1/2, which is
the desired conclusion. �

The dichotomy between the proportion of Euler witnesses when n is prime or composite
is very impressive. It leads to the Solovay–Strassen test for checking if an odd integer
n > 1 is prime, based on the high chances of finding an Euler witness for n when n is
composite compared to the nonexistence of Euler witnesses when n is prime.

(1) Pick an integer t ≥ 1 to be the number of trials for the test.
(2) Randomly pick an integer a from 2 to n− 2.
(3) If (2.1) is not true for a then stop the test and declare (correctly) “n is composite.”
(4) If (2.1) is true for a then go back to step 2.
(5) If the test runs for t trials without terminating then say “n is prime with probability

at least 1− 1/2t.”

The value 1 − 1/2t in the last step of the test comes from the fact that over half the
numbers from 2 to n− 2 are Euler witnesses for n if n is composite. Not finding an Euler
witness after t trials, if n were composite, is as likely as flipping a fair coin t times and having
the same side come up each time, which has probability 1/2t. In fact it is less likely than
that since the proportion of Euler witnesses is over 50%. Therefore the “probability” that n
is prime if no Euler witness for n is found after t trials is greater than 1−1/2t. This heuristic
reasoning about probability is not quite correct; we made an error related to conditional
probability (there is no error in the Solovay–Strassen test, but only in the probabilistic
heuristic for it). In practice the error is not that important so we won’t emphasize it, but
see Appendix A for the details if you are interested.

In the Solovay–Strassen test a ∈ {2, . . . , n− 2} is picked randomly, not consecutively. In
part this is to avoid redundant information. For instance, in Example 2.4 the entries for
a = 4 and a = 6 are completely determined by those for a = 2 and a = 3 because if the
congruence a(n−1)/2 ≡ ( a

n) mod n and condition (a, n) = 1 hold for two values of a then
they hold for their product.

Example 3.4. Let n = 56052361. In the table below we list randomly chosen a from 2 to
n − 2 (chosen by a computer) and find a mismatch in (1.1) after 3 trials, which proves n
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is composite. However, we do not get a factorization of n from this: knowing a number is
composite is not the same as knowing how it factors.

a a(n−1)/2 mod n ( a
n)

40715161 1 1
18267097 1 1
55146139 1 −1

By a brute force computation, the number of Euler witnesses for n is 27783000, which is
just over half the numbers from 2 to n−2: 27783000

n−3 ≈ .5043. So the lower bound in Theorem
3.3 of at least half the numbers being Euler witnesses for an odd composite number seems
like a pretty sharp bound.

The 50% lower bound for the proportion of Euler witnesses for odd composites is probably
sharp: if 6k + 1, 12k + 1, and 18k + 1 are all prime then the proportion of Euler witnesses
for (6k+ 1)(12k+ 1)(18k+ 1) tends to 50% if we can let k →∞. (It is believed that 6k+ 1,
12k + 1, and 18k + 1 are all prime infinitely often.)

Example 3.5. Let n = 2301745249. When I used a computer to pick random numbers
from 2 to n − 2 I got a = 325244385 as the first choice, and a(n−1)/2 ≡ 1 mod n while
( a
n) = −1, so n is provably composite.

Example 3.6. Let n = 7427466391. In the table below we find after trying 10 random
values of a from 2 to n− 2 that the Solovay–Strassen test reveals no Euler witnesses.

a a(n−1)/2 mod n ( a
n)

3402235571 1 1
2277339183 1 1
3511612661 1 1
1892495979 −1 −1
735536755 1 1
966099371 −1 −1
3288169902 1 1
3037671250 −1 −1
270193898 1 1
7427466390 −1 −1

If n were composite then the chance of this happening is comparable to flipping a coin
10 times and getting only heads, which has probability 1/210 ≈ .00097, so it is natural to
believe n is prime, but the table of data is not a proof of that. (The number n really is
prime, which a computer can check quickly for a 10-digit number like n.)

Example 3.7. The 14th Fermat number F14 = 22
14

+ 1, which has 4933 digits, was proved
composite in 1961 by Hurwitz and Selfridge [5], [10], but a nontrivial factor of it was not
found until nearly 50 years later, in 2010, by Rajala2: the 54-digit number

(3.1) 116928085873074369829035993834596371340386703423373313.

Its complementary factor has 4880 digits, and is composite by the Fermat test since a
computer can show 3 is a Fermat witness for it, but no nontrivial factor of it is known.

