MODULAR ARITHMETIC (SHORT VERSION)

KEITH CONRAD

1. INTRODUCTION

We will define the notion of congruent integers (with respect to a modulus) and develop
some basic ideas of modular arithmetic, which lets us carry out algebraic calculations on
integers with a systematic disregard for terms divisible by a certain number (called the
modulus). This form of “reduced algebra” is essential background for the mathematics of
computer science, coding theory, cryptography, primality testing, and much more.

2. INTEGER CONGRUENCES

The following definition was introduced by Gauss in his Disquisitiones Arithmeticae
(Arithmetic Investigations) in 1801.

Definition 2.1 (Gauss). Let m be an integer. For a,b € Z, we write
a =bmodm
and say “a is congruent to b modulo m” if m | (a — b).

Example 2.2. Check 18 =4 mod 7, —20 = 13 mod 11, and 19 = 3 mod 2.

Remark 2.3. The parameter m is called the modulus, not the modulo. The symbol = in
LaTeX is written as \equiv, but it is always pronounced “congruent,” never “equivalent”.
(The LaTeX command \cong is for the congruence symbol 2 in elementary geometry.)

We have m = 0 mod m, and more generally mk = 0 mod m for any k£ € Z. In fact,
a =0mod m <= m| a,

so the congruence relation includes the divisibility relation as a special case: multiples of m
are exactly the numbers that “look like 0” modulo m. Because multiples of m are congruent
to 0 modulo m, we will see that working with integers modulo m amounts to systematically
ignoring additions and subtractions by multiples of m in calculations.

Since a = b mod m if and only if b = a+mk for some k € Z, adjusting an integer modulo
m is the same as adding (or subtracting) multiples of m to it. Thus, if we want to find a
positive integer congruent to —18 mod 5, we can add a multiple of 5 to —18 until we go
positive. Adding 20 does the trick: —18 420 = 2, so —18 = 2 mod 5 (check!).

There is a useful analogy between integers modulo m and angle measurements (in radians,
say). In both cases, the objects involved admit different representations, e.g., the angles 0,
27, and —4m are the same, just as

2=12 = —13 mod 5.

Every angle can be put in “standard” form as a real number in the interval [0,27). There
is a similar convention for the “standard” representation of an integer modulo m using

remainders, as follows.
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Theorem 2.4. Let m € Z be a nonzero integer. For each a € Z, there is a unique r with
a=rmodm and 0 <r < |m|.

Proof. Using division with remainder in Z, there are ¢ and r in Z such that
a=mq+r, 0<r<|ml.

Then m | (a —r), so a = r mod m.
To show r is the unique number in the range {0,1,...,|m| — 1} that is congruent to
a mod m, suppose two numbers in this range work:

a=rmodm, a=1 modm,
where 0 < 7,7 < |m|. Then we have
a=r+mk, a=1+ml
for some k and ¢ in Z, so the remainders r and r’ have difference
r—r' =m(l—k).

This is a multiple of m, and the bounds on r and 7’ tell us |r — /| < |m|. A multiple of m
has absolute value less than |m| only if it is 0, so » — r = 0, which means r’ = r. O

Example 2.5. Taking m = 2, every integer is congruent modulo 2 to exactly one of 0 and 1.
Saying n = 0 mod 2 means n = 2k for some integer k, so n is even, and saying n = 1 mod 2
means n = 2k + 1 for some integer k, so n is odd. We have a = b mod 2 precisely when a
and b have the same parity: both are even or both are odd.

Example 2.6. Every integer is congruent mod 4 to exactly one of 0, 1, 2, or 3. Congruence
mod 4 is a refinement of congruence mod 2: even numbers are congruent to 0 or 2 mod 4 and
odd numbers are congruent to 1 or 3 mod 4. For instance, 10 = 2 mod 4 and 19 = 3 mod 4.

Congruence mod 4 is related to Master Locks. Every combination on a Master Lock is a
triple of numbers (a, b, ¢) where a, b, and ¢ vary from 0 to 39. Each number has 40 choices,
with b # a and ¢ # b (perhaps ¢ = a). This means the number of combinations could be up
to 60840, but in fact the true number of combinations is a lot smaller: every combination
has ¢ = a mod 4 and b = a + 2 mod 4, so once some number in a combination is known the
other two numbers are each limited to 10 choices (among the 40 numbers in {0,1,...,39}
exactly 10 will be congruent to a particular value mod 4). Thus the real number of Master
Lock combinations is 40 - 10? = 4000.

Example 2.7. Taking m = 7, every integer is congruent modulo 7 to exactly one of
0,1,2,...,6. The choice is the remainder when the integer is divided by 7. For instance,
20 =6 mod 7 and —32 = 3 mod 7.

