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1. Introduction

We will define the notion of congruent integers (with respect to a modulus) and develop
some basic ideas of modular arithmetic, which lets us carry out algebraic calculations on
integers with a systematic disregard for terms divisible by a certain number (called the
modulus). This form of “reduced algebra” is essential background for the mathematics of
computer science, coding theory, cryptography, primality testing, and much more.

2. Integer congruences

The following definition was introduced by Gauss in his Disquisitiones Arithmeticae
(Arithmetic Investigations) in 1801.

Definition 2.1 (Gauss). Let m be an integer. For a, b ∈ Z, we write

a ≡ b mod m

and say “a is congruent to b modulo m” if m | (a− b).

Example 2.2. Check 18 ≡ 4 mod 7, −20 ≡ 13 mod 11, and 19 ≡ 3 mod 2.

Remark 2.3. The parameter m is called the modulus, not the modulo. The symbol ≡ in
LaTeX is written as \equiv, but it is always pronounced “congruent,” never “equivalent”.
(The LaTeX command \cong is for the congruence symbol ∼= in elementary geometry.)

We have m ≡ 0 mod m, and more generally mk ≡ 0 mod m for any k ∈ Z. In fact,

a ≡ 0 mod m⇐⇒ m | a,
so the congruence relation includes the divisibility relation as a special case: multiples of m
are exactly the numbers that “look like 0” modulo m. Because multiples of m are congruent
to 0 modulo m, we will see that working with integers modulo m amounts to systematically
ignoring additions and subtractions by multiples of m in calculations.

Since a ≡ b mod m if and only if b = a+mk for some k ∈ Z, adjusting an integer modulo
m is the same as adding (or subtracting) multiples of m to it. Thus, if we want to find a
positive integer congruent to −18 mod 5, we can add a multiple of 5 to −18 until we go
positive. Adding 20 does the trick: −18 + 20 = 2, so −18 ≡ 2 mod 5 (check!).

There is a useful analogy between integers modulo m and angle measurements (in radians,
say). In both cases, the objects involved admit different representations, e.g., the angles 0,
2π, and −4π are the same, just as

2 ≡ 12 ≡ −13 mod 5.

Every angle can be put in “standard” form as a real number in the interval [0, 2π). There
is a similar convention for the “standard” representation of an integer modulo m using
remainders, as follows.
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Theorem 2.4. Let m ∈ Z be a nonzero integer. For each a ∈ Z, there is a unique r with
a ≡ r mod m and 0 ≤ r < |m|.

Proof. Using division with remainder in Z, there are q and r in Z such that

a = mq + r, 0 ≤ r < |m|.
Then m | (a− r), so a ≡ r mod m.

To show r is the unique number in the range {0, 1, . . . , |m| − 1} that is congruent to
a mod m, suppose two numbers in this range work:

a ≡ r mod m, a ≡ r′ mod m,

where 0 ≤ r, r′ < |m|. Then we have

a = r +mk, a = r′ +m`

for some k and ` in Z, so the remainders r and r′ have difference

r − r′ = m(`− k).

This is a multiple of m, and the bounds on r and r′ tell us |r − r′| < |m|. A multiple of m
has absolute value less than |m| only if it is 0, so r − r′ = 0, which means r′ = r. �

Example 2.5. Taking m = 2, every integer is congruent modulo 2 to exactly one of 0 and 1.
Saying n ≡ 0 mod 2 means n = 2k for some integer k, so n is even, and saying n ≡ 1 mod 2
means n = 2k + 1 for some integer k, so n is odd. We have a ≡ b mod 2 precisely when a
and b have the same parity: both are even or both are odd.

Example 2.6. Every integer is congruent mod 4 to exactly one of 0, 1, 2, or 3. Congruence
mod 4 is a refinement of congruence mod 2: even numbers are congruent to 0 or 2 mod 4 and
odd numbers are congruent to 1 or 3 mod 4. For instance, 10 ≡ 2 mod 4 and 19 ≡ 3 mod 4.