Is the factor of F14 in (3.1) prime or composite? Running the Fermat test on the number
in (3.1) with the help of a random number generator to select a in the Fermat test, I found

2See https://www.mersenneforum.org/showthread.php?t=13051.

https://www.mersenneforum.org/showthread.php?t=13051
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no Fermat witnesses for (3.1) after 100 trials. This makes a very compelling probabilistic
argument that the number in (3.1) is prime or a Carmichael number. To convince ourselves
that this number is prime, not Carmichael, we use the Solovay–Strassen test. Running
the Solovay–Strassen test 100 times with a random number generator to select a, I found
no Euler witnesses. The probability that would happen if the number were composite is
heuristically less than 1/2100. We should be morally convinced that the number in (3.1)
is prime by these results, and in fact we should already be convinced after 20 trials of the
Solovay–Strassen test don’t reveal an Euler witness. Since (3.1) has less than 100 digits, it
can be proved to be prime on a computer with primality proving algorithms that we do not
discuss here.

Historically, the Solovay–Strassen test was the first probabilistic primality test. The
Fermat test is not a probabilistic primality test because Carmichael numbers can look like
primes when running the Fermat test even though they are not prime. Shortly after the
Solovay–Strassen test appeared it was eclipsed by the Miller–Rabin test [7], [8], which is
easier to implement (no Jacobi symbols are needed) and is more effective: every Euler
witness is a “Miller–Rabin witness” and the proportion of Miller–Rabin witnesses for an
odd composite number turns out to be over 75%, not just over 50%.

Theorem 3.1, which says there is no analogue of Carmichael numbers for the Solovay–
Strassen test, was known before the work of Solovay and Strassen. It had been proved a few
years earlier by Lehmer [6] and Selfridge (unpublished, see [4, p. 269]), and ten years earlier
for the case of nonsquare n by Artjuhov [2, Theorem E, p. 362]. Artjuhov and Lehmer
both observed that in practice an Euler witness for an odd composite number can be found
quickly, but the idea of Corollary 3.3 and using it to make Theorem 3.1 into a probabilistic
algorithm for primality testing was original to Solovay and Strassen.

4. Making Solovay–Strassen into a deterministic primality test

The Solovay–Strassen test in the form we have presented it is a probabilistic primality
test: it produces an Euler witness for an odd composite number with very high probability
if we run the test even for 10 trials, but if we don’t find an Euler witness after 10 trials
we are not assured that the number is prime. It turns out that the Solovay–Strassen test
can be made into a deterministic primality test if we assume the truth of one of the most
difficult unsolved problems in mathematics, called the Generalized Riemann Hypothesis
(for Dirichlet L-functions). We will not explain here the Generalized Riemann Hypothesis,
often abbreviated to GRH, but here is its connection to the Solovay–Strassen test.

Theorem 4.1. The Generalized Riemann Hypothesis implies that any odd composite posi-
tive integer n has an Euler witness that is at most 2(log n)2.

Proof. See [3]. �

This theorem, in the form above with coefficient 2 on (log n)2, is due to Eric Bach in his
1985 Ph.D. thesis. It had been proved a few years earlier by Oesterlé [9] with coefficient 70
instead of 2. Theorem 4.1 implies that if n > 1 is odd and we don’t find an Euler witness
for n among the integers up to 2(log n)2 then n must be prime if GRH is true.

Example 4.2. For the number n in (3.1) we have 2(log n)2 ≈ 29862.4. A computer can
check in a few seconds that there are no Euler witnesses for n among the positive integers
up to 29862, which would prove n is prime if we accept GRH.
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Assuming GRH holds, the Solovay–Strassen test on an odd number n > 1 becomes a
deterministic test where the number of trials required is at most a power of log n, there is
no need for random inputs (test all a up to 2(log n)2), and the number of steps needed in
each trial (that is, to compute an−1 mod n by repeated squaring and to compute ( a

n) by
Jacobi reciprocity in order to verify or refute (2.1)) is also bounded by a power of log n. This
means the deterministic Solovay–Strassen test runs in polynomial time, which would make
it a good algorithm in theory, and it would also be good in practice. Unfortunately this good
situation requires assuming GRH, which remains unproved. About 20 years after Bach’s
theorem, a polynomial time primality test not depending on any unproved conjectures was
established by Agrawal, Kayal, and Saxena [1]. It is called the AKS primality test, after its
authors. While of theoretical importance, the AKS test is not used. Other deterministic
primality tests that are believed to run in polynomial time but are not yet proved to do so
run much faster in practice than AKS.

