
PELL’S EQUATION, II

KEITH CONRAD

1. Introduction

In Part I we met Pell’s equation x2 − dy2 = 1 for nonsquare positive integers d.1 We
stated Lagrange’s theorem that every Pell equation has a nontrivial solution (an integral
solution besides (±1, 0)) and saw what all solutions to Pell’s equation look like if there’s
a nontrivial solution. As in Part I, “solution” means integral solution. Here we will prove
Lagrange’s theorem in Section 2 and show in Section 3 how to find all the solutions of a
generalized Pell equation x2 − dy2 = n. Examples are in Section 4.

2. Pell’s Equation has a Nontrivial Solution

Our proof that x2−dy2 = 1 has a nontrivial solution will be nonconstructive. The starting
point is the following lemma about integral multiples of

√
d that are close to integers.

Lemma 2.1. For each nonsquare positive integer d, there are infinitely many positive in-
tegers x and y such that |x− y

√
d| < 1/y.

The point here is not just that there are integral multiples of
√
d close to integers, but

the distance can be controlled by the multiplier on
√
d (infinitely often).

Proof. We use the pigeonhole principle. For each integer m ≥ 2 consider the m+1 numbers

(2.1) 0,
√
d, 2
√
d, . . . , m

√
d.

These numbers have fractional parts in [0, 1). View [0, 1) as m half-open intervals [0, 1/m),
[1/m, 2/m), . . . , [(m− 1)/m, 1). By the pigeonhole principle, two of the m+ 1 numbers in

(2.1), say a
√
d and b

√
d with a < b, have fractional parts in the same interval, so

(2.2) a
√
d = A+ ε, b

√
d = B + δ,

where A,B ∈ Z and ε and δ lie in a common interval [i/m, (i+ 1)/m). Thus

|ε− δ| < 1

m
.

This inequality is strict since we are using half-open intervals. Using (2.2),

|ε− δ| < 1

m
=⇒

∣∣∣(a√d−A)− (b
√
d−B)

∣∣∣ < 1

m
=⇒

∣∣∣(B −A)− (b− a)
√
d
∣∣∣ < 1

m
.

Set x = B −A and y = b− a, so x and y are integers with 0 < y ≤ m. Thus

(2.3) |x− y
√
d| < 1

m
≤ 1

y
.

Since x is within 1 of y
√
d, we have x > y

√
d− 1 ≥

√
d− 1 > 0, so x ≥ 1.

1See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/pelleqn1.pdf.
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Having found a pair of positive integers (x, y) such that |x− y
√
d| < 1/y, to get a second

pair with this property choose a positive integer m′ such that 1/m′ < |x− y
√
d|. (There is

such an m′ because x − y
√
d 6= 0, as

√
d is irrational.) Run through the argument above

with m′ in place of m to find x′ and y′ in Z+ satisfying |x′ − y′
√
d| < 1/m′ with y′ ≤ m′,

so |x′ − y′
√
d| < 1/y′. From the inequalities

(2.4) |x′ − y′
√
d| < 1

m′
< |x− y

√
d|,

the pair (x, y) is obviously not the same as the pair (x′, y′). By repeating this argument

again to get a smaller |x′′ − y′′
√
d|, and so on, we are done. �

Example 2.2. Let d = 7. We will give two solutions to |x− y
√

7| < 1/y. Taking m = 10,
among the fractional parts of k

√
7 for 0 ≤ k ≤ 10 (given to two decimal places in the table

below) there are three pairs of integers (a, b) where a
√

7 and b
√

7 lie in a common interval
[i/10, (i+ 1)/10), so the fractional parts differ by less than 1/10: (a, b) = (2, 5), (4, 7), and
(6, 9). For all three pairs, b− a = 3.

k 0 1 2 3 4 5 6 7 8 9 10

Fractional part of k
√

7 0 .64 .29 .93 .58 .22 .87 .52 .16 .81 .45

Using a = 2 and b = 5, we have

2
√

7 = 5.29 . . . , 5
√

7 = 13.22 . . . =⇒ |(2
√

7−5)−(5
√

7−13)| < 1

10
=⇒ |8−3

√
7| < 1

10
<

1

3
,

so we can use (x, y) = (8, 3). The other two choices (a, b) = (4, 7) and (6,9) also lead to
(x, y) = (8, 3).

To get a second pair of integers (x′, y′) such that |x′ − y′
√

7| < 1/y′, since |8 − 3
√

7| ≈
.0627 > 1/20 we look at the fractional parts of k

√
7 for 0 ≤ k ≤ 20 and seek two fractional

parts in a common interval [i/20, (i + 1)/20) so their difference is less than 1/20. This
happens when k is 0 and 14:

0
√

7 = 0, 14
√

7 = 37.0405 . . . ,

so

|(0
√

7− 0)− (14
√

7− 37)| ≈ .04 <
1

20
=⇒ |37− 14

√
7| < 1

20
<

1

14
and we can use (x′, y′) = (37, 14). This also happens when k is 2 and 19:

2
√

7 = 5.2915 . . . , 19
√

7 = 50.2692 . . . ,

so

|(2
√

7− 5)− (19
√

7− 50)| ≈ .02 <
1

20
=⇒ |45− 17

√
7| < 1

20
<

1

14
,

which means we can use (x′, y′) = (45, 17).

The only properties we needed of
√
d in Lemma 2.1 are that it is irrational and greater

than 1. A similar argument shows that for real irrational α, the inequality |x− yα| < 1/y
holds for infinitely many pairs of integers (x, y) with y > 0 (we have to give up on insisting
that x > 0 too if α is negative).

Theorem 2.3 (Lagrange). For every positive integer d that is not a square, the equation
x2 − dy2 = 1 has a nontrivial solution.
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Proof. Lagrange’s proof [3, pp. 669–731] used continued fractions. In the proof here, we
will start by showing there’s a nonzero integer M such that the equation x2− dy2 = M has
infinitely many solutions in Z+. Then we’ll combine this with modular arithmetic to show
the equation x2−dy2 = 1 has a solution in Z+. The pigeonhole principle will be used twice.

