PELL’S EQUATION, II

KEITH CONRAD

1. INTRODUCTION

In Part I we met Pell’s equation z? — dy?> = 1 for nonsquare d in ZT.! We stated
Lagrange’s theorem that every Pell equation has a nontrivial solution (an integral solution
besides (£1,0)) and saw what all solutions to 22 —dy? = 1 are if there’s a nontrivial solution.
As in Part I, “solution” means integral solution. Here we will prove Lagrange’s theorem
in Section 2 and show in Section 3 how to find all solutions of a generalized Pell equation
22 — dy? = n. Examples are in Section 4.

2. PELL’S EQUATION HAS A NONTRIVIAL SOLUTION

Our proof that 22 —dy? = 1 has a nontrivial solution will be nonconstructive. The starting
point is the following lemma about integral multiples of v/d that are close to integers.

Lemma 2.1. For each nonsquare positive integer d, there are infinitely many positive in-
tegers x and y such that |z — yv/d| < 1/y.

The point here is not just that there are integral multiples of v/d close to integers, but
the distance can be controlled by the multiplier on v/d (infinitely often).

Proof. We use the pigeonhole principle. For each integer m > 2 consider the m 4+ 1 numbers
(2.1) 0, Vd, 2vd, ..., mVd.

These numbers have fractional parts in [0,1). View [0,1) as m half-open intervals [0,1/m),

[1/m,2/m), ... ,[(m —1)/m,1). By the pigeonhole principle, two of the m + 1 numbers in
(2.1), say av/d and bv/d with a < b, have fractional parts in the same interval, so
(2.2) avVd=A+¢e, bW/d= B+,

where A, B € Z and ¢ and ¢ lie in a common interval [i/m, (i +1)/m). Thus
1
le =6 < —.
m

This inequality is strict since we are using half-open intervals. Using (2.2),
1 1 1
e—dl< — = (a\/E—A)_(b\/&—B)( <== ](B—A)—(b—a)\/& <=
Set t =B — A and y = b — a, so x and y are integers with 0 < y < m. Thus
1 1
(2.3) |z —yVd| < — < ~.
mo oy
Since x is within 1 of yv/d, we have z > yvd —1>vVd—1> 0, so = > 1.

ISee https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqni.pdf.
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Having found a pair (z,y) in Z* such that |z — yv/d| < 1/y, to get a second such pair
choose m’ € ZT where 1/m’ < |x — yV/d|. (Such an m/ exists since z — yv/d # 0, as V/d is
irrational.) Run through the argument above with m’ in place of m to find 2’ and ¢/ in Z*
such that |2/ — y/v/d| < 1/m/ with 3 <m/, so |2’ —y/'Vd| < 1/y'. Since

1
(2.4) 2’ —y'Vd| < — < |z —yVd|,

the pair (z,y) is not the pair (2/,4). By repeating this argument again to get a smaller
|” — 4"v/d|, and so on, we are done. O

Example 2.2. Let d = 7. We will give two solutions to |z — yv/7| < 1/y. Taking m = 10,
among the fractional parts of k7 for 0 < k < 10 (given to two decimal places in the
table below) are three pairs of integers (a,b) where a\/7 and by/7 lie in a common interval
[i/10, (i + 1)/10), so the fractional parts differ by less than 1/10: (a,b) = (2,5), (4,7), and
(6,9). For all three pairs, b —a = 3.

k 01 2 3 4 5 6 7 8 9 10
Fractional part of kv/7 | 0 .64 .29 .93 58 .22 .87 .52 .16 .81 .45

Using a = 2 and b = 5, we have

1 11
27 =529...,5/7T=1322... = |(2V7—5)— (5V/7—13)| < 0= 18-3V7| < <3

so we can use (z,y) = (8,3). The choices (a,b) = (4,7) and (6,9) also lead to (z,y) = (8, 3).

To get another pair (2/,y') in Z* where |2’ —y'v/7| < 1/y/, since |8 —31/7| =~ .0627 > 1/20
look at the fractional parts of kv/7 for 0 < k < 20 and find two fractional parts in the same
interval [i/20, (i +1)/20) so they differ by less than 1/20. This happens when k is 0 and 14:

0vV7 =0, 14V7=37.0405...,

SO

1 1 1
\(0\ﬁ—0)—(14\ﬁ—37)|~.04<%:|37—14\f7!<2—0<ﬂ

and we can use (z',y’) = (37,14). This also happens when k is 2 and 19:
2/7=52915..., 19v7=50.2692...,

SO

1 1 1
2V/7 — 5) — (19vV7 — 50)| ~ .02 < — 45 — 1 — < =
1(2V7 — 5) — (19V7 — 50)| = .0 < gg = 145 7\f7|<20<14,

which means we can use (z/,y') = (45,17).

What we needed about v/d in Lemma 2.1 is that it is irrational and greater than 1. A
similar argument shows that for irrational a € R, |z — ya| < 1/y for infinitely many pairs
of integers (x,y) with y > 0 (give up on requiring z > 0 if o < 0).

Theorem 2.3 (Lagrange). For every positive integer d that is not a square, the equation
22 — dy? =1 has a nontrivial solution.
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Proof. Lagrange’s proof [7, pp. 669-731] used continued fractions. In the proof here, we
will start by showing there’s a nonzero integer M such that 22 — dy? = M has infinitely
many solutions z and y in Z™. Then we’ll combine this with modular arithmetic to show
22 — dy? = 1 has a solution in Z*. The pigeonhole principle will be used twice.