Definition 2.8. We call {0,1,2,...,|m|—1} the standard representatives for integers mod-
ulo m.
In practice m > 0, so the standard representatives modulo m are {0,1,2,...,m —1}. In

fact, congruence modulo m and modulo —m are the same relation (just look back at the
definition), so usually we never talk about negative moduli. Nevertheless, Theorem 2.4 is
stated for any nonzero modulus m.

By Theorem 2.4, there are |m| incongruent integers modulo m. Each integer is congruent
modulo m to a standard representative, just like any fraction can be written in a reduced
form. There are many other representatives, however, and this will be important!



MODULAR ARITHMETIC (SHORT VERSION) 3

3. MODULAR ARITHMETIC

When we add and multiply fractions, we can change their representation (that is, use a
different numerator and denominator) and the results don’t change. A similar idea occurs
with addition and multiplication modulo m.

Theorem 3.1. If a = bmod m and b = ¢ mod m then a = ¢ mod m.

Proof. By hypothesis, a — b = mk and b — ¢ = m/f for some integers k and ¢. Adding the
equations, a —c =m(k +{) and k+ ¢ € Z, so a = ¢ mod m. O

This result is called transitivity of congruences. We will usually use it quite often.
The following theorem is the key algebraic feature of congruences in Z: they behave well
under addition and multiplication.

Theorem 3.2. If a = bmod m and ¢ = d mod m, then
a+c=b+dmodm and ac = bd mod m.

Proof. We want to show (a+ ¢) — (b+d) and ac — bd are multiples of m. Write a = b+ mk
and ¢ = d + m/{ for k and ¢ in Z. Then

(a+c)—(b+d)=a—-b+c—d=m(k+ 1),
so a + ¢ = b+ d mod m. For multiplication,

ac—bd = (b+mk)(d+ml)—bd
= m(kd + bl + mke),

so ac = bd mod m. g
Example 3.3. Check 11 =5 mod 6, —2 = 4 mod 6, and 11 - (—2) =5 -4 mod 6.

Example 3.4. What is the standard representative for 172 mod 197 You could compute
17?2 = 289 and then divide 289 by 19 to find a remainder of 4, so 172 = 4 mod 19. Another
way is to notice 17 = —2 mod 19, so 172 = (—2)? = 4 mod 19. That was quicker, and it
illustrates the meaning of multiplication being independent of the choice of representative.
Sometimes one representative can be more convenient than another.

Example 3.5. If we want to compute 10* mod 19, compute successive powers of 10 but
reduce modulo 19 each time the answer exceeds 19: using the formula 10* = 10-10*~! and
writing = for congruence modulo 19,

10" =10, 102 =100=5, 10°=10-5=50=12, 10* =10-12 = 120 = 6.

Thus 10* = 6 mod 19. Theorem 3.2 says this kind of procedure leads to the right answer,
since multiplication modulo 19 is independent of the choice of representatives, so we can
always replace a larger integer with a smaller representative of it modulo 19 without affecting
the results of (further) algebraic operations modulo 19.

Corollary 3.6. If a = bmod m and k € Z* then a* = b* mod m.

Proof. This follows from the second congruence in Theorem 3.2 using induction on k. Details
are left to the reader. 0
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Remark 3.7. Do not try to extend Corollary 3.6 to fractional exponents until you have
much more experience in modular arithmetic. Extracting roots is not repeated multiplica-
tion, and extracting roots in modular arithmetic could be undefined or have unexpected
behavior compared with your experience extracting roots in R.

For example, in R all positive numbers are perfect squares, but > = 2 mod 5 has no
solution (that is, no integer x satisfies that congruence). Positivity is really a meaningless
concept mod m: every integer is congruent to a positive integer and a negative integer mod
m (just add and subtract a suitably large multiple of m to the integer). There is no good
notion of ordering mod m.

In R you know 22 = y? = z = 4y, but it is false that a? = > mod m = a = £b mod m
in general. Consider 42 = 12 mod 15 with 4 #Z 41 mod 15.

In R you are used to 2° = > = z = y. But 22 = 13 mod 7 and 2 # 1 mod 7.

When we add and multiply modulo m, we are carrying out modular arithmetic.

That addition and multiplication can be carried out on integers modulo m without having
the answer change (modulo m) if we replace an integer by a congruent integer is similar to
addition and multiplication of fractions being independent of the choice of numerator and
denominator for the fractions, e.g., 1/2+3/5 =11/10 and 2/4 4 9/15 = 66/60 = 11/10.

Definition 3.8. The integers modulo m under addition and multiplication is written
Other notations you may meet for Z/(m) are Z,, and Z/mZ.

