
PATTERNS IN PRIMES

KEITH CONRAD

Mathematicians have tried in vain to this day to discover some order in the
sequence of prime numbers, and we have reason to believe that it is a mystery
into which the human mind will never penetrate. Leonhard Euler1

1. Introduction

It has been known since the time of ancient Greece that there are infinitely many primes.
There are many unsolved problems about patterns among the primes. Here are a few.

• Are there infinitely many prime pairs p, p + 2? These are twin primes.
• Are there infinitely many primes of the form n2 + 1? These have no name.
• Are there infinitely many primes of the form 2n − 1? These are Mersenne primes.

It is expected that the answer to all three questions is “Yes”.
Roughly speaking, a sequence of integers is expected to contain prime values infinitely

often except when it obviously can’t. Making precise what “obviously can’t” means depends
on the pattern being studied. Consider the following examples.

• There are finitely many primes of the form n2−1: since x2−1 = (x+1)(x−1), n2−1 is
prime only when n = 2. The polynomial x2 +1 does not have a similar factorization
with integer coefficients even if particular values are composite (n = 3, 5, 7, 8, . . .),
and n2 + 1 is conjectured to be prime infinitely often.
• There are finitely many prime pairs n and n + 1 since at least one of them is even:

the only such prime pair is 2 and 3. The twin prime pattern n and n + 2 does not
have that problem and it is conjectured that n and n + 2 are prime for the same n
infinitely often.

In Section 2 we’ll describe when a nonconstant polynomial f(x) in Z[x] is expected to
take prime values infinitely often, such as x2 + 1. This will rely on ideas from algebra
and modular arithmetic. Section 3 extends the ideas from Section 2 to simultaneous prime
values of several polynomials in Z[x], such as x and x + 2 (twin primes). In Section 4 we
look at primes in exponential sequences.

2. Qualitative Prime Patterns for a Single Polynomial

Let f(x) be a nonconstant polynomial with integer coefficients, such as 11x+ 6 or x2 + 1.
A few conditions are necessary in order for f(n) to be prime infinitely often when n ∈ Z+:

(i) The leading coefficient of f(x) is positive, since the sign of f(x) is the sign of its
leading coefficient when x is large.

(ii) We can’t factor f(x) into lower-degree polynomials with integer coefficients: if
f(x) = g(x)h(x) where deg g < deg f and deg h < deg f then g(x) and h(x) are

1See the first sentence of [3].
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nonconstant, so for all large n, the equation f(n) = g(n)h(n) shows f(n) is com-
posite since the factors g(n) and h(n) are not 0 or ±1. (The equations g(x) = 0,±1
and h(x) = 0,±1 each have finitely many solutions in R, and thus in Z.)

(iii) The coefficients of f(x) have gcd 1. For example, the coefficients of 4x3 − 6x2 + 10
have gcd 2, so for all n ∈ Z the integer f(n) is even and thus is composite when n
is large enough that f(n) 6= 0,±2.

These three conditions are all necessary if we want f(n) to be prime infinitely often as n
runs over Z+. But they are not sufficient in general.

Example 2.1. The polynomial x2 − 7x + 8 satisfies (i), (ii), and (iii), but n2 − 7n + 8 is
not a prime number for n ∈ Z+ except at n = 1 and n = 6 because n2 − 7n + 8 is always
even. (The solutions to n2 − 7n + 8 = −2 are n = 2 and n = 5.)

Example 2.2. The polynomial x3 − x− 6 satisfies (i), (ii), and (iii), but n3 − n− 6 is not
prime for n ∈ Z+ since it is always a multiple of 3 (check n3 − n − 6 ≡ 0 mod 3 when
n ≡ 0, 1, 2 mod 3) and it is not 3 for n ∈ Z+.

There is an additional requirement f(x) must satisfy to be prime infinitely often on Z+:

(iv) For no prime p is f(n) ≡ 0 mod p for all n ∈ Z/(p). Equivalently, for each prime p
there is an n ∈ Z/(p) such that f(n) 6≡ 0 mod p.

The polynomials x2−x− 4 and x3−x− 6 don’t satisfy (iv): x2−x− 4 fails (iv) at p = 2
and x3 − x− 6 fails (iv) at p = 3.

Why does (iv) have to be satisfied if f(n) is prime for infinitely many n in Z+? Since
f(x) is nonconstant, for a prime number p the equation f(x) = p has only finitely many
solutions, so if f(n) is prime infinitely often on Z+, there is an n ∈ Z+ such that f(n) is
prime and f(n) 6= p. Then f(n) 6≡ 0 mod p, so (iv) holds.