By Lemma 2.1, |x — y\/g| < 1/y for infinitely many x and y in Z*. We will show

22 — dy?| < 14 2Vd

for such = and y, where the main point is that this upper bound does not involve = or y.
First we will bound x from above in terms of y:

1
x:x—y\/Eer\/Eg\x—y\/&]+y\/8<§+y\/ﬁ§1+y\/3.
Then

1 1
22 — dy?| = (z + yVd) |z — yVd| < (1+y\/fi+y\/?l)§ = §+2\/Zi§ 1+2Vd.
Thus |22 — dy?| < 1+ 2V/d for infinitely many pairs of positive integers (z,y). By the
pigeonhole principle, there is an M € Z with |M| < 1+ 2v/d such that
(2.5) 22 —dy* =M

for infinitely many pairs of positive integers (x,y), and M # 0 since V/d is irrational.

For z and y in Z* satisfying (2.5), reduce z and y modulo |M|. The infinitely many pairs
(z mod | M|,y mod |M|) must have a repetition infinitely often by the pigeonhole principle,
since there are finitely many pairs of integers mod |M|. So there are solutions (x1,y;) and
(x2,y2) to (2.5) in ZT such that x1 = z9 mod | M|, y1 = y2 mod |M]|, and (z1,y1) # (22, y2).

Write 1 = 29 + Mk and y1 = yo + MY, where k and ¢ are in Z. Then

z1 4+ Vd = 20 + yoVd + M(k + 0Vd),
:Cl—yl\/a:Iz—yg\/(i—l-M(k—f\/g).

Since M = x3 — dy? = (v2+y2V/d) (w2 — y2+/d), plugging this into the equations above gives

(2.6) 21 +yVd = (23 + y2Vd) (1 + (22 — y2 V) (k + (V)
(2.7) $1—y1\/&: (3:2—yy/&)(l%—(m%—wﬂ)(k—ﬁﬂ)).

Combine like terms in the second factor on the right side of (2.6) to write it as = + yv/d
with z,y € Z. The second factor on the right side of (2.7) is = — yV/d, so we have

21 +yvVd = (x2 + y2Vd)(z + yVad)
z1 —y1Vd = (z2 — y2Vd)(z — yVad).

Multiplying these last two equations together, we get M = M (22 —dy?). Thus 22 —dy? = 1.
We have x # 0 since d > 0. If y = 0 then x = +1. If (x,y) = (1,0) then x1 = x9 and y; = yo,
but this contradicts the fact that (x1,y1) and (x2,y2) are different. If (z,y) = (—1,0) then
x1 = —x9, but this contradicts the fact that x1 and xo are positive. Thus y # 0.

Since x and y are nonzero, by changing signs on x and ¥ in case either is negative we get
a solution to z? — dy? = 1 with x and y in Z*. O
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3. SOLVING THE GENERALIZED PELL EQUATION

We saw in the previous section that Pell’s equation has a nontrivial solution. Using
a nontrivial solution of Pell’s equation we will describe a method to write down all the
solutions of a generalized Pell equation 22 — dy?> = n, where n is a nonzero integer. In
particular, if such an equation has no solutions then the method will tell us that.

The key algebraic idea is that solutions to 22 — dy? = n remain solutions when multiplied
by solutions of 2 — dy? = 1: if a® — db®> = 1 and 22 — dy? = n then the coefficients of the
product 2’ 4+ 3/vd := (a + bVd)(z + y/d) satisty 2> — dy’®> = n, which you can check.

Example 3.1. A solution of 22 — 7y? = 29 is (6,1) and a solution of 2% — 7y? = 1 is (8, 3).
From (6 4 v/7)(8 + 3v/7) = 69 + 261/7, a second solution of 2 — 7y? = 29 is (69, 26).

In words, we have shown a Pell multiple of a solution of 22 — dy? = n is again a solution,
where a “solution” means either the pair (z,y) or the number z +y+v/d and a “Pell multiple”
of it means either the coefficients (azx + dby, ay + bx) of the product (a + bvV/d)(z + yv/d)
where a? — db? = 1 or the product itself. The special case n = 1 is a result we saw in Part
I: the product of two Pell solutions is again a Pell solution (for the same d, of course).

Being a Pell multiple is a symmetric relation: if 2’ 4 3'v/d = (x + yv/d)(a + bv/d) where
a? — db? =1 then z 4+ yvd = (z/ + y'V/d)(a — bV/d) and a® — d(—b)? = 1. To check if two
numbers z + yvd and 2’ 4+ y'v/d are Pell multiples, form their ratio and rationalize the
denominator to check the coefficients are integers that satisfy Pell’s equation. For example,
14+ /3 is a Pell multiple of 1 — V/3 since their ratio is —2 — /3, which is a solution of
22 —3y? = 1, while 44 /3 and 4 — /3 are not Pell multiples since their ratio (19+ 8\/3)/13
does not even have integer coefficients.

Our goal is to show there is a finite list of solutions to 22 — dy? = n such that every
other solution is a Pell multiple of one of them. That is, up to allowing multiplication by
Pell solutions to generate new solutions there are only finitely many essentially different
solutions of a generalized Pell equation.

Example 3.2. We'll see in Example 4.1 that the integral solutions of 22 — 6y? = 3 occur
as x + yv6 = £(3 +v6)(5 + 2v/6)* for some k € Z, where 52 — 6 - 22 = 1, so each solution
z 4+ yV/6 is a Pell multiple of 3 + /6.

Theorem 3.3. Fiz u = a + bVd where a®> — db®* = 1 with a and b in ZT. For each
n € Z — {0}, every integral solution of x> — dy? = n is (z' + y'Vd)uF where z’? — dy’*> = n,
keZ, and

(3.1) ) < VI + V) VInl(a +1/Va)
‘ = 2

2V/d '
If n > 0 then we can take |y'| < /n(vu — 1/y/a)/(2Vd) < /nu/(2V/d).
Proof. We will use absolute values and logarithms. For (z,7) € Z? — {(0,0)} define
L(z + yVd) = (log |z + yVd|,log |z — yVd|) € R%.