Example 3.9. Here are the elements of Z/(5):
{...,—15,-10,-5,0,5,10,15, ...},
{...,—14,-9,-4,1,6,11,16,... },
{...,—13,-8,-3,2,7,12,17,... },
{...,—12,-7,-2,3,8,13,18,...},
{...,-11,-6,—1,4,9,14,19,... }.

These five sets each consist of all the integers congruent to each other modulo 5, so each set

is called a congruence class (modulo 5). In practice we often use one representative from

each congruence class to stand for the whole congruence class. In bold type is one set of

representatives for the congruence classes modulo 5 — the choice 0, 1, 2, 3, and 4 — which is

the standard one. Another set of representatives is 5, 6, —3, 18, and —6 (since 5 = 0 mod 5,

6 =1 mod 5, —3 =2 mod 5, and so on).

Different integers in the same congruence class are like different real numbers representing
the same angle, such as m and 3w. They’re different ways of representing the “same thing”.
Just as m and 37 are not the same as real numbers but become “the same” in the setting

of angles, we need to think this way about congruence classes: 1 and 6 are not the same in
Z but they are the same when we think modulo 5.

4. SOLVING EQUATIONS IN Z/(m)

In school you solve equations like 22 +3 = 8 or 22 — 3z 41 = 0 by the “rules of algebra”:
cancellation (if a # 0 and ax = ay then x = y), equals plus equals are equal, and so on.
This is in the setting of equations over the real numbers.

We can also try to solve polynomial equations in modular arithmetic, where we consider
solutions to be different if they are incongruent. We will focus on the simplest case: a linear
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congruence ax = b mod m. Already in this case we will meet phenomena with no parallel
in the case of a real linear equation (Examples 4.2 and 4.3 below).

Example 4.1. Let’s try to solve 8¢ = 1 mod 11. If there is an answer, it can be represented
by one of 0,1,2,...,10, so we can just run through the possibilities:
zmodll [0 1 2 3 4 56 7 8 9 10
8tmod11[0 8 5 2 10 7 4 1 9 6 3
The only solution is 7 mod 11: 8-7 = 56 = 1 mod 11. This means 7 and 8 are multiplicative
inverses in Z/(11).
This problem concerns finding an inverse for 8 modulo 11. We can find multiplicative
inverses for every nonzero element of Z/(11):
z |1 2345678910
1 [1 6439287510

Check in each case that the product of the numbers in each column is 1 in Z/(11).

Example 4.2. Find a solution to 8z = 1 mod 10. We run through the standard represen-
tatives for Z/(10), and find no answer:

][0 1234567809
8z[0 8 6 4 2 0 8 6 4 2

In retrospect, we can see a priori why there shouldn’t be an answer. If 82 = 1 mod 10 for
some integer x, then we can lift the congruence up to Z in the form

8+ 10y =1

for some y € Z. But this is absurd: 8z and 10y are even, so the left side is a multiple of 2
but the right side is not.

Example 4.3. The linear congruence 6z + 1 = 4 mod 15 has three solutions! In the
following table we can see the solutions are 3, 8, and 13:
¢ |01 2 3 4 56 7 8 9 10 11 12 13 14
6r+1[1 7 13 4 10 1 7 13 4 10 1 7 13 4 10

These examples show us that a linear congruence az = b mod m may not behave like real
linear equations: there could be no solutions or multiple solutions. In particular, taking
b = 1, some nonzero elements of Z/(m) may have no multiplicative inverse.

The obstruction to inverting 8 in Z/(10) extends to other moduli in the following way.

Theorem 4.4. For integers a and m, the following three conditions are equivalent:

e there is a solution x in Z to ax = 1 mod m,
e there are solutions x and y in Z to ax +my = 1,
e a and m are relatively prime.

Proof. Suppose ax = 1 mod m for some z € Z. Then m | (1 — az), so there is some y € Z
such that my =1 — ax, so

ar +my = 1.
This equation implies a and m are relatively prime since any common factor of a and m
divides ax + my. Finally, if a and m are relatively prime then by Bezout’s identity (a
consequence of back-substituting in Euclid’s algorithm) we can write ax +my = 1 for some
z and y in Z and reducing both sides mod m implies ax = 1 mod m. ([l
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This explains Example 4.2, since 8 and 10 have a common factor of 2. Similarly, we see at
a glance that there is no solution to 3z = 1 mod 15 (common factor of 3) or 35z = 1 mod 77
(common factor of 7).

Example 4.5. Since (8,11) = 1, 8 has a multiplicative inverse in Z/(11). We found it by
an exhaustive search in Example 4.1, but now we can do it by a more systematic approach:
11 = 8-1+3,

= 3-2+2,
3 = 2-141,

SO
1 = 3-2
—(8—-3-2)
-3—-8
(11 -8)—38
= 3-11-8-4.