Condition (iv) was discovered by Bunyakovsky, so we’ll call it the Bunyakovsky condition.
It implies (iii), since if the coefficients of f(x) have gcd divisible by a prime p then f(n) ≡
0 mod p for all n ∈ Z. Note (iv) is more restrictive than (iii) since x2−x− 4 and x3−x− 6
satisfy (iii) but not (iv): x2 − x + 4 is identically 0 on Z/(2) and x3 − x + 6 is identically 0
on Z/(3). Bunyakovsky [1] proposed the following conjecture in 1854.

Conjecture 2.3 (Bunyakovsky). A nonconstant polynomial f(x) with integer coefficients
is prime infinitely often on the positive integers if and only if f(x) satisfies conditions (i),
(ii), (iii), and (iv).

We have already explained why all of (i) through (iv) are necessary for f(n) to be a prime
number for infinitely many n in Z+. (There is a slight redundancy, since we pointed out
that (iii) follows from (iv).) The point of Conjecture 2.3 is that it says the four conditions
are also sufficient for f(n) to have infinitely many prime values on Z+.

If deg f = 1 then the Bunyakovsky condition automatically follows from (iii): writing
f(x) = a+mx, condition (iii) for a+mx means (a,m) = 1. Then f(0) = a and f(1) = a+m
are relatively prime, so no prime p can be a factor of f(0) and f(1). A linear polynomial
automatically satisfies condition (ii), and condition (i) says m > 0. Therefore Bunyakovsky’s
conjecture when deg f = 1 says a+mx is prime infinitely often when a and m are relatively
prime and m ∈ Z+. The degree-one case of Bunyakovsky’s conjecture was known before
Bunyakovsky’s work as the following theorem of Dirichlet from 1837.

Theorem 2.4 (Dirichlet). If a and m are relatively prime integers with m ∈ Z+ then there
are infinitely many primes of the form a + mn where n ∈ Z+.
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Here is a special case of Bunyakovsky’s conjecture in degree 2.

Conjecture 2.5. There are infinitely many primes of the form n2 + 1.

This conjecture goes back to Euler in 1752 [4, pp. 587–588], who computed numbers of
the form n2 + 1 and kept finding prime values arising. The prime values of n2 + 1 less than
10000 are 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477,
7057, 8101, and 8837.2 Euler at least implicitly asked whether there are infinitely many such
primes. Conjecture 2.5 was included by Landau [6, p. 106] in his list of unsolved problems
about primes at the 1912 International Congress of Mathematicians, so this is also called
Landau’s conjecture or Landau’s problem.

Not only is Conjecture 2.5 still unproved, but no instance of Bunyakovsky’s conjecture
has been proved in degree greater than 1.

In practice it is easy to check that a polynomial in Z[x] satisfies condition (iii). To
verify that a polynomial f(x) satisfying condition (iii) also satisfies condition (iv), we only
need to check (iv) at primes p ≤ deg f : for every prime p, f(x) mod p is not the zero
polynomial (its coefficients in Z are not all multiplies of p, by (iii)), and if p > deg f then
f(x) mod p is a polynomial of degree less than p, so it has less than p roots in Z/(p):
therefore f(n) 6≡ 0 mod p for some n ∈ Z/(p). In order to confirm (iv) for the prime p,
compute f(n) mod p for n = 0, 1, . . . , p − 1 and see if we ever find a value that is nonzero
mod p.

Example 2.6. If f(x) = 3x4 − x3 − 5x + 6 then (iii) is true since one of the coefficients
is −1. To check if f(x) satisfies (iv) it suffices to look at primes p ≤ 4. For p = 2, f(0) =
6 ≡ 0 mod 2 and f(1) = 3 6≡ 0 mod 2. For p = 3, f(0) = 6 ≡ 0 mod 3, f(1) = 3 ≡ 0 mod 3,
and f(2) = 48− 8− 10 + 6 = 36 ≡ 0 mod 3. Thus f(x) fails condition (iv) at the prime 3.
Concretely, this means f(n) is always a multiple of 3: the initial values of f(x) at positive
integers are 3, 36, 207, 690, 1731, 3648, 6831, . . ..

Example 2.7. If f(x) = 6x4 + 10x + 15 then (iii) is true since (6, 10, 15) = 1. To check if
f(x) satisfies (iv) it suffices to look at primes p ≤ 4. For p = 2, f(0) = 15 6≡ 0 mod 2. For
p = 3, f(1) = 31 6≡ 0 mod 3. So f(x) satisfies (iv).