The crucial algebraic property is L(a3) = L(a) + L(B) for all a and 8 in Z[vd] — {0}.
Check this. In particular, L(a*) = kL(a) for k € Z.
Since (a + bv/d)(a — bV/d) = a® — db? = %1, we have |a — bv/d| = 1/u > 0, so

L(u) = log(log u,log(1/u)) = (logu, —logu) = (logwu)(1, —1).

and |y| <
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This vector is linearly independent of (1, 1) since logu > 0 (we have u > 1 since u = a+bvd
with @ and b in Z*), so {(1,1), L(u)} is a basis of R%. Thus when x? — dy? = n we have
(3.2) L(z 4+ yVd) = ¢1(1,1) + co L(u)

for some real numbers ¢; and cz. See Figure 1.

,\61(171)
1,1) .7~
1 “( )/ A
1 .
, ~ Lz +yVd)
coL(u)
L(u)

FIGURE 1. L(z 4 yv/d) as a linear combination of L(1) and L(u).

Writing out the coordinates on both sides of (3.2),
(log |z + yVd|,log |z — yVd|) = (c1 + c2logu, ¢1 — ¢ logu).
Adding the coordinates lets us solve for ¢;:
o loglz+yVd +loglz —yvd| _log|(z +yvd)(z —yvd)| _ log|n]
e 2 - 2 2
Thus when 22 — dy? = n, (3.2) becomes

(3.3) Lz +yVd) = logzln] (1,1) + 2 L(u).

Let k € Z minimize |cp — k| so § := ¢p — k has [§] < 1. Then (3.3) says

log |n| B log |n|

Lz +yVd) = (1,1) + (k + 0)L(u) = =5 (1,1) + kL(u) + 0L(u).
Since kL(u) = L(u¥), we have

(3.4) Lz + yVau™) = L(z + yv/d) — kL(w) = 221"

(1,1) + 6L(u).

Set 2/ 4+ y/Vd = (x + yv/d)u~*, which has integer coefficients since u and u~' have integer
coefficients, so = 4+ yvd = (z/ + y/v/d)uF where 22 — dy’?> = n (since a? — db* = 1) and

1 1
(3.5) (log |z' + y/'Vd],log |z’ — y'Vd|) = <og2|n| + dlogu, ngn‘ —dlog u) .

One of £4 is < 0 and the other is > 0. Since |§] < % and logu > 0, the coordinate in
(3.5) where +6 > 0 is at most (log |n|)/2 + (logu)/2 = log y/|n|u and the coordinate where
46 < 0 is at most (log|n|)/2 = log /|n|. Therefore one of |z’ + 3//d| or |z’ —y/V/d| is at

most /|n|u and the other is at most /|n|.
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To bound |#/| and |¢/| from bounds on |2’ 4+ ¢/v/d| and |2’ — 3'V/d|, we will use
(' +y/'Vd) + (o — y/'Vd)| | = (' +y/'Vd) — (o — y/Vd)|
2 ’ 2v/d '

Set s := max(|z’ +y'\/d|, |2’ —y'V/d]). The two numbers |2’ +1/v/d| and |2’ —/V/d| have
product |22 — dy’?| = |n|, so these two numbers are s and |n|/s in some order. Thus

m%gwwwva+w—yww<MwaM+w—y%u:1G+mg
2 - 2 2 s )

(3.6) 2| =

We saw one of s or |n|/s is at most y/|n|, so the other is at least y/|n|. Since s is a maximum,
VInl <'s < y/|n|u. By calculus, t + |n|/t is increasing for t > \/|n|, so

no 1 Inl} _ 1 |\ _ VInl(Vu+1/va)
|:L'|§2<8—|—$> §2<\/|n|u+ W’U> = 5

' +y'Vd| + |« —y'Vd 1 < |n|> Vin|(Vu+1/y/u)
= s+ — | < .
2Vd 2Vd s 2V/d
When n > 0, we can sharpen the bound on |y/|. The equation 2’2 — dy”? = n implies
2’ +y/'v/d and ' — y/v/d have the same sign (their product is positive). Since |z’ 4 y/V/d|
and |z’ — y'\/d| are s and n/s in some order, 2’ 4+ 3'v/d and ' — '\/d are either s and n/s
in some order or —s and —n/s in some order. Either way,

(@' +y'Vd) - (@' —y'Vd)| _ |s—n/s|

/ = p—y
Y] Wi Wi
Since /n < s < y/nu, we have \/n/u < n/s < /n, so s and n/s lie in the interval
[v/n/u,/nu]. Therefore |s — n/s| is at most the length of that interval, which tells us

|w:s—wa<¢m—¢wu_¢nﬁm 1>, -

ovd ~  2/d  2Vd - Vu

The bounds on |z/| and |y/| in Theorem 3.3 when n > 0 satisfy the generalized Pell
equation: if 2’ = \/n(v/u +1/v/u)/2 and 3 = /n(y/u — 1/y/u)/(2/d), then 2> — dy?> = n
(it’s not important what number u is). These bounds on |z/| and |y’| may not be in Z, but
we’ll see in Examples 4.1 and 4.4 that the bounds sometimes are in Z. In the appendix,

infinitely many examples are given where the bounds in (3.1) are in Z and are the smallest
solution of 22 — dy"?> = n in Z+.

and

ly'| <

’

