
QUADRATIC INTEGERS

KEITH CONRAD

1. Introduction

Does uniqueness of prime factorization in Z really need a proof? To show why it does,
we will meet some number systems generalizing Z where prime factorization is not unique.

Definition 1.1. Let d be an integer that is not a perfect square. We set

Z[
√
d] = {a+ b

√
d : a, b ∈ Z}

and call such a set of numbers, for a specified choice of d, a set of quadratic integers.

Example 1.2. Let d = −1, so
√
d = i. The set of quadratic integers in this case is

Z[i] = {a+ bi : a, b ∈ Z}.
These are complex numbers with real and imaginary parts in Z, like 4 + i and 7− 8i.

Example 1.3. Let d = 2: Z[
√

2] = {a+b
√

2 : a, b ∈ Z}, with examples 3+
√

2 and 1−4
√

2.

We can add, subtract, and multiply in Z[
√
d], and the results are again in Z[

√
d]:

(a+ b
√
d) + (a′ + b′

√
d) = (a+ a′) + (b+ b′)

√
d,

(a+ b
√
d)− (a′ + b′

√
d) = (a− a′) + (b− b′)

√
d,

(a+ b
√
d)(a′ + b′

√
d) = (aa′ + dbb′) + (ab′ + ba′)

√
d.

For example, in Z[
√

5], (2 + 3
√

5)(4−
√

5) = 8− 2
√

5 + 12
√

5− 15 = −7 + 10
√

5.

2. The Norm and Divisibility in Z[
√
d]

In Z, size is measured by the absolute value. For polynomials in Q[T ] or R[T ], size is

measured by the degree regardless of how big or small the coefficients are. In Z[
√
d], size

will be measured by the absolute value of the norm. What’s the norm?

Definition 2.1. For α = a+ b
√
d ∈ Z[

√
d], its norm is the product

N(α) = (a+ b
√
d)(a− b

√
d) = a2 − db2.

Example 2.2. In Z[i], N(a+ bi) = (a+ bi)(a− bi) = a2 + b2. When d is ±2 and ±3,

N(a+ b
√

2) = (a+ b
√

2)(a− b
√

2) = a2 − 2b2,

N(a+ b
√
−2) = (a+ b

√
−2)(a− b

√
−2) = a2 + 2b2,

N(a+ b
√

3) = (a+ b
√

3)(a− b
√

3) = a2 − 3b2,

N(a+ b
√
−3) = (a+ b

√
−3)(a− b

√
−3) = a2 + 3b2.

For all m ∈ Z, N(m) = m2. In particular, N(1) = 1.
1
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While quadratic integers may be irrational or not even real, their norms are always plain
integers, e.g., N(7 + 4

√
2) = 49− 2 · 16 = 17 and N(1 + 2

√
5) = 1− 5 · 4 = −19.

Here is the key algebraic property of norms.

Theorem 2.3. The norm is multiplicative: for α and β in Z[
√
d], N(αβ) = N(α) N(β).

Proof. Write α = a+ b
√
d and β = a′ + b′

√
d. Then αβ = (aa′ + dbb′) + (ab′ + ba′)

√
d. We

now compute N(α) N(β) and N(αβ):

N(α) N(β) = (a2 − db2)(a′2 − db′2) = (aa′)2 − d(ab′)2 − d(ba′)2 + d2(bb′)2

and

N(αβ) = (aa′ + dbb′)2 − d(ab′ + ba′)2

= (aa′)2 + 2aa′bb′d+ (dbb′)2 − d(ab′)2 − 2aa′bb′d− d(ba′)2

= (aa′)2 + (dbb′)2 − d(ab′)2 − d(ba′)2

= (aa′)2 + d2(bb′)2 − d(ab′)2 − d(ba′)2.

The two results agree, so N(αβ) = N(α) N(β). �

Remark 2.4. Everything we have done up to this point can be carried out with coefficients
in Q rather than in Z: let Q[

√
d] = {r + s

√
d : r, s ∈ Q} and set N(r + s

√
d) = r2 − ds2.

We have N(αβ) = N(α) N(β) for all α and β in Q[
√
d] by exactly the same calculations as

in the proof of Theorem 2.3. We will avoid using Q[
√
d] except in Example 2.9.