The last thing we need to explain in order to test Bunyakovsky’s conjecture is how to
check (ii): determine if f(x) is or is not a product of two lower-degree polynomials in Z[x]. If
we can discover a factorization of f(x) then there’s nothing more to do, e.g., if f(x) = x4+4
and a little birdie or a computer tells you that f(x) = (x2−2x+ 2)(x2 + 2x+ 2) then this is
easy to verify afterwards, so (ii) fails for x4+4 (which means n4+4 is composite for all large
enough n, and in fact for n ≥ 2). But what about f(x) = x3 − 2? A computer will tell you
this is irreducible in Z[x], but how could you prove this on your own once you know which
way it should go? We can use Bunyakovsky’s conjecture as a guide: if (i), (iii), and (iv)
have already been checked, then if (ii) were true Bunyakovsky’s conjecture predicts f(n) is
prime infinitely often, and it turns out that if f(n) is prime or ±1 enough times then the
following theorem tells us f(x) doesn’t factor into lower-degree parts!

Theorem 2.8. If f(x) ∈ Z[x] has degree d ≥ 1 and |f(n)| is 1 or a prime number for 2d+1
integers n then f(x) is not a product of lower-degree polynomials in Z[x].

2Euler found all primes values of n2 + 1 for n ≤ 1500 and made only three errors: he missed primality at
n = 1080 and said the value is prime at n = 844 and 1234, where it is composite.
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Proof. Suppose f(x) = g(x)h(x) in Z[x] where deg g < d and deg h < d. Then f(n) =
g(n)h(n) for all integers n. If |f(n)| is 1 or a prime number then g(n) = ±1 or h(n) = ±1.
Since g(x) takes on each value in Z at most deg g times and h(x) takes on each value in Z
at most deg h times, the number of integers n such that g(n) = ±1 or h(n) = ±1 is at most
2 deg g + 2 deg h = 2 deg f = 2d. Therefore |f(n)| can be 1 or a prime number at most 2d
times, so if |f(n)| is 1 or a prime number 2d + 1 times then we have a contradiction. �

Example 2.9. Let f(x) = x3 − 2. Then 2d + 1 = 7 and |f(n)| is 1 or a prime number at
the 7 integers 0, 1, −1, −3, −5, 9, and 15.3

Example 2.10. Let f(x) = 6x4 + 10x+ 15. Then 2d+ 1 = 9 and |f(n)| is a prime number
at the 9 integers n = 1,−1, 2,−4,−11,−13, 23, and 29.

Theorem 2.8 can be applied to individual examples, but not to an infinite family of
examples. For instance, results in abstract algebra imply that xd − 2 doesn’t factor into
lower-degree polynomials in Z[x] for every d ≥ 1, but you can’t prove this using Theorem
2.8. If you don’t understand why, go ahead and try.

3. Qualitative Prime Patterns for Several Polynomials

Let’s now consider how often several polynomials can take on prime values at the same
time. We start with the linear case. Since all primes other than 2 are odd, the difference
between a pair of primes not including 2 has to be even. The following conjecture, which
goes back to de Polignac [8, p. 400] in 1849, says each even number occurs infinitely often
as the difference between primes.

Conjecture 3.1 (de Polignac). For each positive even number c, there are infinitely many
pairs of primes that differ by c. Equivalently, for each positive even number c there are
infinitely many prime pairs p and p + c.

This conjecture includes the infinitude of twin primes as a special case (c = 2).4 By work
of Maynard, Tao, Zhang, and others announced during 2013 and 2014, it is known that
Conjecture 3.1 is true for infinitely many even c, and also for some5 even c ≤ 246 [9], but
it is not yet proved for any specific value of c. Before 2013 it had not been known that the
gap between pairs of primes could be below any finite bound infinitely often (e.g., infinitely
many prime pairs differing by at most a billion).

Can there be infinitely many “triple primes” p, p + 2, and p + 4? They are all prime
when p = 3, but that is it! Indeed, for each positive integer n at least one of the numbers
n, n+ 2, n+ 4 is a multiple of 3, as shown in the table below (in each row the term 0 mod 3
occurs somewhere), so such a triple can’t be all prime except when one of them is 3.

n mod 3 n + 2 mod 3 n + 4 mod 3
0 2 1
1 0 2
2 1 0

3If deg f = 2 or 3 and f(x) is a product of lower-degree polynomials in Z[x] then f(x) has a linear factor
and thus has a rational root. So another way of checking (ii) when deg f = 2 or 3 is to show f(x) has no
rational root. This is inadequate in general if deg f ≥ 4 since a factorization into lower-degree polynomials
is not guaranteed to have a factor of degree 1.

4The paper of de Polignac appears to be the earliest appearance of the conjecture that there are infinitely
many twin primes. In particular, Euclid’s writings on number theory say nothing about twin primes.

5More precisely, some even c ≤ 246 is the gap between infinitely many pairs of consecutive primes.
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There is no obvious reason there can’t be infinitely many prime triples of the form n,
n + 2, and n + 6: the problem with n, n + 2, n + 4 does not occur for n, n + 2, n + 6 since,
as the table below shows, none of them is a multiple of 3 when n ≡ 2 mod 3.

n mod 3 n + 2 mod 3 n + 6 mod 3
0 2 0
1 0 1
2 1 2

For n ≤ 1000, the triple n, n + 2, n + 6 is all prime for the following values of n:

5, 11, 17, 41, 101, 107, 191, 227, 311, 347, 461, 641, 821, 857, 881.