From Lemma 2.1, |x− y
√
d| < 1/y for infinitely many x and y in Z+. For such x and y

we will show

|x2 − dy2| < 1 + 2
√
d,

where the main point is that this upper bound does not involve x or y.
First we will bound x from above in terms of y:

x = x− y
√
d+ y

√
d ≤ |x− y

√
d|+ y

√
d <

1

y
+ y
√
d ≤ 1 + y

√
d.

Then

|x2 − dy2| = (x+ y
√
d)|x− y

√
d| < (1 + y

√
d+ y

√
d)

1

y
=

1

y
+ 2
√
d ≤ 1 + 2

√
d.

Thus |x2 − dy2| < 1 + 2
√
d for infinitely many pairs of positive integers (x, y). By the

pigeonhole principle, there is an M ∈ Z with |M | < 1 + 2
√
d such that

(2.5) x2 − dy2 = M

for infinitely many pairs of positive integers (x, y), and M 6= 0 since
√
d is irrational.

For x and y in Z+ satisfying (2.5), reduce x and y modulo |M |. The infinitely many pairs
(x mod |M |, y mod |M |) must have a repetition by the pigeonhole principle, since there are
finitely many pairs of integers mod |M |. So there are positive integral solutions (x1, y1) and
(x2, y2) to (2.5) such that x1 ≡ x2 mod |M |, y1 ≡ y2 mod |M |, and (x1, y1) 6= (x2, y2).

Write x1 = x2 +Mk and y1 = y2 +M`, where k and ` are in Z. Then

x1 + y1
√
d = x2 + y2

√
d+M(k + `

√
d),

x1 − y1
√
d = x2 − y2

√
d+M(k − `

√
d).

Since M = x22 − dy22 = (x2 + y2
√
d)(x2 − y2

√
d), substituting this into the equations above

gives

x1 + y1
√
d = (x2 + y2

√
d)(1 + (x2 − y2

√
d)(k + `

√
d))(2.6)

x1 − y1
√
d = (x2 − y2

√
d)(1 + (x2 + y2

√
d)(k − `

√
d)).(2.7)

Combine like terms in the second factor on the right side of (2.6) to write it as x + y
√
d

with x, y ∈ Z. The second factor on the right side of (2.7) is x− y
√
d, so we have

x1 + y1
√
d = (x2 + y2

√
d)(x+ y

√
d)

x1 − y1
√
d = (x2 − y2

√
d)(x− y

√
d).

Multiplying these last two equations together, we get M = M(x2−dy2). Thus x2−dy2 = 1.
To show (x, y) 6= (±1, 0), assume otherwise. If (x, y) = (1, 0) then x1 = x2 and y1 = y2, but
this contradicts the fact that the pairs (x1, y1) and (x2, y2) are different. If (x, y) = (−1, 0)
then x1 = −x2, but this contradicts the fact that x1 and x2 are positive. �
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3. Solving the Generalized Pell Equation

We saw in the previous section that Pell’s equation has a nontrivial solution. Using
a nontrivial solution of Pell’s equation we will describe a method to write down all the
solutions of a generalized Pell equation x2 − dy2 = n, where n is a nonzero integer. In
particular, if such an equation has no solutions then the method will tell us that.

The key algebraic idea is that solutions to x2−dy2 = n remain solutions when multiplied
by solutions of x2 − dy2 = 1: if a2 − db2 = 1 and x2 − dy2 = n then the coefficients of the
product x′ + y′

√
d := (a+ b

√
d)(x+ y

√
d) satisfy x′2 − dy′2 = n, which you can check.

Example 3.1. A solution of x2 − 7y2 = 29 is (6, 1) and a solution of x2 − 7y2 = 1 is (8, 3).
From

(6 +
√

7)(8 + 3
√

7) = 69 + 26
√

7,

another solution of x2 − 7y2 = 29 is (69, 26).

In words, we have shown a Pell multiple of a solution of x2− dy2 = n is again a solution,
where a “solution” means either the pair (x, y) or the number x+y

√
d and a “Pell multiple”

of it means either the coefficients (ax + dby, ay + bx) of the product (a + b
√
d)(x + y

√
d)

where a2 − db2 = 1 or the product itself. The special case n = 1 is a result we saw in Part
I: the product of two Pell solutions is again a Pell solution (for the same d, of course).

Being a Pell multiple is a symmetric relation: if x′ + y′
√
d = (x+ y

√
d)(a+ b

√
d) where

a2 − db2 = 1 then x + y
√
d = (x′ + y′

√
d)(a − b

√
d) and a2 − d(−b)2 = 1. To check if two

numbers x + y
√
d and x′ + y′

√
d are Pell multiples, form their ratio and rationalize the

denominator to check the coefficients are integers that satisfy Pell’s equation. For example,
1 +
√

3 is a Pell multiple of 1 −
√

3 since their ratio is −2 −
√

3, which is a solution of
x2−3y2 = 1, while 4+

√
3 and 4−

√
3 are not Pell multiples since their ratio (19+8

√
3)/13

does not even have integer coefficients.
Our goal is to show there is a finite list of solutions to x2 − dy2 = n such that every

other solution is a Pell multiple of one of them. That is, up to allowing multiplication by
Pell solutions to generate new solutions there are only finitely many essentially different
solutions of a generalized Pell equation.

Example 3.2. We’ll see in Example 4.1 that the integral solutions of x2 − 6y2 = 3 occur
as x+ y

√
6 = ±(3 +

√
6)(5 + 2

√
6)k for some k ∈ Z, where 52 − 6 · 22 = 1, so each solution

x+ y
√

6 is a Pell multiple of 3 +
√

6.

Theorem 3.3. Fix u = a + b
√
d where a2 − db2 = 1 with a and b in Z+. For each

n ∈ Z− {0}, every integral solution of x2 − dy2 = n is (x′ + y′
√
d)uk where x′2 − dy′2 = n,

k ∈ Z, and

(3.1) |x′| ≤
√
|n|(
√
u+ 1/

√
u)

2
and |y′| ≤

√
|n|(
√
u+ 1/

√
u)

2
√
d

.

If n > 0 then we can take |y′| ≤
√
n(
√
u− 1/

√
u)/(2

√
d) <

√
nu/(2

√
d).