Reducing the equation 1 =3 -11 — 8 -4 modulo 11,

8(—4) =1 mod 11.

The inverse of 8 in Z/(11) is —4, or equivalently 7.

3
3
3
3

To summarize: solving for x in the congruence ax = 1 mod m is equivalent to solving
for integers x and y in the equation ax + my = 1 (be sure you see why!), and the latter
equation can be solved without any guesswork by reversing Euclid’s algorithm on a and m
when (a,m) = 1. If Euclid’s algorithm shows (a,m) # 1, then there is no solution.

In the real numbers, every nonzero number has a multiplicative inverse. This is not
generally true in modular arithmetic: if a Z 0 mod m it need not follow that we can solve
ax = 1 mod m. (For instance, 4 # 0 mod 6 and 4 mod 6 has no multiplicative inverse.)
The correct test for invertibility in Z/(m) is (a,m) = 1, which is generally stronger than
a #Z 0 mod m. Although invertibility in Z/(m) is usually not the same as being nonzero in
Z/(m), there is an important case when these two ideas agree: m is prime.

Corollary 4.6. For a prime number p, an integer a is invertible in Z/(p) if and only if
a # 0 mod p.

Proof. If a mod p is invertible, then (a,p) = 1, so p does not divide a.

For the converse direction, suppose a # 0 mod p. We show (a,p) = 1. Since (a,p) is a
(positive) factor of p, and p is prime, (a,p) is either 1 or p. (The proof would break down
here if p were not prime.) Since p does not divide a, (a,p) # p, so (a,p) = 1. Therefore the
congruence ax = 1 mod p has a solution. O

The upshot of Corollary 4.6 is that our intuition from algebra over R carries over quite
well to algebra over Z/(p): every nonzero number has a multiplicative inverse in the system.
This is not true of Z/(m) for composite m, and that is why modular arithmetic in a
composite modulus requires more care.

Why should we care about inverting integers in Z/(m)? (By “inverting” we always
mean “inverting multiplicatively.”) One reason is its connection to inverting matrices with
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entries in Z/(m). Given a square n x n matrix A with entries in Z/(m), your experience
with linear algebra in R may suggest a matrix with entries in Z/(m) is invertible whenever
its determinant is nonzero in Z/(m). But this is false.

Example 4.7. We work with matrices having entries in Z/(10). Let A = (13). The
determinant of A is —2 = 8 mod 10, so det A # 0 mod 10. However, there is no inverse for
A as amod 10 matrix. We can see why by contradiction. Suppose there is an inverse matrix,
and call it B. Then AB = (}9) mod 10. (Congruence of matrices means congruence of
corresponding matrix entries on both sides.) Writing B = (7 Y), we compute AB to get
(ﬁfzz yyf’tt) = (§9) mod 10. Then z 4+ 3z = 1 mod 10 and z 4+ z = 0 mod 10. The second
congruence says r = —z mod 10, and replacing x with —z in the first congruence yields
2z = 1 mod 10. But that’s absurd: 2z is even and 1 is odd, so 2z # 1 mod 10. (Said
differently, if 2z = 1 mod 10 then 2z = 1 4 10y for some integer y, so 2z — 10y = 1, but the
left side is even and 1 is not even.)

As a real matrix, A is invertible and A=! = (_11 //22 _31//22 ). This inverse makes no sense if

we try to reduce it modulo 10 (what is 1/2 mod 10?!7), and that suggests there should be
a problem if we try to invert A as a mod 10 matrix.

Let’s look at determinants behave in modular arithmetic. Suppose n X n matrices A and
B satisfy AB = I, mod m. Taking determinants of both sides tells us (by Theorem 3.2)
that

(det A)(det B) = 1 mod m,

so det A is invertible in Z/(m). Invertibility of det A in Z/(m) is usually a stronger condition
than det A £ 0 mod m. For instance, the 2 x 2 matrix A in Example 4.7 has determinant
8 mod 10, which is not invertible. Thus the matrix A is not invertible mod 10. That sure
is an easier way to see A is not invertible than the tedious matrix calculations in Example

4.7!

Example 4.8. Let m = 14 and A = (13) as a matrix with entries in Z/(14). The
determinant of A is 2 — 12 = —10 = 4 mod 14, which is not invertible. Even though A has
a nonzero determinant, there is no matrix inverse for A over Z/(14).

We now see that we have to be able to recognize invertible elements of Z/(m) before
we can recognize invertible matrices over Z/(m), because an invertible matrix will have an
invertible determinant. If we want to do linear algebra over Z/(m) then we need Euclid’s
algorithm (and Bezout’s identity) to invert determinants.
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