It is believed that there should be infinitely many prime triples n, n + 2, n + 6, but this
problem lies deeper than the infinitude of twin primes since the first two terms in such a
prime triple form a pair of twin primes.

Looking beyond pairs and triples of primes, when should a k-tuple of positive integers
n + h1, n + h2, . . . , n + hk, for fixed h1, . . . , hk in Z, all take prime values infinitely often as
n runs over Z+? From what we discussed above, this is expected to be true for the pair
n, n + 2 and the triple n, n + 2, n + 6, and is not true for the triple n, n + 2, n + 4. It is
believed that the only reason such a k-tuple should be prevented from having all prime
values infinitely often is that there is a divisibility obstruction: there is a prime p such that,
for all n in Z+, one of n+h1, n+h2, . . . , n+hk is a multiple of p. For instance, n, n+ 2, or
n+4 is a multiple of 3 for every n so there aren’t infinitely many triple primes n, n+2, n+4.

The condition n + hi ≡ 0 mod p is the same as n ≡ −hi mod p, so the divisibility
obstruction in the previous paragraph says every positive integer is congruent to one of
−h1,−h2, . . . ,−hk mod p. The positive integers fill up Z/(p), as do the negative inte-
gers, so the obstruction here is equivalent to saying {h1, h2, . . . , hk mod p} = Z/(p), e.g.,
{1, 2, 4 mod 3} = Z/(3). In particular, we only need to check this obstruction at the primes
p ≤ k, as it automatically fails at larger primes: k integers don’t fill up Z/(p) if p > k.

Example 3.2. The 6-tuple n, n+ 2, n+ 6, n+ 8, n+ 12, n+ 14 is not prime infinitely often.
If we reduce the constant terms modulo 2, 3, and 5 (the primes up to 6), we see in the
table below that that they fill up all values modulo 5. That means such a 6-tuple always
contains a multiple of 5, so we don’t get such prime 6-tuples for infinitely many n; in fact,
the 6-tuple contains all prime values only once, when n = 5.

p 0 mod p 2 mod p 6 mod p 8 mod p 12 mod p 14 mod p
2 0 0 0 0 0 0
3 0 2 0 2 0 2
5 0 2 1 3 2 4

On the other hand, if we consider the 6-tuple n, n+ 2, n+ 6, n+ 8, n+ 12, n+ 18 then the
table below shows the constant terms don’t fill up Z/(p) for a prime p ≤ 6, and this means
we expect there to be infinitely many prime 6-tuples of this form.

p 0 mod p 2 mod p 6 mod p 8 mod p 12 mod p 18 mod p
2 0 0 0 0 0 0
3 0 2 0 2 0 0
5 0 2 1 3 2 3

For n up to 1,000,000, the 6-tuple n, n+ 2, n+ 6, n+ 8, n+ 12, n+ 18 is prime six times:
when n is 5, 11, 1481, 165701, 326141, and 661091. (The gap from the 3rd to 4th example
is striking, and nearly repeats itself from the 4th to 5th example.)



6 KEITH CONRAD

Conjecture 3.3 (Dickson). For h1, h2, . . . , hk ∈ Z, infinitely many n ∈ Z+ make n + h1,
n + h2, . . . , n + hk all prime if no prime p ≤ k satisfies {h1, . . . , hk mod p} = Z/(p).

Conjecture 3.3 was first made by Dickson [2] in 1904.6 The work of Maynard and Tao
[7] implies that, for each k, Conjecture 3.3 is true for infinitely many (h1, . . . , hk), but it is
not known for any explicit k-tuple when k ≥ 2.

Now consider a finite set of nonconstant polynomials f1(x), . . . , fk(x) with coefficients
in Z. When should there be infinitely many n ∈ Z+ making f1(n), . . . , fk(n) all prime?
Conjecture 3.3 is the special case of polynomials x + h1, . . . , x + hk. If each fi(x) is going
to have infinitely many prime values, then each fi(x) needs to satisfy the four conditions
in Bunyakovsky’s conjecture. But this is not enough to guarantee that f1(n), . . . , fk(n) are
all prime at the same time for infinitely many n.