When d > 0, N(a+b
√
d) = a2−db2 can be negative, e.g., N(

√
d) = −d < 0. When d < 0,

so −d > 0, N(a+ b
√
d) = a2 − db2 is never negative, e.g., N(a+ b

√
−2) = a2 + 2b2 ≥ 0. A

notion of size in Z[
√
d] should be be ≥ 0 and norms might be negative (if d > 0), so we will

use |N(α)| rather than N(α) to measure how “big” a quadratic integer α ∈ Z[
√
d] is.

Definition 2.5. For α = a+ b
√
d ∈ Z[

√
d], its absolute norm is |N(α)| = |a2 − db2|.

Example 2.6. In Z[
√

2], check N(7 + 6
√

2) = −23 and N(11 + 7
√

2) = 23, so 7 + 6
√

2
and 11 + 7

√
2 both have absolute norm 23. This is analogous to two different polynomials

having the same degree.

The norm of a+ b
√
d is always a2 − db2, but in concrete cases students sometimes make

sign errors in the second term, such as saying a + b
√

2 has norm a2 + 2b2 instead of the
correct a2 − 2b2. Find a way to remember the correct norm formula. For example, know
two special cases with d of opposite signs, such as N(a + bi) and N(a + b

√
2), which are

templates for the cases d < 0 and d > 0. Or know that when d > 0 the norm on Z[
√
d] is

both positive and negative (and 0), and when d < 0 the norm on Z[
√
d] is never negative.

Remark 2.7. Unlike polynomials, for which there are examples of degree n for all n ≥ 1,
not every positive integer is the absolute norm of a quadratic integer in Z[

√
d]. For example,

in Z[i] we have N(a+ bi) = a2 + b2, so while 1 = N(1) and 2 = N(1 + i), nothing in Z[i] has
norm 3. There are also no numbers in Z[i] with norm 6, 7, or 11.

We define divisibility in Z[
√
d] just like in Z:

Definition 2.8. For α and β in Z[
√
d], we say β divides α, and we write β | α, when α = βγ

for some γ ∈ Z[
√
d].
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Example 2.9. Does 4 + 5i divide 14 + 3i? We can do the division by taking a ratio and
rationalizing the denominator:

14 + 3i

4 + 5i
=

(14 + 3i)(4− 5i)

(4 + 5i)(4− 5i)
=

71− 58i

41
=

71

41
− 58

41
i ∈ Q[i].

This ratio is not in Z[i]: its real and imaginary parts are 71/41 and −58/41, which are not
in Z. Thus (4 + 5i) - (14 + 3i).

Example 2.10. While (4 + 5i) | (14 + 3i) by the previous example, (4− 5i) | (14 + 3i) in
Z[i] since 14 + 3i = (4− 5i)(1 + 2i).

Theorem 2.11. In Z[
√
d], α = a+ b

√
d is divisible by an ordinary integer c if and only if

c | a and c | b in Z.

Proof. To say c | (a + b
√
d) in Z[

√
d] is the same as a + b

√
d = c(m + n

√
d) = cm + cn

√
d

for some m,n ∈ Z, and that is equivalent to a = cm and b = cn, or c | a and c | b. �

Example 2.12. In Z[i], 2 | (2 + 2i) since 2 + 2i = 2(1 + i) or since the real and imaginary
parts of 2 + 2i are both even.

However in Z[2i] = {a + b · 2i : a, b ∈ Z} we have 2 - (2 + 2i) because we can’t write
2 + 2i = 2(a + b · 2i) = 2a + 4bi with a, b ∈ Z or because (2 + 2i)/2 = 1 + i 6∈ Z[2i]. Since
(2 + 2i)2 = 8i = 4(2i) = 22(2i), we have 22 | (2 + 2i)2 in Z[2i]. Marvel at that: when α = 2
and β = 2 + 2i, we have α - β while α2 | β2 in Z[2i]. That never happens in Z, where m | n
and m2 | n2 are equivalent properties.

Taking b = 0 in Theorem 2.11 tells us divisibility between ordinary integers does not
change when working in Z[

√
d]: for a, c ∈ Z, c | a in Z[

√
d] if and only if c | a in Z.