Remark 3.4. The first bounds I learned for |z/| and [¢/| were |2/| < (|n| + w)/2 and
lv/| < (In| + w)/(2V/d), which is in [1, p. 244]. A careful reading of the derivation of
those bounds in [1] shows that |2'| < y/|n|u and |y'| < \/|n|u/d, which is sharper since
Vab < (a+b)/2 (the arithmetic-geometric mean inequality), and that was what I originally
wrote in Theorem 3.3. That those bounds on |2/| and |y/| can be cut down by essentially
a factor of 2, as in (3.1), was shown to me by Yosei Lii, who also explained the drop by a
factor of 2 just from the triangle inequality in (3.6) without any calculus:

o’ +y' V| + o’ —y'Vd| < VInlu+ VIl = Vinl(Vu+ 1),
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(3'7) ‘x/‘ _ (x/+y/\/g);-($/_y/\/&) < \$/+y’\/§|—;\x’—y’\/&\ . \/m(\z/a+1)
and

@y VD) — (@ =y V)| ey VA e =y VInl(Vat D)
(3.8) lyI= ovd < N < N '

The bounds (3.7) and (3.8) are weaker than the bounds in (3.1) since 0 < 1/y/u < 1, but
the distinction between these two bounds on |z/| and |¢/| is negligible in practice. I later
learned that the bounds in Theorem 3.3 are due to Chebyshev in 1851 [2, pp. 260, 262]. A
generalization of the bound on |y/| in (3.1) is in [5, Theorem 4.5].

When n = 1, there is no guarantee that an integral solution (2’,y’) to 22 — dy’? = 1
fitting the bounds on |z/| and |¢/| in (3.1) is not the trivial solution (1,0). More generally,
when n is a perfect square, an integral solution to z'? — dy"? = n fitting (3.1) might have
Yy = 0. Of course Theorem 3.3 is useless when n = 1 since the bounds in this theorem
depend on already knowing a number v = a + bv/d with a,b € Z* where a® — db*> = 1.
When 7 is not a perfect square, integral solutions (',%) to 22 — dy’?> = n must have y' # 0.
For example, the bounds in Theorem 3.3 can be used for n = —1 to determine whether
the so-called negative Pell equation 22 — dy? = —1 has an integral solution once we know a
nontrivial solution to a? — db? = 1.

Corollary 3.5. For a generalized Pell equation x> — dy? = n with n # 0 there is a finite
set of solutions such that every solution is a Pell multiple of one of these solutions.

Proof. We may assume there is a solution. To prove the conclusion, here are two proofs.
Proof #1: Each solution is a Pell multiple of a solution with |z| < /|n|(vu + 1/v/u)/2
and |y| < v/|n|(v/u +1/+/u)/(2V/d) by Theorem 3.3, so = and y have finitely many choices.
Proof #2: By the end of the proof of Theorem 2.3, if 23 —dy? = M and 23 —dy3 = M with
x1 = o mod | M| and y; = yz mod | M| then we can write zo4+1y2vd = (z1+1y1Vd)(z+yV/d)
where 22 — dy? = 1. Thus z1 + y1V/d and x5 + y2v/d are Pell multiples. Replacing M with
n, all integral solutions of z? — dy? = n with the same reduction mod |n| are Pell multiples
of each other, so there are at most n? different solutions of 22 — dy? = n up to Pell multiples
since there are at most n? pairs of integers mod |n|. O

The second proof of Corollary 3.5, unlike the first, is not practical because it is not
computationally effective: it doesn’t give a bounded range of x and y values that contain
the solutions of z2 — dy?> = n up to a Pell multiple. In particular, the second proof can’t
show 22 — dy? = n has no solutions while the first proof can, as we’ll see in Example 4.5.

Remark 3.6. For the negative Pell equation 22 —dy? = —1, with squarefree d, the existence
of a solution in Z requires no prime factor of d to be 3 mod 4. Among squarefree d > 0 with
no prime factor that is 3 mod 4, the proportion for which 2% — dy?> = —1 has a solution in
Zis1—[o4q j>1(1 — 1/27) (=~ 58%) by a theorem of Koymans and Pagano [6].

4. EXAMPLES OF THEOREM 3.3

We now apply Theorem 3.3 in several examples to see how it works in practice. In all
cases but the last one we’ll have n > 0, so we’ll use the bound on |y/| at the end of the
theorem rather than the bound on |¢/| in (3.1).
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Example 4.1. We will describe all the solutions of 2 — 6y? = 3 in integers. An obvious
solution is (3,1) and its sign changes in coordinates (3,—1), (—3,1), and (—3,—1). What
are all the integral solutions?

As a positive solution of a? — 66> = 1 we will take (a,b) = (5,2), so set u = 5 + 2v/6.
By the end of Theorem 3.3, || < /[n[(vu —1/v/u)/(2Vd) = V3(v/u —1/y/u)/(2v/6) = 1,
which forces 3 to be 1,0, or —1. Solutions to 22 — 6y'? = 3 with such y/-values are (+3,1)
and (£3,—1). (In particular, the bound on |¢/| at the end of Theorem 3.3 is optimal in this
case.) Thus the integral solutions of 22 — 6y% = 3 have the form

z+yV6 = (£3+V6)(5+2V6)F = (£3+V6)uF or (£3—V6)(5+2V6)" = (£3 - V6)u"
where k € Z. Up to multiplication by powers of u, there are four solutions:
3+v6, —3+V6, 3—-v6, —3—6.

These four solutions are related in pairs by powers of u: 3 — 6 = (3 + v6)u~!, and
—34+v6 = (=3 —/6)u~!. Therefore every solution of 22 — 6y = 3 in integers has the form

z+yV6 = +(3+ V6)(5+ 2V6)"

for some k € Z and this list has no repetitions.
Taking k = 0,1, 2, the values of (34++/6)(5+2v/6)" are 3++/6, 27+11/6, and 267+109/6,
so the first three solutions of 22 — 6y% = 3 in Z* are (3,1), (27,11), and (267, 109).