Example 3.4. Let f1(x) = x2 + 1 and f2(x) = x3−2. Each polynomial separately satisfies
the conditions of Bunyakovsky’s conjecture, and numerical data (see checkmarks in the
table below) suggest they separately are often prime, but it never happens at the same time
(the checkmarks are never in the same column).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n2 + 1 X X X X X X X X
n3 − 2 X X X

Indeed, for every positive integer n either n2 + 1 or n3 − 2 is even, as shown by the rows
of the table below. Therefore n2 + 1 can only be prime for even n other than n = 1 (the
one n ∈ Z+ at which n2 + 1 = 2) and n3 − 2 can be prime only for odd n.

n mod 2 n2 + 1 mod 2 n3 − 2 mod 2
0 1 0
1 0 1

In order that f1(n), . . . , fk(n) are prime together infinitely often, we don’t just need each
fi(x) to satisfy the Bunyakovsky condition (iv), but we need the product f1(x) · · · fk(x) to
satisfy (iv): for no prime p is f1(n) · · · fk(n) ≡ 0 mod p for all n ∈ Z/(p). For instance, this
would avoid a situation as in the previous example, where (n2 + 1)(n3− 2) is even for all n.

The reason (iv) must be satisfied by the product f1(x) · · · fk(x) is similar to the reason
we gave earlier in the case of a single polynomial: since each fi(x) is nonconstant, for
each prime p the equation fi(x) = p has finitely many solutions, so if f1(n), . . . , fk(n) are
simultaneously prime for infinitely many n ∈ Z+, then for each prime p there is an n ∈ Z+

such that all fi(n) are prime and not equal to p. Thus fi(n) 6≡ 0 mod p for i = 1, . . . , k, so
f1(n) · · · fk(n) 6≡ 0 mod p.

Conjecture 3.5 (Schinzel). If f1(x), . . . , fk(x) in Z[x] are nonconstant, each satisfies the
first three conditions of Bunyakovsky’s conjecture, and the product f1(x) · · · fk(x) satisfies
the Bunyakovsky condition, then there are infinitely many n ∈ Z+ such that f1(n), . . . , fk(n)
are all prime.

Conjecture 3.5 is called Schinzel’s “Hypothesis H” and goes back to 1958 [10]. It includes
all previous conjectures we have listed as special cases.

6About 20 years later Hardy and Littlewood [5, p. 61] formulated a quantitative version of Conjecture
3.3, predicting about how many n ≤ x make the k-tuple all prime, as x grows. Therefore Conjecture 3.3 is
often attributed to Hardy and Littlewood.
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Example 3.6. We show Conjecture 3.3 is a special case of Conjecture 3.5 for the polyomials
x+h1, . . . , x+hk. These polynomials each satisfy (i), (ii), and (iii). For (x+h1) · · · (x+hk) to
satisfy the Bunyakovsky condition, for each prime p we need (n+h1) · · · (n+hk) 6≡ 0 mod p
for some n ∈ Z/(p). That is equivalent to saying there is an integer n such that n 6≡
−h1, . . . ,−hk mod p, or in other words {h1, . . . , hk mod p} 6= Z/(p). This is automatically
true when p > k, and for p ≤ k this condition is precisely the hypothesis in Conjecture 3.3.

It can be shown that a product of polynomials in Z[x] that each satisfy (iii) also satisfies
(iii),7 so when f1(x), . . . , fk(x) all satisfy (iii) the product f1(x) · · · fk(x) satisfies the Bun-
yakovsky condition for all primes p > deg(f1(x) · · · fk(x)), and therefore the Bunyakovsky
condition for f1(x) · · · fk(x) only has to be checked at the primes p ≤ deg(f1(x) · · · fk(x)).

Example 3.7. It is left to the reader to check that x2 + 1 and x3 − 5 satisfy conditions
(i), (ii), and (iii) in Bunyakovsky’s conjecture (you could use Theorem 2.8 to check (ii) for
them), and the product f(x) = (x2 + 1)(x3−5) satisfies the Bunyakovsky condition at each
prime p ≤ deg f :

f(0) = −5 6≡ 0 mod 2, f(0) = −5 6≡ 0 mod 3, f(1) = −8 6≡ 0 mod 5.

Therefore Schinzel’s Hypothesis H predicts that n2 + 1 and n3−5 are prime simultaneously
for infinitely many n, and with a computer we can check this happens at the following n
up to 1000: 2, 4, 6, 16, 66, 94, 126, 204, 406, 444, 576, 636, 816, 906, and 966.

4. Exponential Prime Patterns

Switching from polynomial expressions to exponential expressions, let’s consider numbers
of the form an − 1 with a ≥ 2 and n ≥ 2. When could this be prime?

Theorem 4.1. For integers a ≥ 2 and n ≥ 2, if an−1 is prime, then a = 2 and n is prime.

Proof. From the factorization

(4.1) an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a + 1),

if a ≥ 3 then the factors on the right are both greater than 1 (the first is at least 2 and the
second is at least 4), so an − 1 is composite for all n ≥ 2.