The multiplicativity of the norm turns divisibility relations in Z[
√
d] into divisibility

relations in the more familiar setting of Z, as follows.

Theorem 2.13. For α, β in Z[
√
d], if β | α in Z[

√
d] then N(β) | N(α) in Z.

Proof. Write α = βγ for γ ∈ Z[
√
d]. Taking the norm of both sides, N(α) = N(β) N(γ) by

Theorem 2.3. This equation is in Z, so N(β) | N(α) in Z. �

Theorem 2.13 gives us a quick way to show one element of Z[
√
d] does not divide another:

check the corresponding norm divisibility fails. For example, if (3 + 7i) | (10 + 3i) in Z[i],
then (taking norms), 58 | 109 in Z, but that isn’t true. Therefore (3 + 7i) - (10 + 3i) in Z[i].

Turning a divisibility problem in Z[
√
d] into one in Z has an obvious appeal, since we are

more comfortable with divisibility in Z.
However, Theorem 2.13 only says norm-divisibility in Z follows from divisibility in Z[

√
d].

The converse is usually false. Consider α = 14 + 3i and β = 4 + 5i. While N(β) = 41 and
N(α) = 205 = 41 · 5, so N(β) | N(α) in Z, we saw in Example 2.9 that (4 + 5i) - (14 + 3i).

A foolproof method of checking divisibility in Z[
√
d] is testing if the ratio is in Z[

√
d]

after rationalizing the denominator, as we did in Example 2.9 with d = −1.

3. Primes and prime factorization in Z[
√
d]

To define primes in Z[
√
d], which should have only “trivial factors,” we want to define

trivial factors. They are analogous to the trivial factors of n in Z being ±1 and ±n.
One source of trivial factors are the invertible numbers in Z[

√
d]: if uv = 1 in Z[

√
d], so

u and v are inverses of each other, then for every α ∈ Z[
√
d] we have α = u(vα), so u is a

factor of α. Also α = (uα)v, so uα is a factor of α.
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Example 3.1. In Z[
√

3], 2 +
√

3 is invertible since (2 +
√

3)(2−
√

3) = 1, so for every α in
Z[
√

3] we have α = (2 +
√

3)((2−
√

3)α): all numbers in Z[
√

3] are divisible by 2 +
√

3.

Definition 3.2. Let α ∈ Z[
√
d] be nonzero.

Call α a unit when α has a multiplicative inverse: αβ = 1 for some β ∈ Z[
√
d].

Call α prime if α is not a unit and its only factors are units and unit multiples of α.
Call α composite if it is not a unit and not prime: α has a factor that is not a unit or a

unit multiple of α.

Theorem 3.3. For nonzero α in Z[
√
d],

(1) α is a unit if and only if |N(α)| = 1,
(2) α is composite if and only if there is a factorization α = βγ where |N(β)| < |N(α)|

and |N(γ)| < |N(α)|.

The first property is saying units are exactly the nonzero elements of Z[
√
d] with smallest

possible absolute norm. The second property is saying that, in terms of size (the absolute

norm), a number in Z[
√
d] is composite precisely when it has a factorization into two parts

that both have smaller size than the original number does.

Proof. Set α = a+ b
√
d, where a and b are in Z. Then |N(α)| = 1⇐⇒ N(α) = ±1.

(1) First suppose N(α) = ±1. Then (a+ b
√
d)(a− b

√
d) = ±1. If (a+ b

√
d)(a− b

√
d) = 1

then a + b
√
d has inverse a − b

√
d. If (a + b

√
d)(a − b

√
d) = −1 then a + b

√
d has inverse

−(a− b
√
d). We showed that when a2 − db2 = ±1, a+ b

√
d has inverse ±(a− b

√
d)

For the converse direction, suppose α ∈ Z[
√
d] is invertible, say αβ = 1 for some β in

Z[
√
d]. Taking the norm of both sides of the equation αβ = 1, we find N(α) N(β) = 1. This

is an equation in Z, so N(α) = ±1.
(2) Suppose α is composite, so there is a factor β of α that is not a unit or a unit

multiple of α. Let γ be the complementary factor of β in α, so α = βγ. Since β is not
a unit, |N(β)| > 1. If γ were a unit then β = αγ−1, so β would be a unit multiple

of α, and that’s a contradiction. Thus γ is not a unit in Z[
√
d], so |N(γ)| > 1. From

|N(α)| = |N(β) N(γ)| = |N(β)||N(γ)| with both |N(β)| and |N(γ)| greater than 1, each is
also less than |N(α)|.