Example 4.2. We will completely solve x? — 7y? = 57 in integers.

One nontrivial solution of a>—7b% = 11is (8, 3), so set u = 843+/7. By the end of Theorem
3.3, [y'| < VBT(Vu —1/y/u)/(2V/7) ~ 5.33. The integral solutions to z'?> — 7y'?2 = 57 for
such ' are (2/,y') = (£8,+1) and (+13, £4).

The integral solutions of 22 — 7y? = 57 therefore have the form

(4.1) r4+yVT=+B£VTuF or +(13+£4V7)d"

with & € Z. No pair of numbers among 13 + 44/7 and 8 + /7 has a ratio that is a power of
u (in fact, no pair has a ratio of the form m -+ n+/7 with m,n € Z). Therefore (4.1) has no
repetitions.

The solution (z,y) = (20, 7) appears in (4.1) as 20 + 7v/7 = (13 — 4/7)u.

Example 4.3. We will completely solve 22 — 19y? = 36 in integers. An obvious pair of
solutions is (+6,0). What are the rest?

A nontrivial solution of a? — 19b? = 1 in positive integers is (170, 39) (this solution has
the smallest positive b), so let v = 170 + 394/19. By the end of Theorem 3.3, |y/| <
V36(\/u — 1/\F)/(2W) ~ 12.65, so (z/,y') = (£6,0) and (+44,410). Therefore the

integral solutions to #2 — 19y? = 36 have the form
z+yV19 = £6uF or =+ (44 +10V19)u*

with k € Z. These solutions have no repetitions since no pair among 6, —6, 44 + 10+/19,
and 44 — 10+/19 has a ratio that is a power of w.
The solution (z,y) = (70, 16) appears as 70 4 161/7 = (44 — 10v/19)u.

Example 4.4. We will completely solve 2 — 103y? = 2 in integers.

A solution of a? — 103b% = 1 in positive integers is (227528, 22419) (this solution has the
smallest positive b), so let u = 227528 + 22419+/103. By the end of Theorem 3.3, [Y| <
V2(y/u—1/y/u)/(2v/103) = 47. The only nonnegative ' in this range where 2/> —103y"? = 2
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for some 2’/ € Z is y' = 47, for which 2/ = £477. (As in Example 4.1, the bound on |y/| this
time is optimal.) Therefore the integral solutions to 2 — 103y? = 2 have the form

x + yV/103 = £(477 £ 47V103)u*

with k € Z. These solutions have repetitions since 477 — 474/103 = (477 + 47+/103) /u,* so
the integral solutions to 2 — 103y? = 2 without repetitions are

&+ yv103 = £(477 + 47/103)u*

Example 4.5. We will show 22 — 37y% = 11 has no solution in integers.
A solution of a? — 37b% = 1is (73,12), so let u = 73 + 121/37. By the end of Theorem

3.3, || < V11(y/u — 1/f)/(2\/ ) ~ 3.27. For no ¢/ in this range is 2/ — 37y"? = 11 for
an 2’ € Z, so the equation z? — 37y = 11 has no solution in Z.

Example 4.6. We will show x? — 19432 = —1 has no solution in integers.

A solution of a? — 194b? = 1 is (195,14), so let u = 195 + 144/194. Using (3.1) since
n=-1<0 [y <VI\/u+1/yu)/(2V/194) ~ 0.71. The only choice is 3 = 0, for
which the equation 22 — 194y’> = —1 has no integral solution z’. Therefore the equation
22 — 194y% = —1 has no solution in Z.

Example 4.7. We will show 22 — 73332 = 383 has no solution in integers.

A solution of a®?—733b? = 1 is (195307849, 7213860),> so let u = 195307849-+7213860+/733.
Since v/383(v/u — 1/y/u)/(2v/733) ~ 7143.19, we use a computer to search through all 3/
from 0 to 7143 and in no case is 733y’% + 383 a perfect square. Therefore 22 — 733y% = 383
has no solution in Z.

At the end of Remark 3.4 it was mentioned that the bounds |y/| < v/|n|(v/u+1/v/u)/(2Vd)
(for all n) and |¢/| < v/n(v/u — 1/y/u)/(2v/d) (for n > 0) are not in practice substantially
better than the bound |y'| < +/[n|(v/u + 1)/(2V/d). The table below illustrates this by
comparing such bounds for most of the examples in this section (those where n > 0).

Example | 2° —dy’=n_ n(yu—-1/vu)/(2Vd) n(/u+1)/(2Vd)
4.1 2 — 6y2 =3 1 1.46
4.2 x? — Ty? =57 5.33 7.12
4.3 2 —19y% = 36 12.65 13.37
4.4 r? — 103y =2 47 47.06
4.5 x2 — 372 =11 3.27 3.56
4.7 x? — 733y% = 383 7143.19 7143.55

The website https://www.alpertron.com.ar/QUAD.HTM will give you all the solutions
to 22 — dy? = n as a recursive sequence (x,,¥,) or tell you there are no integral solutions.
Although Theorem 3.3 provides a general method to show x? — dy? = n has no solutions,
the lack of solutions can often be proved more simply using congruences, as seen in Part I.

Example 4.8. There is no solution to 22 — 37y% = 2 in Z since 2% — 37y? = 2 mod 4 has
no solution: the congruence is 22 — 4% = 2 mod 4 and the squares mod 4 are 0 and 1, which

don’t differ by 2.