Suppose now that a = 2. If n is composite, say n = k` where k, ` ≥ 2, then we have the
factorization

2n − 1 = 2k` − 1 = (2k)` − 1 = (2k − 1)((2k)`−1 + (2k)`−2 + · · ·+ 2k + 1),

where the first factor on the right is at least 22 − 1 = 3 and the second factor is at least
22 + 1 ≥ 5. Therefore 2n − 1 is composite when n is composite. �

For small primes p, 2p − 1 is prime:

22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127.

However, 211 − 1 = 23 · 89 and 223 − 1 = 47 · 178481. Primes of the form 2p − 1 are called
Mersenne primes after Marin Mersenne, a French priest who wrote about them in 1644.
The first ten Mersenne primes 2p − 1 occur for p = 2, 3, 5, 7, 13, 17, 19, 31, 61, and 89.

Conjecture 4.2. There are infinitely many Mersenne primes.

7In abstract algebra the name for this is Gauss’ lemma: a product of primitive polynomials in Z[x] is
also primitive.
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Because the numbers 2n − 1 grow so quickly (e.g., the 20th Mersenne prime has over
1,000 digits), very few Mersenne primes are known. As of the time this is written, only
51 Mersenne primes have been found, with the largest being 2p − 1 for p = 82,589,933.
This Mersenne prime was found in December 2018 and has over 24 million digits. There
is currently a $150,000 prize for the first prime number (of any kind) found with over 100
million digits.

Historically, interest in Mersenne primes was based on their connection to perfect numbers
(the positive integers equal to the sum of their proper factors, like 6 = 1 + 2 + 3). Euclid
had shown that when 2p − 1 is prime, 2p−1(2p − 1) is a perfect number. Euler proved
in 1747 that all even perfect numbers arise in this way. So even perfect numbers and
Mersenne primes naturally go together. (It is expected, but not proved, that there are no
odd perfect numbers.) Mersenne’s work on Mersenne primes in 1644 was in fact work on
perfect numbers. He claimed that 2p− 1 is prime for the following 11 primes up to 257 and
no others primes in that range: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. The cases p ≤ 19
were already known, while the primality of 2p − 1 in the remaining cases was too hard to
check by hand at that time. It turns out Mersenne was partly right and partly wrong:

• 231 − 1 (10 digits) and 2127 − 1 (39 digits) are both prime,
• 267 − 1 (21 digits) and 2257 − 1 (78 digits) are composite,
• Mersenne missed three examples: 261 − 1, 289 − 1, and 2107 − 1 are all prime.

Computers were first applied to the search for Mersenne primes in 1952 and five new exam-
ples were found: 2p − 1 is prime when p = 521, 607, 1279, 2203, and 2281. The verification
by Lehmer in 1930 that 2257−1 is composite took hundreds of hours with a desk calculator,
while a computer in the 1950s could show this in under a minute. Wolfram Alpha can factor
2257 − 1 in a few seconds.

Let’s switch the second term in 2n − 1 to +1 instead of −1: when is 2n + 1 prime? The
necessary condition on n is something different from being prime.

Theorem 4.3. For n ≥ 2, 2n + 1 can be prime only if n is a power of 2.

Proof. If n is odd then 2n + 1 is a multiple of 3: 2n + 1 ≡ (−1)n + 1 ≡ −1 + 1 ≡ 0 mod 3.
Therefore we can’t have n be odd and greater than 1 if 2n + 1 is prime.

Suppose n is not necessarily odd but has an odd factor greater than 1: n = MN where
N > 1 is odd. (For example, n = 12 = 4 · 3.) Then 2n + 1 = (2M )N + 1, which is divisible
by 2M + 1 by the above reasoning with N in place of n and 2M in place of 2. Therefore
2n + 1 can be prime only if n has no odd factor greater than 1, which means n has no odd
prime factor, so n must be a power of 2.8 �

Integers of the form 22
m

+ 1 where m ≥ 0 are called Fermat numbers, since Fermat
observed in the 1600s that 22

m
+ 1 is prime when m = 0, 1, 2, 3, 4 and he conjectured that

22
m

+ 1 is prime for all larger m. Its value at m = 5 is

22
5

+ 1 = 4294967297,

and Euler found a nontrivial factorization of this in 1732:

22
5

+ 1 = 641 · 6700417,

where both numbers on the right are prime. No further prime values of 22
m

+ 1 have been
found, and it is now believed that Fermat was completely wrong:

8By similar reasoning, if a is a positive integer greater than 1 and an + 1 is prime with n > 1 then n is a
power of 2.
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Conjecture 4.4. For m ≥ 5, 22
m

+ 1 is composite.