Proof. We will use absolute values and logarithms. For (x, y) ∈ Z2 − {(0, 0)} define

L(x+ y
√
d) = (log |x+ y

√
d|, log |x− y

√
d|) ∈ R2.

The crucial algebraic property is L(αβ) = L(α) + L(β) for all α and β in Z[
√
d] − {0}.

Check this. In particular, L(αk) = kL(α) for k ∈ Z.
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Since (a+ b
√
d)(a− b

√
d) = a2 − db2 = 1, we have a− b

√
d = 1/u > 0, so

L(u) = (log u, log(1/u)) = (log u,− log u) = (log u)(1,−1).

This vector is linearly independent of (1, 1) since log u > 0 (we have u > 1 since u = a+b
√
d

with a and b in Z+), so {(1, 1), L(u)} is a basis of R2. Therefore when x2 − dy2 = n we
have

(3.2) L(x+ y
√
d) = c1(1, 1) + c2L(u)

for some real numbers c1 and c2. See Figure 1.

(1, 1)

L(u)

L(x+ y
√
d)

c1(1, 1)

c2L(u)

1

1

−1

Figure 1. L(x+ y
√
d) as a linear combination of L(1) and L(u).

Writing out the coordinates on both sides of (3.2),

(log |x+ y
√
d|, log |x− y

√
d|) = (c1 + c2 log u, c1 − c2 log u).

Adding the coordinates lets us solve for c1:

c1 =
log |x+ y

√
d|+ log |x− y

√
d|

2
=

log |(x+ y
√
d)(x− y

√
d)|

2
=

log |n|
2

.

Thus when x2 − dy2 = n, (3.2) becomes

(3.3) L(x+ y
√
d) =

log |n|
2

(1, 1) + c2L(u).

Let k ∈ Z minimize |c2 − k| so δ := c2 − k has |δ| ≤ 1
2 . Then (3.3) says

L(x+ y
√
d) =

log |n|
2

(1, 1) + (k + δ)L(u) =
log |n|

2
(1, 1) + kL(u) + δL(u).

Since kL(u) = L(uk), we have

(3.4) L((x+ y
√
d)u−k) = L(x+ y

√
d)− kL(u) =

log |n|
2

(1, 1) + δL(u).

Set x′ + y′
√
d = (x+ y

√
d)u−k, which has integer coefficients since u and u−1 have integer

coefficients, so x+ y
√
d = (x′ + y′

√
d)uk where x′2 − dy′2 = n and

(3.5) (log |x′ + y′
√
d|, log |x′ − y′

√
d|) =

(
log |n|

2
+ δ log u,

log |n|
2
− δ log u

)
.
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One of ±δ is ≤ 0 and the other is ≥ 0. Since |δ| ≤ 1
2 and log u > 0, the coordinate in

(3.5) where ±δ ≥ 0 is at most (log |n|)/2 + (log u)/2 = log
√
|n|u and the coordinate where

±δ ≤ 0 is at most (log |n|)/2 = log
√
|n|. Therefore one of |x′ + y′

√
d| or |x′ − y′

√
d| is at

most
√
|n|u and the other is at most

√
|n|.

To get bounds on |x′| and |y′| from the bounds on |x′ + y′
√
d| and |x′ − y′

√
d|, we will

use the formulas

(3.6) |x′| = |(x
′ + y′

√
d) + (x′ − y′

√
d)|

2
, |y′| = |(x

′ + y′
√
d)− (x′ − y′

√
d)|

2
√
d

.

Set s := max(|x′+ y′
√
d|, |x′− y′

√
d|). The two numbers |x′+ y′

√
d| and |x′− y′

√
d| have

product |x′2 − dy′2| = |n|, so these two numbers are s and |n|/s in some order. Thus

|x′| = |(x
′ + y′

√
d) + (x′ − y′

√
d)|

2
≤ |x

′ + y′
√
d|+ |x′ − y′

√
d|

2
=

1

2

(
s+
|n|
s

)
.

We saw one of s or |n|/s is at most
√
|n|, so the other is at least

√
|n|. Since s is a maximum,√

|n| ≤ s ≤
√
|n|u. By calculus, t+ |n|/t is increasing for t ≥

√
|n|, so

|x′| ≤ 1

2

(
s+
|n|
s

)
≤ 1

2

(√
|n|u+

|n|√
|n|u

)
=

√
|n|(
√
u+ 1/

√
u)

2

and

|y′| ≤ |x
′ + y′

√
d|+ |x′ − y′

√
d|

2
√
d

=
1

2
√
d

(
s+
|n|
s

)
≤
√
|n|(
√
u+ 1/

√
u)

2
√
d

.

When n > 0, we can sharpen the bound on |y′|. The equation x′2 − dy′2 = n implies

x′ + y′
√
d and x′ − y′

√
d have the same sign (their product is positive). Since |x′ + y′

√
d|

and |x′ − y′
√
d| are s and n/s in some order, x′ + y′

√
d and x′ − y′

√
d are either s and n/s

in some order or −s and −n/s in some order. Either way,

|y′| = |(x
′ + y′

√
d)− (x′ − y′

√
d)|

2
√
d

=
|s− n/s|

2
√
d

.

Since
√
n ≤ s ≤

√
nu, we have

√
n/u ≤ n/s ≤

√
n, so s and n/s lie in the interval

[
√
n/u,

√
nu]. Therefore |s− n/s| is at most the length of that interval, which tells us

|y′| = |s− n/s|
2
√
d
≤
√
nu−

√
n/u

2
√
d

=

√
n

2
√
d

(√
u− 1√

u

)
. �

The bounds on |x′| and |y′| in Theorem 3.3 when n > 0 satisfy the generalized Pell

equation: if x′ =
√
n(
√
u+ 1/

√
u)/2 and y′ =

√
n(
√
u− 1/

√
u)/(2

√
d), then x′2 − dy′2 = n

by a direct calculation (it’s not important what number u is). Of course usually these
bounds on |x′| and |y′| are not integers, but we’ll see in Examples 4.1 and 4.4 that the
bounds sometimes are integers. In the appendix, infinitely many examples are given where
the bounds in (3.1) are integers and are the smallest solution of x′2 − dy′2 = n in Z+.