5. A weaker form of the Solovay–Strassen test

The Solovay–Strassen test is a powerful improvement on the Fermat test partly because it
has no analogue of Carmichael numbers. That is, while there are infinitely many composite
n > 1 such that (a, n) = 1 =⇒ an−1 ≡ 1 mod n for all a, there are no odd composite n such

that (a, n) = 1 =⇒ a(n−1)/2 ≡ ( a
n) mod n for all a. When (a, n) = 1 the Jacobi symbol ( a

n)
has values ±1, so consider the following weaker form of (2.1):

(5.1) a(n−1)/2 ≡ ±1 mod n.

This is not specifying the right side to be 1 or −1 in a structured way (as the Jacobi symbol),
but just to be ±1.

For odd prime n, (5.1) is true for all a from 1 to n − 1, so if for odd n > 1 we find

an a ∈ {1, . . . , n − 1} such that a(n−1)/2 6≡ ±1 mod n then n must be composite. Also a
can’t be 1 or n− 1. It is left to the reader to check that if n > 1 is odd and there is some
a ∈ {2, . . . , n − 2} such that (a, n) = 1 and (5.1) is not true for a, then for over 50% of
a ∈ {2, . . . , n−2}, (5.1) is not true. This suggests the following primality test on odd n > 1.

(1) Randomly pick an integer a from 2 to n− 2.
(2) If (5.1) is not true for a then stop the test and declare (correctly) “n is composite.”
(3) If (5.1) is true for a then go back to step 1.
(4) If the test runs many times without terminating then say “n is probably prime.”

Unfortunately, this test has an analogue of Carmichael numbers: there are odd composite
n > 1 such that (a, n) = 1 =⇒ a(n−1)/2 ≡ ±1 mod n, the first such n being 1729. This makes
a primality test based on contradicting (5.1) subject to a similar defect as in the Fermat
test, which is based on contradicting an−1 ≡ 1 mod n. However, there is an unexpected
twist when (5.1) holds for all a relatively prime to n and n is composite.

Theorem 5.1. For odd composite n > 1 the following conditions are equivalent.
1) For all a ∈ Z, if (a, n) = 1 then a(n−1)/2 ≡ ±1 mod n.
2) The number n is squarefree and for primes p, p | n =⇒ (p− 1) | (n− 1)/2.

3) For all a ∈ Z, if (a, n) = 1 then a(n−1)/2 ≡ 1 mod n.

That the first and third conditions are equivalent is a surprise!

Proof. (1) =⇒ (2): From (1), if (a, n) = 1 then an−1 ≡ 1 mod n, so n is a Carmichael
number. In particular, n is squarefree and for all primes p, if p | n then (p−1) | (n−1). We
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want to show (p−1) | (n−1)/2. Write n−1 = (p−1)mp. If mp is even then p−1 is a factor

of (n − 1)/2. Suppose mp were odd. Then if (a, n) = 1 we have a(n−1)/2 = a(p−1)mp/2 ≡
(ap )mp mod p (p 6= 2 since n is odd), and (ap )mp = (ap ) since mp is odd. There is an integer

b such that ( b
p) = −1, so we can choose a by the Chinese remainder theorem to satisfy

a ≡ b mod p, a ≡ 1 mod n/p

since p and n/p are relatively prime (n is squarefree). From the congruences we have

(a, n) = 1, so by our previous calculations a(n−1)/2 ≡ (ap ) mod p, and (ap ) = ( b
p) = −1. Thus

a(n−1)/2 ≡ −1 mod p. At the same time from a ≡ 1 mod n/p we have a(n−1)/2 ≡ 1 mod n/p.
The two congruence conditions

a(n−1)/2 ≡ −1 mod p, a(n−1)/2 ≡ 1 mod n/p

together are inconsistent with having a(n−1)/2 ≡ ±1 mod n: if the right side were 1 then
reducing it mod p makes −1 ≡ 1 mod p, and if the right side were −1 then reducing it mod
n/p makes 1 ≡ −1 mod n/p. This is a contradiction since p > 2 and n/p > 2 (here we use
that n is odd and not prime).

(2) =⇒ (3): Since n is squarefree it suffices to show a(n−1)/2 ≡ 1 mod p for all primes

p | n. If (a, n) = 1 then (a, p) = 1, so a(n−1)/2 ≡ 1 mod p by Fermat’s little theorem, as
(n− 1)/2 is a multiple of p− 1.