Factoring numbers of the form 22
m

+1 is very difficult because of their rapid growth. For

example, 22
20

+ 1 was proved to be composite indirectly in the late 1980s using 10 days of
CPU time [12], but no explicit nontrivial factor of this number is known.9

Let’s switch 2n − 1 to 2n − k for odd k in Z+. For small odd k, the first six n making
2n− k prime are in the table below along with a link to a table at the Online Encyclopedia
of Integer Sequences (OEIS) where the list of exponents continues. Note that when k > 1,
primality of 2n − k does not require primality of n.

k n ≥ 1 making 2n − k prime OEIS link
1 2, 3, 5, 7, 13, 17, . . . https://oeis.org/A000043

3 3, 4, 5, 6, 9, 10, . . . https://oeis.org/A050414

5 3, 4, 6, 8, 10, 12, . . . https://oeis.org/A059608

7 39, 715, 1983, 2319, 2499, 3775, . . . https://oeis.org/A059609

9 4, 5, 9, 11, 17, 21, . . . https://oeis.org/A059610

Initial prime values of 2n − 7 occur much farther out than the other sequences. Its
primality at n = 39 was verified by T. Kulikowski in 1960. He showed 239 − 7 is prime by
showing (with a computer) that it has the form a2 + b2 with (a, b) = 1 in just one way.

Switching from 2n − k to 2n + k, below is a table of the first six n ≥ 1 making 2n + k
prime for small odd k.

k n ≥ 1 making 2n + k prime OEIS link
1 1, 2, 4, 8, 16, ?
3 1, 2, 3, 4, 6, 7, . . . https://oeis.org/A057732

5 1, 3, 5, 11, 47, 53, . . . https://oeis.org/A059242

7 2, 4, 6, 8, 10, 16, . . . https://oeis.org/A057195

9 1, 2, 3, 5, 6, 7, . . . https://oeis.org/A057196

The lists in the two tables above, besides for 2n + 1, are expected to be infinite.
Switching from 2n ± k to k · 2n ± 1, there are odd k such that all integers of that form

are provably composite:

• Hans Riesel showed in 1956 that k · 2n − 1 is composite for all n ≥ 1 if k = 509203,
and this is true for infinitely many larger odd k. It is conjectured that 509203 is the
smallest odd k such that all k · 2n − 1 are composite.10

• John Selfridge showed in 1962 that k · 2n + 1 is composite for all n ≥ 1 when
k = 78557, and Sierpinski showed this is true for infinitely many larger odd k. It is
conjectured that 78557 is the smallest odd k such that all k ·2n + 1 are composite.11

The reason 509203 · 2n − 1 is composite for all n ≥ 1 is that each of these numbers is
divisible by one of 3, 5, 7, 13, 17, or 241. Similarly, 78557 · 2n + 1 is composite for all n ≥ 1
because it is divisible by one of 3, 5, 7, 13, 19, 37, or 73. The following theorem implies a
“dual” property: 2n − 509203 and 2n + 78557 are composite for all n ≥ 1.

Theorem 4.5. For relatively prime a > 1 and b > 1, the following properties are equivalent:

(1) ban − 1 (resp., ban + 1) for all n ≥ 1 has an odd prime factor less than b,
(2) an − b (resp., an + b) for all n ≥ 1 has an odd prime factor less than b.

9The website http://www.prothsearch.com/fermat.html has current information about prime factors
of Fermat numbers.

10See http://www.prothsearch.com/rieselprob.html for its current status.
11See http://www.prothsearch.com/sierp.html for its current status.

https://oeis.org/A000043
https://oeis.org/A050414
https://oeis.org/A059608
https://oeis.org/A059609
https://oeis.org/A059610
https://oeis.org/A057732
https://oeis.org/A059242
https://oeis.org/A057195
https://oeis.org/A057196
http://www.prothsearch.com/fermat.html
http://www.prothsearch.com/rieselprob.html
http://www.prothsearch.com/sierp.html
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Proof. We will show (1) ⇒ (2) using the − sign. It is left to the reader to modify the
argument to prove the other implications. (That (1) ⇒ (2) does not need (a, b) = 1, but
the other direction uses that.) Our argument is based on the proof at the end of [11].

Let M be the product of all odd primes less than b that don’t divide a. There are such
primes: by hypothesis, ba − 1 has an odd prime factor less than b and this prime can’t
divide a. Note (a,M) = 1. Since M has an odd prime factor, M ≥ 3, so ϕ(M) > 1.

Let n ≥ 1. We will show an−b has an odd prime factor less than b. From (ϕ(M)−1)n ≥ 1,

ba(ϕ(M)−1)n−1 has an odd prime factor p where p < b. Since p - a (why?), we have p |M . In

ba(ϕ(M)−1)n − 1 ≡ 0 mod p, multiply through by an to get baϕ(M)n − an ≡ 0 mod p. Euler’s
theorem tells us aϕ(M) ≡ 1 mod M , so aϕ(M) ≡ 1 mod p and thus b− an ≡ 0 mod p. �

Appendix A. The logic behind Dirichlet’s theorem

Dirichlet’s theorem says there are infinitely many primes p ≡ a mod m when (a,m) = 1.
You might think it should be easier to show there is at least one prime p ≡ a mod m
whenever (a,m) = 1, but that turns out to be just as hard as Dirichlet’s theorem!