Conversely, suppose α = βγ in Z[
√
d] where |N(β)| < |N(α)| and |N(γ)| < |N(α)|. We

have |N(α)| = |N(β) N(γ)| = |N(β)||N(γ)|, so if β were a unit then |N(α)| = |N(γ)|,
which is not true. Thus β is not a unit. If β were a unit multiple of α, say β = uα, then
|N(β)| = |N(uα)| = |N(u)||N(α)| = |N(α)|, which is not true either. Thus β is a factor of

α that is not a unit or a unit multiple of α, so α is composite in Z[
√
d]. �

Example 3.4. In Z[
√

2], 1 +
√

2 and 3 + 2
√

2 are units with inverses −1 +
√

2 and 3−2
√

2.
In Z[i], 5 is composite since 5 = (1 + 2i)(1− 2i) and 1± 2i are not units since their norms
are bigger than 1. That’s interesting: 5 is prime in Z but it is composite in Z[i].

The following test for primality in Z[
√
d], using the norm, provides a way to generate

many primes in Z[
√
d] if we can recognize primes in Z.

Theorem 3.5. For α ∈ Z[
√
d], if |N(α)| is a prime number then α is prime in Z[

√
d].

Proof. Set p = |N(α)|. Since this is not 1, α is not a unit by Theorem 3.3(1). We will show
α is not composite either, and thus α is prime.

Suppose α is composite, so by Theorem 3.3(2) α = βγ in Z[
√
d] where |N(β)| < |N(α)|

and |N(γ)| < |N(α)|. Taking absolute norms of both sides of α = βγ, we have p =
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|N(β)||N(γ)|. This is an equation in the positive integers, and p is a prime number, so
either |N(β)| or |N(γ)| is p. That contradicts |N(β)| < p and |N(γ)| < p. �

Example 3.6. In Z[i], 1 + i is prime since its norm is 2. Similarly, 1 + 2i, 2 + 3i, and 1 + 4i
are all prime since their norms are 5, 13, and 17.

Example 3.7. We saw in Example 2.6 that 7+6
√

2 and 11+7
√

2 both have absolute norm
23, so they are each prime in Z[

√
2]. More prime elements of Z[

√
2] are 1 + 3

√
2, 1− 2

√
2,

3 +
√

2, −5 +
√

2, and 5 + 2
√

2 since their norms are −17, −7, 7, 23, and 17, which in
absolute value are all prime numbers.

WARNING. The converse of Theorem 3.5 is false: a quadratic integer can be prime
without having a prime absolute norm. For instance, it can be shown that 3 is prime in
Z[i] although its norm is 9 and 2 +

√
10 is prime in Z[

√
10] although its absolute norm is 6.

Theorem 3.8. Every α ∈ Z[
√
d] that is not 0 or a unit, meaning |N(α)| > 1, is a product

of primes in Z[
√
d].

Proof. Use strong induction on |N(α)|. This is analogous to the proof by strong induction on
the degree that every nonconstant polynomial in Q[T ] or R[T ] is a product of irreducibles.

Details are left to the reader. A new phenomenon in Z[
√
d] is that not all positive integers

are absolute norms (Remark 2.7); skip over them in the induction. �

Proving a prime factorization exists in Z[
√
d] is completely different from actually finding

it. For example, in Z[
√

5] what is a prime factorization of 7+
√

5? It’s not clear at all how to
find it! We know it exists thanks to Theorem 3.8, but explicitly finding a prime factorization
in general requires techniques we have not developed here.

That prime factorization exists in Z[
√
d] does not mean its elements always have essen-

tially just one prime factorization. Sometimes there can be more than one! What do we
mean by two prime factorizations in Z[

√
d] being essentially the same or not?