Remark 3.4. The first bounds I learned for |x′| and |y′| were |x′| ≤ (|n| + u)/2 and

|y′| ≤ (|n| + u)/(2
√
d), which is in [1, p. 244]. A careful reading of the derivation of

those bounds in [1] shows that |x′| ≤
√
|n|u and |y′| ≤

√
|n|u/d, which is sharper since√

ab ≤ (a+ b)/2 (the arithmetic-geometric mean inequality), and that was what I originally
wrote in Theorem 3.3. That those bounds on |x′| and |y′| can be cut down by essentially
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a factor of 2, as in (3.1), was shown to me by Yosei Lii, who also explained the drop by a
factor of 2 just from the triangle inequality on (3.6) without any calculus:

|x′ + y′
√
d|+ |x′ − y′

√
d| ≤

√
|n|u+

√
|n| =

√
|n|(
√
u+ 1),

so

(3.7) |x′| =

∣∣∣∣∣(x′ + y′
√
d) + (x′ − y′

√
d)

2

∣∣∣∣∣ ≤ |x′ + y′
√
d|+ |x′ − y′

√
d|

2
≤
√
|n|(
√
u+ 1)

2

and

(3.8) |y′| =

∣∣∣∣∣(x′ + y′
√
d)− (x′ − y′

√
d)

2
√
d

∣∣∣∣∣ ≤ |x′ + y′
√
d|+ |x′ − y′

√
d|

2
√
d

≤
√
|n|(
√
u+ 1)

2
√
d

.

The bounds (3.7) and (3.8) are weaker than the bounds in (3.1) since 0 < 1/
√
u < 1, but

the distinction between these two bounds on |x′| and |y′| is negligible in practice.

When n = 1, there is no guarantee that the integral solution (x′, y′) to x′2 − dy′2 = 1
fitting the indicated bounds on |x′| and |y′| in (3.1) is not the trivial solution (1, 0). More
generally, when n is a perfect square, the integral solution to x′2 − dy′2 = n fitting (3.1)
might have y′ = 0. Of course the theorem is useless when n = 1 since the bounds in
the theorem depend on already knowing a number u = a + b

√
d with a, b ∈ Z+ where

a2 − db2 = 1. When n is not a perfect square then y′ is definitely nonzero for an integral
solution (x′, y′) to x′2 − dy′2 = n. For example, the bounds in the theorem can be used for
n = −1 to determine whether the so-called negative Pell equation x2 − dy2 = −1 has an
integral solution once we know a nontrivial solution to a2 − db2 = 1.

Corollary 3.5. For a generalized Pell equation x2 − dy2 = n with n 6= 0 there is a finite
set of solutions such that every solution is a Pell multiple of one of these solutions.

Proof. We may assume there is a solution. To prove the conclusion, here are two proofs.
First proof: Theorem 3.3 tells us every solution is a Pell multiple of a solution with

|x| ≤
√
|n|(
√
u + 1/

√
u)/2 and |y| ≤

√
|n|(
√
u + 1/

√
u)/(2

√
d). There are only finitely

many such x and y.
Second proof: At the end of the proof of Theorem 2.3 we showed that if x21 − dy21 =

M and x22 − dy22 = M with x1 ≡ x2 mod |M | and y1 ≡ y2 mod |M | then we can write

x2 + y2
√
d = (x1 + y1

√
d)(x + y

√
d) where x2 − dy2 = 1. Thus x1 + y1

√
d and x2 + y2

√
d

are Pell multiples. Replacing M with n, all integral solutions of x2− dy2 = n that have the
same reduction mod |n| are Pell multiples of each other, so there are at most n2 different
solutions of x2 − dy2 = n up to Pell multiples since there are at most n2 pairs of integers
mod |n|. �

The second proof of Corollary 3.5 is not as practical as the first because it is not com-
putationally effective. It doesn’t give a bounded range of x and y values to seek solutions
of x2 − dy2 = n up to Pell multiples. In particular, the second proof can’t be used to show
such an equation has no solutions while the first proof can, as we’ll see in Example 4.5.

Remark 3.6. For the negative Pell equation x2 − dy2 = −1, where d is a squarefree, the
existence of an integral solution requires no prime factor of d is 3 mod 4. Among squarefree
d > 0 not divisible by a prime that’s 3 mod 4, the proportion for which x2 − dy2 = −1 has
an integral solution is 1−

∏
odd j≥1(1− 1/2j) (around 58%) by a theorem of Koymans and

Pagano [2].
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4. Examples of Theorem 3.3

We now apply Theorem 3.3 in several examples to see how it works in practice. In all
cases but the last one we’ll have n > 0, so we’ll use the bound on |y′| at the end of the
theorem rather than the bound on |y′| in (3.1).

Example 4.1. We will describe all the solutions of x2 − 6y2 = 3 in integers. An obvious
solution is (3, 1) and its sign changes in coordinates (3,−1), (−3, 1), and (−3,−1). What
are all the integral solutions?

As a positive solution of a2 − 6b2 = 1 we will take (a, b) = (5, 2), so set u = 5 + 2
√

6.

By the end of Theorem 3.3, |y′| ≤
√
|n|(
√
u− 1/

√
u)/(2

√
d) =

√
3(
√
u− 1/

√
u)/(2

√
6) = 1,

which forces y′ to be 1, 0, or −1. Solutions to x′2 − 6y′2 = 3 with such y′-values are (±3, 1)
and (±3,−1). (In particular, the bound on |y′| at the end of Theorem 3.3 is optimal in this
case.) Thus the integral solutions of x2 − 6y2 = 3 have the form

x+y
√

6 = (±3+
√

6)(5+2
√

6)k = (±3+
√

6)uk or (±3−
√

6)(5+2
√

6)k = (±3−
√

6)uk,

where k ∈ Z. Up to multiplication by powers of u, there are four solutions:

3 +
√

6, −3 +
√

6, 3−
√

6, −3−
√

6.