Congruence mod 4 is related to Master Locks. Every combination on a Master Lock is a
triple of numbers (a, b, c) where a, b, and c vary from 0 to 39. Each number has 40 choices,
with b 6= a and c 6= b (perhaps c = a). This means the number of combinations could be up
to 60840, but in fact the true number of combinations is a lot smaller: every combination
has c ≡ a mod 4 and b ≡ a+ 2 mod 4, so once some number in a combination is known the
other two numbers are each limited to 10 choices (among the 40 numbers in {0, 1, . . . , 39}
exactly 10 will be congruent to a particular value mod 4). Thus the real number of Master
Lock combinations is 40 · 102 = 4000.

Example 2.7. Taking m = 7, every integer is congruent modulo 7 to exactly one of
0, 1, 2, . . . , 6. The choice is the remainder when the integer is divided by 7. For instance,
20 ≡ 6 mod 7 and −32 ≡ 3 mod 7.

Definition 2.8. We call {0, 1, 2, . . . , |m|−1} the standard representatives for integers mod-
ulo m.

In practice m > 0, so the standard representatives modulo m are {0, 1, 2, . . . ,m− 1}. In
fact, congruence modulo m and modulo −m are the same relation (just look back at the
definition), so usually we never talk about negative moduli. Nevertheless, Theorem 2.4 is
stated for any nonzero modulus m.

By Theorem 2.4, there are |m| incongruent integers modulo m. Each integer is congruent
modulo m to a standard representative, just like any fraction can be written in a reduced
form. There are many other representatives, however, and this will be important!
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3. Modular Arithmetic

When we add and multiply fractions, we can change their representation (that is, use a
different numerator and denominator) and the results don’t change. A similar idea occurs
with addition and multiplication modulo m.

Theorem 3.1. If a ≡ b mod m and b ≡ c mod m then a ≡ c mod m.

Proof. By hypothesis, a − b = mk and b − c = m` for some integers k and `. Adding the
equations, a− c = m(k + `) and k + ` ∈ Z, so a ≡ c mod m. �

This result is called transitivity of congruences. We will usually use it quite often.
The following theorem is the key algebraic feature of congruences in Z: they behave well

under addition and multiplication.

Theorem 3.2. If a ≡ b mod m and c ≡ d mod m, then

a+ c ≡ b+ d mod m and ac ≡ bd mod m.

Proof. We want to show (a+ c)− (b+ d) and ac− bd are multiples of m. Write a = b+mk
and c = d+m` for k and ` in Z. Then

(a+ c)− (b+ d) = a− b+ c− d = m(k + `),

so a+ c ≡ b+ d mod m. For multiplication,

ac− bd = (b+mk)(d+m`)− bd
= m(kd+ b`+mk`),

so ac ≡ bd mod m. �

Example 3.3. Check 11 ≡ 5 mod 6, −2 ≡ 4 mod 6, and 11 · (−2) ≡ 5 · 4 mod 6.

Example 3.4. What is the standard representative for 172 mod 19? You could compute
172 = 289 and then divide 289 by 19 to find a remainder of 4, so 172 ≡ 4 mod 19. Another
way is to notice 17 ≡ −2 mod 19, so 172 ≡ (−2)2 ≡ 4 mod 19. That was quicker, and it
illustrates the meaning of multiplication being independent of the choice of representative.
Sometimes one representative can be more convenient than another.

Example 3.5. If we want to compute 104 mod 19, compute successive powers of 10 but
reduce modulo 19 each time the answer exceeds 19: using the formula 10k = 10 · 10k−1 and
writing ≡ for congruence modulo 19,

101 = 10, 102 = 100 ≡ 5, 103 ≡ 10 · 5 = 50 ≡ 12, 104 ≡ 10 · 12 = 120 ≡ 6.

Thus 104 ≡ 6 mod 19. Theorem 3.2 says this kind of procedure leads to the right answer,
since multiplication modulo 19 is independent of the choice of representatives, so we can
always replace a larger integer with a smaller representative of it modulo 19 without affecting
the results of (further) algebraic operations modulo 19.

Corollary 3.6. If a ≡ b mod m and k ∈ Z+ then ak ≡ bk mod m.

Proof. This follows from the second congruence in Theorem 3.2 using induction on k. Details
are left to the reader. �
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Remark 3.7. Do not try to extend Corollary 3.6 to fractional exponents until you have
much more experience in modular arithmetic. Extracting roots is not repeated multiplica-
tion, and extracting roots in modular arithmetic could be undefined or have unexpected
behavior compared with your experience extracting roots in R.