21f 22 — dy? = £2, then the ratio (z + yV/d)/(z — yV/d) is a unit in Z[v/d].
3Yes, this is the smallest solution in positive integers a and b.


https://www.alpertron.com.ar/QUAD.HTM
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Congruence methods do not always suffice to prove there are no solutions in Z. The
equations z? — 37y? = 11 are x? — 194y?> = —1, which we met in Examples 4.5 and 4.6, are
instances of this. They have no Z-solutions but they have rational solutions: z? —37y? = 11
has solutions (9/2,1/2) and (32/3,5/3), and 22 — 194y = —1 has solutions (13/5,1/5) and
(5/13,1/13). From these pairs of rational solutions it can be shown that x? — 37y? =
11 mod m and z? — 194y?> = —1 mod m are each solvable for all m > 2.

Exercise. Use the method of Example 4.5 to show x? — 37y% = n has no solution in Z
forn =3,5,6,7,8,10.

Forn = 5, 6, 8, and 10 the lack of Z-solutions to 22—37y? = n can also be proved in a more
elementary way, as with n = 2, by showing there is no solution to either 22 —37y? = n mod 4
or 22 = nmod 37. This doesn’t work for n = 3 or n = 7, just as we saw it doesn’t for
n = 11: for all m > 2 there is a solution to z? — 37y? = 3 mod m and 22 — 37y? = 7 mod m.

5. USING CONTINUED FRACTIONS

In this section, for those who know about continued fractions, we will explain how Pell
and generalized Pell equations can be solved with continued fractions. The link between
continued fractions and generalized Pell equations is due to the next theorem of Lagrange
[4, Art. 38].

Theorem 5.1. If positive integers x and y satisfy x> — dy*> = n with |n| < V/d then x/y is
a convergent to the continued fraction of Vd.

Proof. Our argument is taken from [9, p. 204]. A basic theorem about continued fractions
is that for a real number «, if x and y are integers with y # 0 and |z/y — a| < 1/(2y?)
then x/y = p/q for some convergent p/q to a. (We can’t say © = p and y = ¢ unless we
know ged(z,y) = 1 and y > 0, and we're not assured ged(x,y) = 1 in general unless n is
squarefree.) Taking o = V/d, if 22 — dy? = n with |n| < v/d and z,y > 0 then

In| Vd 1

y \/3’ T Ry V) Pely+ VD) @/ V) 1)

so to show |z/y — Vd| < 1/(2y?), and hence z/y is a convergent to v/d, it suffices to prove
z/(yVd) > 1, or equivalently z > yv/d. If n > 0 then 22 — dy?> = n > 0 = 22 > dy?, so
T > y\/g since z and y are positive.

If n < 0 then 22 — dy? < 0 = = < yv/d and our argument breaks down. Instead of
looking at z/y as an approximation to v/d, look at 3/ as an approximation to 1/v/d:

y 1 ] i 1

e = < .
T Vdl o Vde(yVd+x)  da?(y/z+1/Vd)  2?(Vdy/z+1)
This is less than 1/(2x2) if V/dy/x > 1, or equivalently = < yv/d, which is true, so y/z is a
convergent to 1/v/d. If \/d = [ay,a2,a3,...] then a; > 1 so 1/vd = [0,a1,as,...],* which
means the convergents to v/d are the reciprocals of the convergents to 1/ V/d after the initial
convergent 0. Thus y/z being a convergent to 1/v/d makes z/y a convergent to v/d. O

4A continued fraction la1,a2,as,...] with a1 < 0 has a much more complicated rule for the continued
fraction of its reciprocal than when a; > 0: see https://kconrad.math.uconn.edu/blurbs/ugradnumthy/
contfrac-neg-invert.pdf. Fortunately we’re not dealing with a1 < 0 here.


https://kconrad.math.uconn.edu/blurbs/ugradnumthy/contfrac-neg-invert.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/contfrac-neg-invert.pdf
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Corollary 5.2. For each positive solution to x> — dy? = +1, there is a convergent p/q to
Vd such that x = p and y = q.

Proof. Apply Theorem 5.1 with n = £1. In this case ged(z,y) =1 and y > 0, so x and y
are the numerator and denominator of a convergent to V. O

This corollary was the basis for Lagrange’s proof that Pell’s equation z? — dy? = 1 has
a nontrivial solution. He proved v/d has a periodic continued fraction and explained where
to find the positive solutions of 22 — dy? = 1 among the convergents to v/d.

Example 5.3. The continued fraction of v/6 is [2,2, 4], and the table of convergents below
suggests (and it is true) that every other convergent provides a solution to 22 — 6y% = 1.

2 2 4 2 4 2 4 2 4 2 4
0 1 2 5 22 49 218 485 2158 4801 21362 47525 211462
1 0 1 2 9 20 89 198 881 1960 8721 19402 86329
22—6y2| -2 1 -2 1 -2 1 =2 1 -2 1 -2

Not only is the continued fraction of v/d periodic, but so is 22 — dy? when x/y runs
through the convergents to v/d. All distinct values of 22 — dy? when x/y is a convergent
to v/d occur before the last term in the second period of the continued fraction. This and
Theorem 5.1 let us determine all n with 0 < |n| < v/d such that 22 —dy? = n has a solution.

Example 5.4. Since /13 = [3,1,1, 1, 1, 6], we compute 22 — 13y? in the table below where
x/y runs through convergents just before the second 6. Since v/13 = 3.6, the table tells us
the only n with 0 < |n| < v/13 for which 22 — 13y? = n is solvable in Z are +1 and +3.
(Although +4 appears in the bottom row of the table, | + 4| > 1/13.)