These four solutions are related in pairs by powers of u: 3 −
√

6 = (3 +
√

6)u−1, and
−3 +

√
6 = (−3−

√
6)u−1. Therefore every solution of x2−6y2 = 3 in integers has the form

x+ y
√

6 = ±(3 +
√

6)(5 + 2
√

6)k

for some k ∈ Z and this list has no repetitions.
Taking k = 0, 1, 2, the values of (3+

√
6)(5+2

√
6)k are 3+

√
6, 27+11

√
6, and 267+109

√
6,

so the first three solutions of x2 − 6y2 = 3 in positive integers are (3, 1), (27, 11), and
(267, 109).

Example 4.2. We will completely solve x2 − 7y2 = 57 in integers.
One nontrivial solution of a2−7b2 = 1 is (8, 3), so set u = 8+3

√
7. By the end of Theorem

3.3, |y′| ≤
√

57(
√
u − 1/

√
u)/(2

√
7) ≈ 5.33. The integral solutions to x′2 − 7y′2 = 57 for

such y′ are (x′, y′) = (±8,±1) and (±13,±4).
The integral solutions of x2 − 7y2 = 57 therefore have the form

(4.1) x+ y
√

7 = ±(8±
√

7)uk or ± (13± 4
√

7)uk

with k ∈ Z. No pair of numbers among 13± 4
√

7 and 8±
√

7 has a ratio that is a power of
u (in fact, no pair has a ratio of the form m+ n

√
7 with m,n ∈ Z). Therefore (4.1) has no

repetitions.
The solution (x, y) = (20, 7) appears in (4.1) as 20 + 7

√
7 = (13− 4

√
7)u.

Example 4.3. We will completely solve x2 − 19y2 = 36 in integers. An obvious pair of
solutions is (±6, 0). What are the rest?

A nontrivial solution of a2 − 19b2 = 1 in positive integers is (170, 39) (this solution has
the smallest positive b), so let u = 170 + 39

√
19. By the end of Theorem 3.3, |y′| ≤√

36(
√
u − 1/

√
u)/(2

√
19) ≈ 12.65, so (x′, y′) = (±6, 0) and (±44,±10). Therefore the

integral solutions to x2 − 19y2 = 36 have the form

x+ y
√

19 = ±6uk or ± (44± 10
√

19)uk

with k ∈ Z. These solutions have no repetitions since no pair among 6, −6, 44 + 10
√

19,
and 44− 10

√
19 has a ratio that is a power of u.
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The solution (x, y) = (70, 16) appears as 70 + 16
√

7 = (44− 10
√

19)u.

Example 4.4. We will completely solve x2 − 103y2 = 2 in integers.
A solution of a2 − 103b2 = 1 in positive integers is (227528, 22419) (this solution has the

smallest positive b), so let u = 227528 + 22419
√

103. By the end of Theorem 3.3, |y′| ≤√
2(
√
u−1/

√
u)/(2

√
103) = 47. The only nonnegative y′ in this range where x′2−103y′2 = 2

for some x′ ∈ Z is y′ = 47, for which x′ = ±477. (As in Example 4.1, the bound on |y′| this
time is optimal.) Therefore the integral solutions to x2 − 103y2 = 2 have the form

x+ y
√

103 = ±(477± 47
√

103)uk

with k ∈ Z. These solutions have repetitions since 477− 47
√

103 = (477 + 47
√

103)/u,2 so
the integral solutions to x2 − 103y2 = 2 without repetitions are

x+ y
√

103 = ±(477 + 47
√

103)uk.

Example 4.5. We will show x2 − 37y2 = 11 has no solution in integers.
A solution of a2 − 37b2 = 1 is (73, 12), so let u = 73 + 12

√
37. By the end of Theorem

3.3, |y′| ≤
√

11(
√
u− 1/

√
u)/(2

√
37) ≈ 3.27. For no y′ in this range is x′2 − 37y′2 = 11 for

an x′ ∈ Z, so the equation x2 − 37y2 = 11 has no solution in Z.

Example 4.6. We will show x2 − 194y2 = −1 has no solution in integers.
A solution of a2 − 194b2 = 1 is (195, 14), so let u = 195 + 14

√
194. Using (3.1) since

n = −1 < 0, |y′| ≤
√

1(
√
u + 1/

√
u)/(2

√
194) ≈ 0.71. The only choice is y′ = 0, for

which the equation x′2 − 194y′2 = −1 has no integral solution x′. Therefore the equation
x2 − 194y2 = −1 has no solution in Z.

Example 4.7. We will show x2 − 733y2 = 383 has no solution in integers.
A solution of a2−733b2 = 1 is (195307849, 7213860),3 so let u = 195307849+7213860

√
733.

Since
√

383(
√
u − 1/

√
u)/(2

√
733) ≈ 7143.19, we use a computer to search through all y′

from 0 to 7143 and in no case is 733y′2 + 383 a perfect square. Therefore x2 − 733y2 = 383
has no solution in Z.

At the end of Remark 3.4 it was mentioned that the bounds |y′| ≤
√
|n|(
√
u+1/

√
u)/(2

√
d)

(for all n) and |y′| ≤
√
n(
√
u − 1/

√
u)/(2

√
d) (for n > 0) are not in practice substantially

better than the bound |y′| ≤
√
|n|(
√
u + 1)/(2

√
d). The table below illustrates this by

comparing such bounds for most of the examples in this section (those where n > 0).

Example x2 − dy2 = n
√
n(
√
u− 1/

√
u)/(2

√
d)
√
n(
√
u+ 1)/(2

√
d)

4.1 x2 − 6y2 = 3 1 1.46
4.2 x2 − 7y2 = 57 5.33 7.12
4.3 x2 − 19y2 = 36 12.65 13.37
4.4 x2 − 103y2 = 2 47 47.06
4.5 x2 − 37y2 = 11 3.27 3.56
4.7 x2 − 733y2 = 383 7143.19 7143.55

The website https://www.alpertron.com.ar/QUAD.HTM will give you all the solutions
to x2 − dy2 = n as a recursive sequence (xn, yn) or tell you there are no integral solutions.

2If x2 − dy2 = ±2, then the ratio (x + y
√
d)/(x− y

√
d) is a unit in Z[

√
d].