For example, in R all positive numbers are perfect squares, but x2 ≡ 2 mod 5 has no
solution (that is, no integer x satisfies that congruence). Positivity is really a meaningless
concept mod m: every integer is congruent to a positive integer and a negative integer mod
m (just add and subtract a suitably large multiple of m to the integer). There is no good
notion of ordering mod m.

In R you know x2 = y2 ⇒ x = ±y, but it is false that a2 ≡ b2 mod m⇒ a ≡ ±b mod m
in general. Consider 42 ≡ 12 mod 15 with 4 6≡ ±1 mod 15.

In R you are used to x3 = y3 ⇒ x = y. But 23 ≡ 13 mod 7 and 2 6≡ 1 mod 7.

When we add and multiply modulo m, we are carrying out modular arithmetic.

Theorem 3.8. If ax ≡ ay mod m and (a,m) = 1 then x ≡ y mod m.

Proof. We are told that m | (ax − ay), so m | a(x − y). Since also (a,m) = 1, by a
consequence of Bezout’s identity m | (x− y), so x ≡ y mod m. �

Example 3.9. The following interpretation of Theorem 3.8 was pointed out to me by
Nathaniel Harris. The table of integers below has rows listing 14 consecutive numbers at
a time. In each column, the multiples of 3 (in red) are 3 rows apart, the multiples of 5 (in
orange) are 5 rows apart, and the multiples of 9 (in blue) are 9 rows apart. Why is this?

1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154
155 156 157 158 159 160 161 162 163 164 165 166 167 168

The pattern is due to 3, 5, and 9 being relatively prime to 14: if (a, 14) = 1 and ax and
ay are in the same column, then ax ≡ ay mod 14, so x ≡ y mod 14 by Theorem 3.8. Thus
x and y differ by a multiple of 14, so the first multiple of a after ax in the same column as
ax is a(x + 14) = ax + 14a: that’s a rows after ax. For a = 2, a = 4, and a = 7, all not
relatively prime to 14, the nearest multiples of a in a column are less than a rows apart.

That addition and multiplication can be carried out on integers modulo m without having
the answer change (modulo m) if we replace an integer by a congruent integer is similar to
addition and multiplication of fractions being independent of the choice of numerator and
denominator for the fractions, e.g., 1/2 + 3/5 = 11/10 and 2/4 + 9/15 = 66/60 = 11/10.

Definition 3.10. The integers mod m under addition and multiplication is denoted Z/(m).

Other notations you may meet for Z/(m) are Zm and Z/mZ.
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Example 3.11. Here are the elements of Z/(5):

{. . . ,−15,−10,−5,0, 5, 10, 15, . . . },
{. . . ,−14,−9,−4,1, 6, 11, 16, . . . },
{. . . ,−13,−8,−3,2, 7, 12, 17, . . . },
{. . . ,−12,−7,−2,3, 8, 13, 18, . . . },
{. . . ,−11,−6,−1,4, 9, 14, 19, . . . }.

These five sets consist of integers congruent to each other mod 5 and are called congruence
classes mod 5. A representative from each congruence class usually stands for the whole
congruence class. In bold type is a set of representatives for the congruence classes mod 5:
0, 1, 2, 3, and 4. That is the standard choice. Another set of representatives is 5, 6, −3,
18, and −6 (since 5 ≡ 0 mod 5, 6 ≡ 1 mod 5, −3 ≡ 2 mod 5, and so on).

Integers in the same congruence class are like real numbers representing the same angle,
such as π and 3π. They’re different ways of representing the “same thing”. Just as π
and 3π are not the same in R but become “the same” in as angles, think that way about
congruence classes: 1 and 6 are not the same in Z but they are the same modulo 5.

4. Solving equations in Z/(m)

In school you learned how to solve polynomial equations like 2x+3 = 8 or x2−3x+1 = 0
by the “rules of algebra”: cancellation (if a 6= 0 and ax = ay then x = y), equals plus equals
are equal, and so on. This is in the setting of the real numbers.