(3) =⇒ (1): Trivial. �

Numbers n fitting the conditions of Theorem 5.1 must be Carmichael numbers, but of
a very special type. The first three such numbers are 1729, 2465, and 15841, which are
the third, fourth, and ninth Carmichael numbers. The proof that there are infinitely many
Carmichael numbers also shows there are infinitely many numbers n as in Theorem 5.1.

Theorem 5.1 shows odd composite n such that a(n−1)/2 ≡ ±1 mod n whenever (a, n) = 1

behave differently from odd prime n: for such composite n we will never see a(n−1)/2 ≡
−1 mod n, while for prime n we have a(n−1)/2 ≡ −1 mod n with 50% probability each time
we randomly pick a. This suggests a modification to the test above.

(1) Randomly pick an integer a from 2 to n− 2.
(2) If (5.1) is not true for a then stop the test and declare (correctly) “n is composite.”
(3) If (5.1) is true for a then go back to step 1.

(4) If the test runs many times without terminating and we find a(n−1)/2 ≡ −1 mod n
at least once then say “n is probably prime.”

(5) If the test runs many times without terminating and we find a(n−1)/2 ≡ 1 mod n
every time then say “n is probably composite.”

Appendix A. Probabilistic Tests and Bayes’ Rule

After we introduced the Solovay–Strassen test we said that if the test for n runs t times
without finding an Euler witness then we should consider n to be prime with “probability”
greater than 1−1/2t. However, there is a mistake in that. It uses Corollary 3.2 to estimate
the probability of t runs of the Solovay–Strassen test not producing an Euler witness for
n given that n is composite, rather than the probability of n being composite given that t
runs of the Solovay–Strassen test don’t produce an Euler witness for n. Mixing up the two
types of probabilities – “Event 1 given Event 2” and “Event 2 given Event 1” – is an error
about conditional probability and it can be fixed using Bayes’ rule.
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For two outcomes A and B from experiments (not necessarily the same experiment), we
write Pr(A) for the probability that A occurs and Pr(A|B) for the probability that A occurs
given that B occurs. For example, if we roll dice and let A be the outcome “1” and B be
the outcome “odd”, then Pr(A) = 1/6 but Pr(A|B) = 1/3 since when the outcome is odd
the only outcomes are 1, 3, or 5. We call Pr(A|B) a conditional probability, since it tells us
the probability of A conditioned on B happening. Its formula (or definition, really) is

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

In the example of dice, for instance, Pr(B) = 1/2 and Pr(A ∩ B) = 1/6 (because A ⊂ B),
so Pr(A ∩ B)/Pr(B) = (1/6)/(1/2) = 2/6 = 1/3. If A′ is the outcome complementary
to A, so Pr(A′) = 1 − Pr(A), then also Pr(A′|B) = 1 − Pr(A|B): A ∩ B and A′ ∩ B are
complementary in B, so Pr(B) = Pr(A∩B) + Pr(A′ ∩B); now just divide by Pr(B) to get
1 = Pr(A|B) + Pr(A′|B). (Warning: It is false in general that Pr(A|B′) = 1 − Pr(A|B),
where B′ is the event complementary to B.)

Let’s return now to the Solovay–Strassen test. For an integer n ≥ 2, we are interested in
the following possible events:

• X: n is prime,
• X ′: n is composite,
• Yt: the Solovay-Strassen test is run t times without finding an Euler witness for n.

(We could write Xn, X ′n, and Yn,t to indicate the dependence on n, but leave it out to
avoid cluttering the notation.) Note X and X ′ are complementary. What we want to know
is the “probability” that n is prime if no Euler witness is found after t tests, and that is
Pr(X|Yt). The “probability” that n is composite if no Euler witness is found after t tests
is Pr(X ′|Yt) = 1 − Pr(X|Yt). Corollary 3.2 does not tell us either of these probabilities:
rather, it tells us that if n is composite then the “probability” of not finding an Euler witness
for n after t trials is less than 1/2t, or in other words Pr(Yt|X ′) < 1/2t. How do we turn
information about Pr(Yt|X ′) into information about Pr(X ′|Yt) or Pr(X|Yt) = 1−Pr(X ′|Yt)?
Use Bayes’ rule.

Theorem A.1 (Bayes’ Rule). For outcomes A and B,

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|A′) Pr(A′)
,

where A′ is the outcome complementary to A.