Definition 3.9. We say Z[
√
d] has unique factorization if whenever

p1p2 · · · pr = q1q2 · · · qs
for prime quadratic integers pi and qj in Z[

√
d], we have r = s and, after rearranging terms,

pi = uiqi for all i, where ui is a unit of Z[
√
d].

This is saying that changing the order of the terms in a prime factorization and multi-
plying the terms in a prime factorization by units are considered to be keeping the prime
factorization “essentially the same”, and Z[

√
d] has unique factorization when all the prime

factorizations of an element are essentially the same. This is analogous to the way two irre-
ducible factorizations of a polynomial in Q[T ] are the same up to the order of multiplication
and up to multiplication by nonzero constants (the units in Q[T ]).

Example 3.10. The following equation shows Z[
√
−3] does not have unique factorization:

(3.1) 2 · 2 = (1 +
√
−3)(1−

√
−3).

We will show 2, 1 +
√
−3, and 1−

√
−3 are all prime in Z[

√
−3]. The numbers 2, 1 +

√
−3,

and 1 −
√
−3 all have norm 4. If a number in Z[

√
−3] with norm 4 is composite, it has a

factor with norm 2 (not −2; why?). That means we can solve x2 +3y2 = 2 in integers x and
y, which we plainly can’t. So every number in Z[

√
−3] with norm 4 is prime in Z[

√
−3].

The number 2 is not a unit multiple of 1 ±
√
−3 since (1 ±

√
−3)/2 is not in Z[

√
−3].

Thus (3.1) shows 4 has nonunique prime factorization in Z[
√
−3].
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Example 3.11. The following equation shows Z[
√

5] does not have unique factorization:

(3.2) 2 · 2 = (
√

5 + 1)(
√

5− 1).

All factors have absolute norm 4, so if any are composite they have a factor of absolute
norm 2, say x + y

√
5 where x, y ∈ Z. Then |x2 − 5y2| = 2, so x2 − 5y2 = ±2, and that

is impossible since it reduces modulo 5 to x2 ≡ ±2 mod 5, which has no solution! Thus 2,√
5 + 1, and

√
5− 1 are all prime in Z[

√
5].

The number 2 is not a unit multiple of
√

5± 1 in Z[
√

5] since the ratios (
√

5± 1)/2 are
not in Z[

√
5]. Thus (3.2) shows 4 has nonunique prime factorization in Z[

√
5].

Example 3.12. Here two more examples of nonunique factorization:

2 · 3 = (1 +
√
−5)(1−

√
−5) in Z[

√
−5],(3.3)

2 · 3 = (
√

10 + 2)(
√

10− 2) in Z[
√

10].(3.4)

Why are the numbers in these equations prime? Their absolute norms are 4, 9, and 6,
so none are units. If they are composite then they are a product βγ with factors having
smaller absolute norm, so β or γ has absolute norm 2 or 3. In Z[

√
−5], where norms are

not negative, we’d need x2 + 5y2 = 2 or x2 + 5y2 = 3, but both are impossible since they
are impossible mod 5. Thus 2, 3, and 1 ±

√
−5 are all prime in Z[

√
−5]. In Z[

√
10] we’d

need x2− 10y2 = ±2 or x2− 10y2 = ±3, but these are impossible since they are impossible
mod 5 (this is the same argument as in the previous example showing Z[

√
5] has no element

with norm 2 or −2). Thus 2, 3, and
√

10± 2 are prime in Z[
√

10].
Now that we know both sides of (3.3) and (3.4) are prime factorizations, we want to

show the left and right sides are not essentially the same prime factorization. In (3.3) that
means neither factor on the right side is a unit multiple of 2 or 3, and this is true since
(1±

√
−5)/2 and (1±

√
−5)/3 are not in Z[

√
−5]. In (3.4) neither factor on the right side

is a unit multiple of 2 or 3 since (
√

10± 2)/2 and (
√

10± 2)/3 are not in Z[
√

10].