We can also try to solve polynomial equations in modular arithmetic, where we consider
solutions to be different if they are incongruent. We will focus on the simplest case: a linear
congruence ax ≡ b mod m. Already in this case we will meet phenomena with no parallel
in the case of a real linear equation (Examples 4.2 and 4.3 below).

Example 4.1. Let’s try to solve 8x ≡ 1 mod 11. If there is an answer, it can be represented
by one of 0, 1, 2, . . . , 10, so let’s run through the possibilities:

x mod 11 0 1 2 3 4 5 6 7 8 9 10
8x mod 11 0 8 5 2 10 7 4 1 9 6 3

The only solution is 7 mod 11: 8 · 7 = 56 ≡ 1 mod 11.

That problem concerned finding an inverse for 8 modulo 11. We can find multiplicative
inverses for every nonzero element of Z/(11):

x 1 2 3 4 5 6 7 8 9 10

x−1 1 6 4 3 9 2 8 7 5 10

Check in each case that the product of the numbers in each column is 1 in Z/(11).

Example 4.2. Find a solution to 8x ≡ 1 mod 10. We run through the standard represen-
tatives for Z/(10), and find no answer:

x 0 1 2 3 4 5 6 7 8 9
8x 0 8 6 4 2 0 8 6 4 2

In retrospect, we can see a priori why there shouldn’t be an answer. If 8x ≡ 1 mod 10 for
some integer x, then we can lift the congruence up to Z in the form

8x+ 10y = 1

for some y ∈ Z. But this is absurd: 8x and 10y are even, so the left side is a multiple of 2
but the right side is not.
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Example 4.3. The linear congruence 6x + 1 ≡ 4 mod 15 has three solutions! In the
following table we can see the solutions are 3, 8, and 13:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
6x+ 1 1 7 13 4 10 1 7 13 4 10 1 7 13 4 10

These examples show us that a linear congruence ax ≡ b mod m may not behave like real
linear equations: there could be no solutions or multiple solutions. In particular, taking
b = 1, some nonzero elements of Z/(m) may have no multiplicative inverse.

The obstruction to inverting 8 in Z/(10) extends to other moduli as follows.

Theorem 4.4. For integers a and m, the following three conditions are equivalent:

• there is a solution x in Z to ax ≡ 1 mod m,
• there are solutions x and y in Z to ax+my = 1,
• a and m are relatively prime.

Proof. Suppose ax ≡ 1 mod m for some x ∈ Z. Then m | (1− ax), so there is some y ∈ Z
such that my = 1− ax, so

ax+my = 1.

This equation implies a and m are relatively prime since any common factor of a and m
divides ax + my. Finally, if a and m are relatively prime then by Bezout’s identity (a
consequence of back-substituting in Euclid’s algorithm) we can write ax+my = 1 for some
x and y in Z and reducing both sides mod m implies ax ≡ 1 mod m. �

This explains Example 4.2, since 8 and 10 have a common factor of 2. Similarly, there is
no solution to 3x ≡ 1 mod 15 (common factor 3) or 35x ≡ 1 mod 77 (common factor 7).

Example 4.5. Since (8, 11) = 1, 8 has a multiplicative inverse in Z/(11). We found it by
an exhaustive search in Example 4.1, but now we can do it by a more systematic approach.

Euclid’s algorithm

11 = 8 · 1 + 3

8 = 3 · 2 + 2

3 = 2 · 1 + 1

Backwards substitution

1 = 3− 2

= 3− (8− 3 · 2)

= 3 · 3− 8

= 3 · (11− 8)− 8

= 3 · 11− 8 · 4

Reducing the equation 1 = 3 · 11− 8 · 4 modulo 11,

8(−4) ≡ 1 mod 11.

The inverse of 8 in Z/(11) is −4, or equivalently 7.

To summarize: solving for x in the congruence ax ≡ 1 mod m is equivalent to solving
for integers x and y in the equation ax + my = 1 (be sure you see why!), and the latter
equation can be solved without any guesswork by reversing Euclid’s algorithm on a and m
when (a,m) = 1. If Euclid’s algorithm shows (a,m) 6= 1, then there is no solution.