3Yes, this is the smallest solution in positive integers a and b.

https://www.alpertron.com.ar/QUAD.HTM
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Although Theorem 3.3 provides a general method to show x2−dy2 = n has no solutions,
the lack of solutions can often be proved more simply using congruences, as we saw in Part
I. For instance, x2 − 37y2 = 2 has no solution in Z since x2 − 37y2 ≡ 2 mod 4 has no
solution: the congruence is x2 − y2 ≡ 2 mod 4 and the squares mod 4 are 0 and 1, which
don’t differ by 2. Congruence methods do not always suffice to prove there are no solutions
in Z. The equations x2 − 37y2 = 11 are x2 − 194y2 = −1 that we met in Examples 4.5
and 4.6 are instances of this. They have no Z-solutions but they have rational solutions:
x2 − 37y2 = 11 has solutions (9/2, 1/2) and (32/3, 5/3), and x2 − 194y2 = −1 has solutions
(13/5, 1/5) and (5/13, 1/13). From these pairs of rational solutions it can be shown that
x2 − 37y2 ≡ 11 mod m and x2 − 194y2 ≡ −1 mod m are each solvable for all m ≥ 2.

As an exercise, use the method of Example 4.5 to show x2−37y2 = n has no solution in Z
for n = 3, 5, 6, 7, 8, 10. For n = 5, 6, 8, and 10 the lack of Z-solutions can be proved in a more
elementary way, as with n = 2, by showing there is no solution to either x2−37y2 ≡ n mod 4
or x2−37y2 ≡ n mod 37. However, that doesn’t work for n = 3 or n = 7, just as it didn’t for
n = 11: for all m ≥ 2 there is a solution to x2−37y2 ≡ 3 mod m and x2−37y2 ≡ 7 mod m.

5. Using Continued Fractions

In this final section, for readers familiar with continued fractions, we will explain how
Pell and generalized Pell equations can be solved with continued fractions. The connection
between continued fractions and generalized Pell equations is based on the next theorem.

Theorem 5.1. If positive integers x and y satisfy x2 − dy2 = n with |n| <
√
d then x/y is

a convergent to the continued fraction of
√
d.

Proof. Our argument is taken from [5, p. 204]. A basic theorem about continued fractions
is that for a real number α, if x and y are integers with y 6= 0 and |x/y − α| < 1/(2y2)
then x/y = p/q for some convergent p/q to α. (We can’t say x = p and y = q unless we
know gcd(x, y) = 1 and y > 0, and we’re not assured gcd(x, y) = 1 in general unless n is

squarefree.) Taking α =
√
d, if x2 − dy2 = n with |n| <

√
d and x, y > 0 then∣∣∣∣xy −√d

∣∣∣∣ =
|n|

y2(x/y +
√
d)
<

√
d

y2(x/y +
√
d)

=
1

y2(x/(y
√
d) + 1)

,

so to show |x/y −
√
d| < 1/(2y2), and hence x/y is a convergent to

√
d, it suffices to prove

x/(y
√
d) > 1, or equivalently x > y

√
d. If n > 0 then x2 − dy2 = n > 0 =⇒ x2 > dy2, so

x > y
√
d since x and y are positive.

If n < 0 then x2 − dy2 < 0 =⇒ x < y
√
d and our argument breaks down. Instead of

looking at x/y as an approximation to
√
d, look at y/x as an approximation to 1/

√
d:∣∣∣∣yx − 1√

d

∣∣∣∣ =
|n|√

dx(y
√
d+ x)

=
|n|

dx2(y/x+ 1/
√
d)
<

1

x2(
√
dy/x+ 1)

.

This is less than 1/(2x2) if
√
dy/x > 1, or equivalently x < y

√
d, which is true, so y/x is a

convergent to 1/
√
d. If

√
d = [a1, a2, a3, . . . ] then a1 ≥ 1 so 1/

√
d = [0, a1, a2, . . . ],

4 which

means the convergents to
√
d are the reciprocals of the convergents to 1/

√
d after the initial

convergent 0. Thus y/x being a convergent to 1/
√
d makes x/y a convergent to

√
d. �

4A continued fraction [a1, a2, a3, . . .] with a1 < 0 has a much more complicated rule for the continued
fraction of its reciprocal than when a1 ≥ 0: see https://kconrad.math.uconn.edu/blurbs/ugradnumthy/

contfrac-neg-invert.pdf. Fortunately we’re not dealing with a1 < 0 here.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/contfrac-neg-invert.pdf
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/contfrac-neg-invert.pdf
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Corollary 5.2. For each positive solution to x2 − dy2 = ±1, there is a convergent p/q to√
d such that x = p and y = q.

Proof. Apply Theorem 5.1 with n = ±1. In this case gcd(x, y) = 1 and y > 0, so x and y

are the numerator and denominator of a convergent to
√
d. �

This corollary was the basis for Lagrange’s proof that Pell’s equation x2 − dy2 = 1 has
a nontrivial solution. He proved

√
d has a periodic continued fraction and explained where

to find the positive solutions of x2 − dy2 = 1 among the convergents to
√
d.

Example 5.3. The continued fraction of
√

6 is [2, 2, 4], and the table of convergents below
suggests (and it is true) that every other convergent provides a solution to x2 − 6y2 = 1.

2 2 4 2 4 2 4 2 4 2 4
0 1 2 5 22 49 218 485 2158 4801 21362 47525 211462
1 0 1 2 9 20 89 198 881 1960 8721 19402 86329

x2− 6y2 −2 1 −2 1 −2 1 −2 1 −2 1 −2

Not only is the continued fraction of
√
d periodic, but also x2−dy2 when x/y runs through

the convergents to
√
d is periodic. All possible values of x2 − dy2 when x/y is a convergent

to
√
d occur before the last term in the second period of the continued fraction. This and

Theorem 5.1 let us determine all nonzero n with |n| <
√
d for which x2 − dy2 = n has a

solution. For instance,
√

13 = [3, 1, 1, 1, 1, 6] so we compute x2 − 13y2 in the table below
where x/y runs through convergents just before the second 6. Since

√
13 ≈ 3.6, the table

tells us the only n with |n| <
√

13 for which x2 − 13y2 = n is solvable in Z are ±1 and ±3.
(Although ±4 appears in the bottom row of the table, | ± 4| >

√
13.)