3111 1 6 1 1 1 1
0 1 3 4 7 11 18 119 137 256 393 649
1 0 1 1 2 3 5 33 38 71 109 180

2?1352 -4 3 -3 4 -1 4 -3 3 —4 1

If n| > V/d then solvability of 22 —dy? = n can be connected to solvability of 22 —dy? = n/
for some nonzero integer n’ where |n’| < |n|. Tterating this, eventually the case |n| < vd
is reached and we already explained how that can be settled using the continued fraction
of V/d. Such a reduction process goes back to Lagrange [8, pp. 422-426], and more recent
references are [3, pp. 454-457] and [9, pp. 210-213]. We'll illustrate this with two examples
that were treated in the previous section using Theorem 3.3.

Example 5.5. Consider 22 — 6y = 3 with =,y € Z. Note 3 > v/6. Reducing the equation
mod 3, we get 22 = 0 mod 3, so = 0 mod 3. This is equivalent to z = 3z for z € Z, so

22 —6y=3—=922—62=3
=322 -2 =1

— -2+ (322 —-1)=0.



12 KEITH CONRAD

Viewing the left side of the last equation as a quadratic polynomial in y, its discriminant
02 —4-(=2)- (322 — 1) = 4(62* — 2)

is a perfect square, so 622 — 2 = t? for some t € Z, Write this as t* — 622 = —2 and note t is
even. Conversely, if integers t and z fit 2 —622 = —2 then z = 3z and y = £V4t2/(2(-2)) =
+t/2 are integers that satisfy 22 — 6y? = 3.

If t,z € ZT satisfy > — 622 = —2 then t/z is a convergent to v/6 since | — 2| < v/6. By
the table in Example 5.3 the first three solutions of t? — 622 = —2 in Z* are (t, 2) = (2, 1),
(22,9), and (218,89), leading to (z,y) = (32,t/2) = (3,1), (27,11), and (267, 109).

Example 5.6. Consider 22 — 37y?> = 11 with z,y € Z. Note 11 > /37. We have 22 =
37y? = (2y)? mod 11, so = +2y mod 11. Write x = £2y + 112z with z € Z. Then

2?2 =372 =11 < (£2y + 112)? = 372 =11
— —33y% +44yz + (12122 —11) = 0
— 3yt +4yz + (1122 - 1) = 0.
For the quadratic polynomial in y to be solvable in Z, its discriminant
(42)% —4-(=3) - (112% — 1) = 4(372% — 3)
is a perfect square, so 3722 — 3 = t? for some t € Z. Write this as t*? — 3722 = —3. All
steps are reversible, so if 2 — 3722 = —3 and y in Z fits —3y? £ 4yz + (1122 — 1) = 0 then
(2,y) = (£2y + 112, y) satisfies 2% — 37y% = 11.
If t, 2 € Z" satisfy t? — 3722 = —3 then ¢/z is a convergent to /37 since | — 3| < v/37.
Testing the convergents p/q of the first two periods of the continued fraction for /37, which

is [6,12,12,12,...], the only values of p? — 37¢? are +1. Since —3 isn’t a value of p? — 3742,
t? — 3722 = —3 has no solution in Z and thus 2% — 37y? = 11 has no solution in Z.

Exercise. Use the method of Example 5.6 to show 22 — 37y% = 7 has no solution in Z
by relating it to t? — 3722 = —4.

APPENDIX A. OPTIMALITY OF THE BOUNDS IN THEOREM 3.3

In Examples 4.1 and 4.4, the bound on |2/| in (3.1) and the bound on |¢/| at the end of
Theorem 3.3 when n > 0 turned out to be the only solution in Z™ within the range of those
bounds:

e the first solution to 22 — 6y = 3 in Z* is (z,y) = (3,1), and in Example 4.1 with

w=5+2V6, (Vi +1/yi)/2 = 3 and ity — 1//a)/(2vd) = 1,
e the first solution to 2—103y? = 2in Z* is (v, y) = (477,47) and in Example 4.4 with
u = 227528+22419v/103, /n(y/u+1/y/u)/2 = 477 and /n(y/u—1//u)/(2V/d) = 47.
A third example is 22 —23y? = 2. The least unit greater than 1 in Z[v/23] is u = 24-+5v/23,
with norm 1. Theorem 3.3 says integral solutions of z? — 23y? = 2 are powers of u times
solutions where |z| < v2(y/u +1/y/u)/2 =5 and |y| < v2(y/u — 1/y/u)/(2v/23) = 1. The
only solution in that range in positive integers is (z,y) = (5, 1).
This naturally raises the question: are there infinitely many equations 22 —dy? = n where
the bounds on |z/| and |y/| from Theorem 3.3 for n > 0 are optimal? Yes!
Theorem A.l. For an integer m > 2, let d = m? — 2. The bounds on |2'| and |y'| in
Theorem 3.3 for the equation x*> — dy* = 2 are |2'| < m and |y'| < 1, and the only solution
in positive integers within those bounds is (z',y) = (m,1).
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The family of equations 22 — (m? — 2)y? = 2 has 22 — 23y? = 2 as the special case m = 5.

Proof. The equation 22 — (m? — 2)y? = 2 has no integral solution when y = 0, and when
y =1 we have x = m.