In the real numbers, every nonzero number has a multiplicative inverse. This is not
generally true in modular arithmetic: if a 6≡ 0 mod m it need not follow that we can solve
ax ≡ 1 mod m. (For instance, 4 6≡ 0 mod 6 and 4 mod 6 has no multiplicative inverse.)
The correct test for invertibility in Z/(m) is (a,m) = 1, which is generally stronger than
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a 6≡ 0 mod m. Although invertibility in Z/(m) is usually not the same as being nonzero in
Z/(m), there is an important case when these two ideas agree: m is prime.

Corollary 4.6. For prime p, an integer a is invertible in Z/(p) if and only if a 6≡ 0 mod p.

Proof. If a mod p is invertible, then (a, p) = 1, so p does not divide a.
For the converse direction, suppose a 6≡ 0 mod p. We show (a, p) = 1. Since (a, p) is a

(positive) factor of p, and p is prime, (a, p) is either 1 or p. (The proof would break down
here if p were not prime.) Since p does not divide a, (a, p) 6= p, so (a, p) = 1. Therefore the
congruence ax ≡ 1 mod p has a solution. �

The upshot of Corollary 4.6 is that our intuition from algebra over R carries over quite
well to algebra over Z/(p): every nonzero number has a multiplicative inverse in the system.
But Z/(m) for composite m is more delicate.

Why do we want to invert integers in Z/(m)? (By “inverting” we always mean “inverting
multiplicatively.”) One reason is its connection to inverting matrices with entries in Z/(m).
Your experience with linear algebra in R may suggest a square matrix with entries in Z/(m)
is invertible whenever its determinant is nonzero in Z/(m), but that is false.

Example 4.7. We work with matrices having entries in Z/(10). Let A = ( 1 3
1 1 ). The

determinant of A is −2 ≡ 8 mod 10, so detA 6≡ 0 mod 10. However, there is no inverse for
A as a mod 10 matrix. We can see why by contradiction. Suppose there is an inverse matrix,
and call it B. Then AB ≡ ( 1 0

0 1 ) mod 10. (Congruence of matrices means congruence of
corresponding matrix entries on both sides.) Writing B = ( x y

z t ), we compute AB to get

( x+3z y+3t
x+z y+t ) ≡ ( 1 0

0 1 ) mod 10. Then x + 3z ≡ 1 mod 10 and x + z ≡ 0 mod 10. The second
congruence says x ≡ −z mod 10, and replacing x with −z in the first congruence yields
2z ≡ 1 mod 10. But that’s absurd: 2z is even and 1 is odd, so 2z 6≡ 1 mod 10. (Said
differently, if 2z ≡ 1 mod 10 then 2z = 1 + 10y for some integer y, so 2z − 10y = 1, but the
left side is even and 1 is not even.)

As a real matrix, A is invertible and A−1 = (
−1/2 3/2
1/2 −1/2 ). This inverse makes no sense if

we try to reduce it modulo 10 (what is 1/2 mod 10?!?), and that suggests there should be
a problem if we try to invert A as a mod 10 matrix.

Let’s look at determinants in modular arithmetic. Suppose n × n matrices A and B
satisfy AB ≡ In mod m. Taking determinants of both sides tells us (by Theorem 3.2) that

(detA)(detB) ≡ 1 mod m,

so detA is invertible in Z/(m). Invertibility of detA in Z/(m) is usually stronger than
detA 6≡ 0 mod m. For instance, the 2 × 2 matrix A in Example 4.7 has determinant
8 mod 10, which is not invertible. Thus A is not invertible mod 10. That is an easier way
to see A is not invertible than the calculations in Example 4.7!

Example 4.8. Let m = 14 and A = ( 1 4
3 2 ) as a matrix with entries in Z/(14). The

determinant of A is 2− 12 = −10 ≡ 4 mod 14, which is not invertible. Even though A has
a nonzero determinant, there is no matrix inverse for A over Z/(14).

We now see that we have to be able to recognize invertible elements of Z/(m) before
we can recognize invertible matrices over Z/(m), because an invertible matrix will have an
invertible determinant. If we want to do linear algebra over Z/(m) then we need Euclid’s
algorithm (and Bezout’s identity) to invert determinants.
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