3 1 1 1 1 6 1 1 1 1
0 1 3 4 7 11 18 119 137 256 393 649
1 0 1 1 2 3 5 33 38 71 109 180

x2− 13y2 −4 3 −3 4 −1 4 −3 3 −4 1

If |n| >
√
d then solvability of x2−dy2 = n can be connected to solvability of x2−dy2 = n′

for some nonzero integer n′ where |n′| < |n|. Iterating this, eventually the case |n| <
√
d

is reached and we already explained how that can be settled using the continued fraction
of
√
d. Such a reduction process goes back to Lagrange [4, pp. 377–535] and was discussed

more recently in [5, pp. 210–213]. We’ll illustrate it with two examples that were treated
in the previous section using Theorem 3.3.

Example 5.4. Consider x2 − 6y2 = 3 with x, y ∈ Z. Note 3 >
√

6. Reducing the equation
mod 3, we get x2 ≡ 0 mod 3, so x ≡ 0 mod 3. This is equivalent to x = 3z for z ∈ Z, so

x2 − 6y2 = 3 ⇐⇒ 9z2 − 6y2 = 3

⇐⇒ 3z2 − 2y2 = 1

⇐⇒ −2y2 + (3z2 − 1) = 0.

Viewing the left side of the last equation as a quadratic polynomial in y, its discriminant

02 − 4 · (−2) · (3z2 − 1) = 4(6z2 − 2)
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is a perfect square, so 6z2− 2 = t2 for some t ∈ Z, Write this as t2− 6z2 = −2 and note t is

even. Conversely, if integers t and z fit t2−6z2 = −2 then x = 3z and y = ±
√

4t2/(2(−2)) =
±t/2 are integers that satisfy x2 − 6y2 = 3.

If t, z ∈ Z+ satisfy t2 − 6z2 = −2 then t/z is a convergent to
√

6 since | − 2| <
√

6. By
the table in Example 5.3 the first three solutions of t2 − 6z2 = −2 in Z+ are (t, z) = (2, 1),
(22, 9), and (218, 89), leading to (x, y) = (3z, t/2) = (3, 1), (27, 11), and (267, 109).

Example 5.5. Consider x2−37y2 = 11 with x, y ∈ Z. We have x2 ≡ 37y2 ≡ (2y)2 mod 11,
so x ≡ ±2y mod 11. Write x = ±2y + 11z with z ∈ Z. Then

x2 − 37y2 = 11 ⇐⇒ (±2y + 11z)2 − 37y2 = 11

⇐⇒ −33y2 ± 44yz + (121z2 − 11) = 0

⇐⇒ −3y2 ± 4yz + (11z2 − 1) = 0.

For the quadratic polynomial in y to be solvable in Z, its discriminant

(4z)2 − 4 · (−3) · (11z2 − 1) = 4(37z2 − 3)

is a perfect square, so 37z2 − 3 = t2 for some t ∈ Z. Write this as t2 − 37z2 = −3. All
steps are reversible, so if t2 − 37z2 = −3 and y in Z fits −3y2 ± 4yz + (11z2 − 1) = 0 then
(x, y) = (±2y + 11z, y) satisfies x2 − 37y2 = 11.

If t, z ∈ Z+ satisfy t2 − 37z2 = −3 then t/z is a convergent to
√

37 since | − 3| <
√

37.
Testing the convergents p/q of the first two periods of the continued fraction for

√
37, which

is [6, 12, 12, 12, . . . ], the only values of p2− 37q2 are ±1. Since −3 isn’t a value of p2− 37q2,
t2 − 37z2 = −3 has no solution in Z and thus x2 − 37y2 = 11 has no solution in Z.

Appendix A. Optimality of the bounds in Theorem 3.3

In Examples 4.1 and 4.4, the bound on |x′| in (3.1) and the bound on |y′| at the end of
Theorem 3.3 when n > 0 turned out to be the only solution in Z+ within the range of those
bounds:

• the first solution to x2 − 6y2 = 3 in Z+ is (x, y) = (3, 1), and in Example 4.1 with

u = 5 + 2
√

6,
√
n(
√
u+ 1/

√
u)/2 = 3 and

√
n(
√
u− 1/

√
u)/(2

√
d) = 1,

• the first solution to x2−103y2 = 2 in Z+ is (x, y) = (477, 47) and in Example 4.4 with

u = 227528+22419
√

103,
√
n(
√
u+1/

√
u)/2 = 477 and

√
n(
√
u−1/

√
u)/(2

√
d) = 47.

A third example is x2−23y2 = 2. The least unit greater than 1 in Z[
√

23] is u = 24+5
√

23,
with norm 1. Theorem 3.3 says integral solutions of x2 − 23y2 = 2 are powers of u times
solutions where |x| ≤

√
2(
√
u + 1/

√
u)/2 = 5 and |y| ≤

√
2(
√
u− 1/

√
u)/(2

√
23) = 1. The

only solution in that range in positive integers is (x, y) = (5, 1).
This naturally raises the question: are there infinitely many equations x2−dy2 = n where

the bounds on |x′| and |y′| from Theorem 3.3 for n > 0 are optimal? Yes!

Theorem A.1. For an integer m ≥ 2, let d = m2 − 2. The bounds on |x′| and |y′| in
Theorem 3.3 for the equation x2 − dy2 = 2 are |x′| ≤ m and |y′| ≤ 1, and the only solution
in positive integers within those bounds is (x′, y′) = (m, 1).

The family of equations x2− (m2−2)y2 = 2 has x2−23y2 = 2 as the special case m = 5.