Theorem A.1. The following two statements are equivalent.

(1) For all positive integers a and m such that (a,m) = 1, there is a prime p ≡ a mod m.
(2) For all positive integers a and m such that (a,m) = 1, there are infinitely many

primes p ≡ a mod m.

This is very surprising. The theorem seems to be saying, for instance, that by knowing
there is one prime p ≡ 4 mod 7, like p = 11, it follows that there are infinitely many primes
p ≡ 4 mod 7. But the theorem does not say that. The role of quantifiers in Theorem A.1
is critical: the two equivalent statements in the theorem are each running over all pairs of
relatively prime positive integers a and m. Neither statement is about a single case of a
and m. In the proof below, you’ll see that this aspect of the underlying logic is essential for
the proof to work.

Proof. We will show the first statement in Theorem A.1 implies the second statement; the
other direction is trivial.

Pick positive integers a and m with (a,m) = 1. By hypothesis there is a prime p1 ≡
a mod m. We want to show there are infinitely many primes p ≡ a mod m. We can suppose
m > 1 since what we want to show is obvious if m = 1: all integers are congruent to each
other modulo 1 and we know there are infinitely many primes.

Since the congruence condition “p ≡ a mod m” doesn’t change if we adjust a modulo m,
there is no harm in supposing 0 < a < m. (For example, instead of looking at the condition
p ≡ 8 mod 5, look at it as p ≡ 3 mod 5; that’s the same thing.)

Assume we have r different primes p1, p2, . . . , pr that all satisfy pi ≡ a mod m. We want
to find an additional such prime. Then, since r was arbitrary, that means the set of primes
p ≡ a mod m is infinite.

We will find a prime p ≡ a mod m that is not any of the pi by using the first statement
of Theorem A.1 with a different choice of a and m.

Since m > 1, its powers eventually exceed every pi: let mk > p1, . . . , pr. Now consider
the congruence condition

(A.1) p ≡ a + mk mod mk+1.

Here we are replacing a with a+mk and the modulus m with a new modulus mk+1. The
numbers a + mk and mk+1 are relatively prime since a and m are relatively prime (why?).
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Thus, by the first statement in Theorem A.1 with this new choice of “a” and “m” there is
a prime p that satisfies (A.1). By reducing both sides of (A.1) modulo m, which we can
do since m is a factor of mk+1, we get p ≡ a mod m. It remains to show p is not any of
p1, p2, . . . , pr.

Since 0 < a < m, we have

0 < a + mk < m + mk ≤ mk+1,

so a + mk is a standard remainder modulo mk+1. Thus the (positive!) prime p satisfying
(A.1) must be at least a + mk. (This would no longer be true in general if we didn’t
have 0 < a + mk < mk+1, e.g., not all primes p ≡ 8 mod 5 must be at least 8 – try p = 3.)
Combining the inequalities pi < mk < a+mk with p ≥ a+mk we get pi < p for i = 1, . . . , r,
so p is not any pi. �

Theorem A.1 tells us that it is just as hard to show there is one prime p ≡ a mod m
whenever (a,m) = 1 as it is to show there are infinitely many such primes. While for concrete
choices of relatively prime a and m we can find a prime p ≡ a mod m by computation, the
only known way to prove there is a prime p ≡ a mod m whenever (a,m) = 1 is to prove
there are infinitely many such primes.

There is an analogue of Theorem A.1 for higher-degree polynomials in the setting of
Bunyakovsky’s conjecture, as follows.

Theorem A.2. The following conditions are equivalent.

(1) For all nonconstant f(x) ∈ Z[x] that satisfy all the conditions of Bunyakovsky’s
conjecture, f(n) is prime for some n ∈ Z+.

(2) For all nonconstant f(x) ∈ Z[x] that satisfy all the conditions of Bunyakovsky’s
conjecture, f(n) is prime for infinitely many n ∈ Z+.

Proof. Easily (2) implies (1). For a proof that (1) implies (2), see https://mathoverflow.

net/questions/226794. �

An analogue of Theorem A.2 carries over to Schinzel’s Hypothesis H: if every set of
nonconstant polynomials in Z[x] fitting the conditions of Hypothesis H has simultaneous
prime values for at least one positive integer then every set of nonconstant polynomials
in Z[x] fitting the conditions of Hypothesis H has simultaneous prime values for infinitely
many positive integers.

References

[1] V. Bouniakowsky, “Sur les diviseurs numériques invariables des fonctions rationnelles entières,”
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