Proof. On the right side, the numerator is (Pr(B ∩ A)/Pr(A)) Pr(A) = Pr(B ∩ A), while
the denominator is

(Pr(B ∩A)/Pr(A)) Pr(A) + (Pr(B ∩A′)/Pr(A′)) Pr(A′) = Pr(B ∩A) + Pr(B ∩A′)

= Pr(B).

Therefore the right side is Pr(B ∩A)/Pr(B) = Pr(A|B). �

Bayes’ rule has real-world counterintuitive consequences for medical tests. If a test for a
disease will have a positive result 95% of the time for people with the disease and a negative
result 95% of the time for people without the disease, and the disease itself is in only 2%
of the population, then Bayes’ rule implies that the probability of having the disease if the
test result is positive (the initial information told us the probability of the test result being
positive if the patient has the disease, a different situation) is only about 28%, so if the test
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comes back positive you’re more than twice as likely not to have the disease as you are to
have it. Googling “Bayes rule false positive” will produce numerous webpages with worked
examples of this phenomenon.

We will use Bayes’ rule to estimate the “probability” that n is prime if t runs of the
Solovay–Strassen test turn up no Euler witnesses for n, which is Pr(X|Yt). Corollary 3.2
implies Pr(Yt|X ′) < 1/2t, so by Bayes’ rule,

(A.1) Pr(X|Yt) =
Pr(Yt|X) Pr(X)

Pr(Yt|X) Pr(X) + Pr(Yt|X ′) Pr(X ′)
>

Pr(Yt|X) Pr(X)

Pr(Yt|X) Pr(X) + Pr(X ′)/2t
.

What can we say about Pr(X), Pr(X ′), and Pr(Yt|X)? Of course Pr(X ′) = 1− Pr(X), so
a heuristic for one of Pr(X) or Pr(X ′) gives us the other.

The probability Pr(X): The prime number theorem says roughly that |{primes ≤ n}| ≈
n/ log n, so the “probability” that n is prime can be taken heuristically to be (n/ log n)/n =
1/ log n. So we set Pr(X) = 1/ log n and Pr(X ′) = 1− 1/ log n. Feeding this into (A.1),

(A.2) Pr(X|Yt) >
Pr(Yt|X)/ log n

Pr(Yt|X)/ log n + (1− 1/ log n)/2t
.

The probability Pr(Yt|X): Using the definition of conditional probability as a ratio,

(A.3) Pr(Yt|X) =
Pr(Yt ∩X)

Pr(X)
.

Recall that X is the event of n being prime. On prime numbers the Solovay–Strassen test
will never find an Euler witness, so X ⊂ Yt. Thus (A.3) becomes

Pr(Yt|X) =
Pr(X)

Pr(X)
= 1.

This says the heuristic probability of t trials turning up no Euler witnesses given that n is
prime is 1, which makes sense. Feeding this into (A.2), we get

Pr(X|Yt) >
1/ log n

1/ log n + (1− 1/ log n)/2t
=

1

1 + (log n− 1)/2t
.

We have 1/(1 + x) > 1 − x if 0 < x < 1, so if 2t > log n (which means the number t of
tests that we run will have to depend in a weak way on the size of n) then Pr(X|Yt) >
1− (log n− 1)/2t > 1− (log n)/2t and thus also Pr(X ′|Yt) = 1− Pr(X|Yt) < (log n)/2t.

Theorem A.2. If n > 1 is odd and the Solovay–Strassen test runs t times without finding
an Euler witness, and 2t > log n, then n is prime with “probability” > 1− (log n)/2t and n
is composite with “probability” < (log n)/2t.

At the start of this section we said n is prime with “probability” greater than 1− 1/2t if
t tests don’t produce an Euler witness. A better heuristic probability, accounting for Bayes’
rule, requires 2t > log n and the effect is to multiply 1/2t by log n in the probabilities.

How does the condition 2t > log n look in Example 3.7 when n is the 54-digit number in
(3.1)? We want t > log2(log n) ≈ 6.93, so if t ≥ 7 and t trials of the Solovay–Strassen test are
run without an Euler witness being found then the “probability” that n is composite should
be changed from at most 1/2t to at most (log n)/2t ≈ 122.19/2t. Since 122.19/2t+7 < 1/2t

for any t we only need to increase the number of trials from 100 to 107 for our “Bayes–
corrected” heuristic probability in Theorem A.2 to be as small as the “Bayes–uncorrected”
heuristic probability we used with 100 trials in Example 3.7.
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Since log2(log n) is such a slowly growing function, for practical purposes the required
bound t > log2(log n) is a very mild condition for the use of better probabilistic heuristics
with Bayes’ rule.
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