Proof. The equation x2 − (m2 − 2)y2 = 2 has no integral solution when y = 0, and when
y = 1 we have x = m.
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For m ≥ 2, the smallest solution of a2 − (m2 − 2)b2 = 1 in positive integers is (a, b) =

(m2 − 1,m). Equivalently, the least unit of norm 1 that’s greater than 1 in Z[
√
m2 − 2] is

m2 − 1 + m
√
m2 − 2: when m = 2, the fundamental unit of Z[

√
2] is 1 +

√
2, with norm

−1, and (1 +
√

2)2 = 3 + 2
√

2 = m2 − 1 +m
√
m2 − 2, while when m ≥ 3, the fundamental

unit of Z[
√
m2 − 2] is m2 − 1 +m

√
m2 − 2 and it has norm 1. In Theorem 3.3, we can set

u = m2 − 1 +m
√
m2 − 2,

We will show the bounds from Theorem 3.3 for integral solutions of x2−(m2−2)y2 = 2 are
|x′| ≤ m and |y′| ≤ 1. That makes the bounds from Theorem 3.3 optimal since (i) (x′, y′) =
(m, 1) is a solution, (ii) there’s no solution when y′ = 0, and (iii) when x′2− (m2−2)y′2 = 2
and y′ > 1, we have x′2 ≥ 4(m2 − 2) + 2 > m2, so x′ > m.

To show the bounds on |x′| and |y′| from Theorem 3.3 are m and 1 means
√

2(
√
u+ 1/

√
u)

2
= m,

√
2(
√
u− 1/

√
u)

2
√
m2 − 2

= 1.

Since u > 1, these equations are true if the squares of both sides are true, so we will check

u+ 2 + 1/u

2
= m2,

u− 2 + 1/u

2(m2 − 2)
= 1.

Both equations are equivalent to u2−2(m2−1)u+1 = 0, and u is a root of t2−2(m2−1)t+1
by the quadratic formula. �

Theorem A.2. For an integer m ≥ 1, let d = 4m2 + 2. The bounds on |x′| and |y′| in
Theorem 3.3 for the equation x2 − dy2 = 2m2 + 1 are |x′| ≤ 2m2 + 1 and |y′| ≤ m, and
(x, y) = (2m2 + 1,m) is a solution.

The equation x2 − (4m2 + 2)y2 = 2m2 + 1 becomes x2 − 6y2 = 3 when m = 1.
In contrast to Theorem A.1, the smallest solution to x2 − (4m2 + 2)y2 = 2m2 + 1 in

positive integers might not be (x, y) = (2m2 + 1,m), but it does appear to be most of
the time. For 1 ≤ m ≤ 100, there is no solution in positive integers where y ≤ m − 1
with three exceptions: m = 11 ((x, y) = (27, 1)), m = 12 ((x, y) = (51, 2)), and m = 70
((x, y) = (297, 2) and a second solution (1683, 12)). It would be nice to have a proof that
for infinitely many m there is no solution in positive integers where y ≤ m− 1.

Proof. It is easy to check that (x, y) = (2m2+1,m) is a solution of x2−(4m2+2)y2 = 2m2+1.
View 4m2 + 2 as M2 + 2 for the even value M = 2m. For M ≥ 1, the fundamental

unit of Z[
√
M2 + 2] is M2 + 1 + M

√
M2 + 2 and it has norm 1, so the smallest solution

of a2 − (M2 + 2)b2 = 1 in positive integers is (a, b) = (M2 + 1,M). Letting M = 2m, in

Theorem 3.3 with d = M2 + 2 = 4m2 + 2, we can set u = (2m)2 + 1 + 2m
√

(2m)2 + 2 =

4m2 + 1 + 2m
√

4m2 + 2. In Theorem 3.3 we’ll show the bounds on |x′| and |y′| using u as
above are |x′| ≤ 2m2 + 1 and |y′| ≤ m:

√
2m2 + 1(

√
u+ 1/

√
u)

2
= 2m2 + 1,

√
2m2 + 1(

√
u− 1/

√
u)

2
√

4m2 + 2
= m.

Since u > 1, these equations are true if the squares of both sides are true, so we will check

u+ 2 +
1

u
= 4(2m2 + 1), u− 2 +

1

u
= 8m2.

Both equations are equivalent to u2−(8m2+2)u+1 = 0, and u is a root of t2−(8m2+2)t+1
by the quadratic formula. �
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Is there an infinite family of generalized Pell equations that includes x2− 103y2 = 2 as a
special case and where the bounds on |x′| and |y′| in Theorem 3.3 are (infinitely) often the
first solution in positive integers? Here is my only attempt at answering this. We’ll think
of 103 as m2 + 3 for m = 10. In terms of this m, the minimal solution (x, y) = (477, 47) has
the form (4m2 + 7m+ 7, 4m+ 7), and it’s straightforward to check

(4m2 + 7m+ 7)2 − (m2 + 3)(4m+ 7)2 = 8m2 − 70m− 98,

so we could view x2 − 103y2 = 2 as the special case of x2 − (m2 + 3)y2 = 8m2 − 70m− 98
when m = 10. Check 8m2− 70m− 98 > 0 for m ≥ 10 (the larger real root of 8t2− 70t− 98
is 9.97773 . . .).

For m = 10 we are in Example 4.4, where the bounds on |x′| and |y′| in Theorem 3.3 for
x2 − 103y2 = 2 are its first solution (477, 47).

For m = 11, we have m2 + 3 = 124, 8m2 − 70m − 98 = 100, and the fundamental unit
of Z[

√
124] is 4620799 + 414960

√
124, with norm 1. Using this unit as u, the bounds on

|x′| and |y′| for x2 − 124y2 = 100 in Theorem 3.3 are |x′| ≤ 15200 and |y′| ≤ 1365, but
(15200, 1365) is not the smallest solution in positive integers: two smaller solutions are
(134, 12) and (568, 51), with (4m2 + 7m+ 7, 4m+ 7) = (568, 51) when m = 11. (Of course
there is also the solution (x′, y′) = (10, 0).)

For m = 12, we have m2 + 3 = 147, 8m2 − 70m − 98 = 214, and the fundamental unit
of Z[

√
147] = Z[7

√
3] is 97 + 8

√
147, with norm 1. Using this unit as u, the bounds on

|x′| and |y′| for x2 − 147y2 = 214 in Theorem 3.3 are |x′| ≤ 102.401 . . . and |y′| ≤ 8.359 . . .
(not integers). The only positive integer solution of x2 − 147y2 = 214 in that range is
(x′, y′) = (19, 1), and the solution (x′, y′) = (4m2 + 7m + 7, 4m + 7) = (667, 55) is outside
that range. So in short, this attempt at fitting x2 − 103y2 = 2 into a nice infinite family
where the bounds in Theorem 3.3 are optimal appears to be a failure.
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