For m > 2, the smallest solution of a?> — (m? — 2)b? = 1 in positive integers is (a,b) =
(m? — 1,m). Equivalently, the least unit of norm 1 that’s greater than 1 in Z[v/m?2 — 2] is
m? — 1 +mvm?2 —2: when m = 2, the fundamental unit of Z[v/2] is 1 + v/2, with norm
—1,and (1 ++v2)? =3 +2v2 =m? — 14+ mv/m2 — 2, while when m > 3, the fundamental
unit of Z[v/m? — 2] is m? — 1 +mv/m?2 — 2 and it has norm 1. In Theorem 3.3, we can set
u=m?—1+mvm?2 -2,

We will show the bounds from Theorem 3.3 for integral solutions of 22— (m?—2)y? = 2 are
|#’| <m and |y/| < 1. That makes the bounds from Theorem 3.3 opt1mal since (i) (2/,y )
(m, 1) is a solution, (ii) there’s no solution when 3’ = 0, and (iii) when 2/? — (m? — 2)y"? =
andy’>1,wehavem’224(m —2)+2>m? so 2 >m.

To show the bounds on |2'| and |y/| from Theorem 3.3 are m and 1 means

Va(Vut1/ve) o V2= 1/
2 ’ 2v/m? — 2

Since u > 1, these equations are true if the squares of both sides are true, so we will check
u+2+1/u 9 u—2+1/u

— e g2, 2

2 2(m2 — 2)

Both equations are equivalent to u? —2(m?—1)u+1 = 0, and u is a root of 2 —2(m? —1)t+1
by the quadratic formula. O

2 _

=1.

Theorem A.2. For an integer m > 1, let d = 4m? + 2. The bounds on |2'| and |y'| in
Theorem 3.3 for the equation x> — dy? = 2m? + 1 are |2/| < 2m? + 1 and |y'| < m, and
(z,y) = (2m? 4+ 1,m) is a solution.

The equation 22 — (4m? + 2)y? = 2m? + 1 becomes 2% — 6y? = 3 when m = 1.

In contrast to Theorem A.1, the smallest solution to 22 — (4m? + 2)y? = 2m? + 1 in
positive integers might not be (z,y) = (2m? 4 1,m), but it does appear to be most of
the time. For 1 < m < 100, there is no solution in positive integers where y < m — 1
with three exceptions: m = 11 ((z,y) = (27,1)), m = 12 ((z,y) = (51,2)), and m = 70
((z,y) = (297,2) and a second solution (1683,12)). It would be nice to have a proof that
for infinitely many m there is no solution in positive integers where y < m — 1.

Proof. It is easy to check that (z,y) = (2m2+1,m) is a solution of 22 —(4m?+2)y? = 2m2+1.

View 4m? + 2 as M? + 2 for the even value M = 2m. For M > 1, the fundamental
unit of Z[v/ M2 +2] is M? 4+ 1 4+ M+/M? + 2 and it has norm 1, so the smallest solution
of a®> — (M? 4 2)b? = 1 in positive integers is (a,b) = (M? + 1, M). Letting M = 2m, in
Theorem 3.3 with d = M? +2 = 4m? + 2, we can set u = (2m)? + 1 + 2m\/(2m)? + 2 =
4m? + 1+ 2m+/4m?2 + 2. In Theorem 3.3 we’ll show the bounds on |2’| and |y/| using u as
above are |2/| < 2m? + 1 and || < m:

V2m? + 1(Vu+ 1/y/u)
2

2m? + 1(vu —1/\/u)
2v/4Am?2 + 2 B

Since u > 1, these equations are true if the squares of both sides are true, so we will check

= 2m?* + 1,

1 1
u+2+—=402m*+1), wu—2+ - =8m%
u u
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Both equations are equivalent to u? — (8m?+2)u+1 = 0, and u is a root of t2 — (8m?+2)t+1
by the quadratic formula. O

Is there an infinite family of generalized Pell equations, including 22 — 103y? = 2 as a
special case, where the bounds on |2/ and |y/| in Theorem 3.3 are (infinitely) often the first
solution in positive integers? Here is my only attempt at answering this. Let’s think of 103
as m? + 3 for m = 10. In terms of this m, the minimal solution (z,y) = (477,47) has the
form (4m? + 7m + 7,4m + 7), and it’s straightforward to check

(4m? +Tm +7)% — (m® + 3)(4m + 7)% = 8m? — 70m — 98,

so we can view 22 — 103y? = 2 as the special case of 22 — (m? + 3)y? = 8m? — 70m — 98 for
m = 10. Check 8m? — 70m — 98 > 0 if m > 10 (8t — 70t — 98 has larger root 9.97...).

For m = 10 we are in Example 4.4, where the bounds on |2/| and |¢| in Theorem 3.3 for
2?2 — 103y? = 2 are its first solution (477,47).

For m = 11, we have m? 4+ 3 = 124, 8m? — 70m — 98 = 100, and the fundamental unit
of Z[v/124] is 4620799 + 414960/124, with norm 1. Using this unit as u, the bounds on
|z’| and |y/| for 2% — 124y? = 100 in Theorem 3.3 are |2'| < 15200 and |y/| < 1365, but
(15200, 1365) is not the smallest solution in positive integers: two smaller solutions are
(134,12) and (568, 51), with (4m? + 7m + 7,4m + 7) = (568,51) when m = 11. (Of course
there is also the solution (z’,y’) = (10,0).)

For m = 12, we have m? + 3 = 147, 8m? — 70m — 98 = 214, and the fundamental unit
of Z[V147) = Z[7/3] is 97 + 8V/147, with norm 1. Using this unit as u, the bounds on
|z’| and |y| for 22 — 147y? = 214 in Theorem 3.3 are |2’| < 102.401... and |y| < 8.359...
(not integers). The only positive integer solution of x? — 147y? = 214 in that range is
(2,y') = (19,1), and the solution (2',9') = (4m? + Tm + 7,4m + 7) = (667,55) is outside
that range. So in short, this attempt at fitting 22 — 103y% = 2 into a nice infinite family
where the bounds in Theorem 3.3 are optimal appears to be a failure.
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