Example 3.13. Here examples where the number of prime factors changes:

3 · 3 · 3 = (2 +
√
−23)(2−

√
−23) in Z[

√
−23],(3.5)

3 · 3 · 3 = (2
√

79 + 17)(2
√

79− 17) in Z[
√

79].(3.6)

Norms in Z[
√
−23] are not negative and N(3) = 9, so if 3 were composite in Z[

√
−23] then

it has a factor of norm 3, but x2 + 23y2 = 3 has no solution in Z. Since N(2±
√
−23) = 27,

if 2 ±
√
−23 were composite in Z[

√
−23] then it is βγ where N(β) = 3 and N(γ) = 9, but

nothing in Z[
√
−23] has norm 3. Thus all numbers in (3.5) are prime in Z[

√
−23]. Since

N(2
√

79± 17) = −27 to show the numbers in (3.6) are prime it suffices to show nothing in
Z[
√

79] has norm ±3. If x2−79y2 = 3 in Z then x2 ≡ 3 mod 79, which has no solution. That
x2 − 79y2 = −3 has no solution in Z is more subtle, since x2 − 79y2 ≡ −3 mod m is always
solvable; we omit details. The two sides of (3.5) and (3.6) are prime factorizations with
different numbers of prime factors, so Z[

√
−23] and Z[

√
79] do not have unique factorization.

We’ve seen examples of Z[
√
d] not having unique factorization. Some Z[

√
d] that have

unique factorization include Z[i], Z[
√

2], Z[
√
−2], and Z[

√
3] (but not Z[

√
−3]: see Example

3.10). One way to prove some Z[
√
d] has unique factorization is the way unique factorization

is proved in Z and F [T ] where F is a field: establish a division algorithm in Z[
√
d], which

as in Z and F [T ] leads by a chain of reasoning to the unique factorization.
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We saw at the start of this section that in Z[
√
d] units divide everything: if uv = 1 then

α = u(vα), so u | α. Thus any two numbers in Z[
√
d] have all units as common factors.

Two numbers in Z[
√
d] are called relatively prime when their only common factors are units

(the automatic common factors). For example, primes in Z[
√
d] that are not unit multiples

of each other are relatively prime in Z[
√
d]. To appreciate what can happen in Z[

√
d] when

it does not have unique factorization, consider the following three properties of relatively
prime numbers in Z:

• if (a, b) = 1 then ax+ by = 1 for some x and y in Z,
• if a | bc and (a, b) = 1 then a | c,
• if a | c, b | c, and (a, b) = 1, then ab | c.

When Z[
√
d] does not have unique factorization, the analogues of these three properties in

Z[
√
d] can have counterexamples!

Example 3.14. The numbers 2 and 1+
√

5 are primes in Z[
√

5] that are not unit multiples
of each other, so they are relatively prime. In Z[

√
5] we have

• (2, 1 +
√

5) = 1 but we can’t write 2x+ (1 +
√

5)y = 1 for some x and y in Z[
√

5]: if
2(a+b

√
5)+(1+

√
5)(m+n

√
5) = 1 where a, b,m, and n are in Z, then 2a+m+5n = 1

and 2b + m + n = 0, which is impossible since the first equation implies m + n is
odd while the second equation implies m+ n is even,
• 2 | (1 +

√
5)(1−

√
5) = −4 and (2, 1 +

√
5) = 1, but 2 - (1−

√
5) since (1−

√
5)/2 6∈

Z[
√

5],
• 2 | 4, (1 +

√
5) | 4, and (2, 1 +

√
5) = 1, but 2(1 +

√
5) - 4 since 4/(2(1 +

√
5)) =

(
√

5− 1)/2 6∈ Z[
√

5].

Example 3.15. The numbers 2 and 1 +
√
−5 are primes in Z[

√
−5] that are not unit

multiples of each other, so they are relatively prime. In Z[
√
−5] we have

• (2, 1 +
√
−5) = 1 but we can’t write 2x + (1 +

√
−5)y = 1 for some x and y in

Z[
√
−5] (similar argument to what is done in the previous example),

• 2 | (1 +
√
−5)(1 −

√
−5) = 6 and (2, 1 +

√
−5) = 1, but 2 - (1 −

√
−5) since

(1−
√
−5)/2 6∈ Z[

√
−5],

• 2 | 6, (1+
√
−5) | 6, and (2, 1+

√
−5) = 1, but 2(1+

√
−5) - 6 since 6/(2(1+

√
−5)) =

(1−
√
−5)/2 6∈ Z[

√
−5].
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