WHEN IS -1 A SQUARE MODULO PRIMES?

KEITH CONRAD

When p is an odd prime, there are two natural ways to pair off nonzero numbers mod p:
pair each number with its multiplicative inverse or with its additive inverse. Using both of
these ideas will lead to a proof of the following pattern for when —1 mod p is a square:

—1l=0Omodp<=p=2orp=1modA4.
Theorem 1 (Wilson). For every prime p, (p —1)! = —1 mod p.

Proof. In the product

(p—!'=1-2-3---(p—2)(p—1)
on the right side the factors run through all the nonzero numbers mod p. For each &k from
1 to p— 1, there’s a k¥’ from 1 to p — 1 such that k¥’ = 1 mod p. Let’s pair together
multiplicative inverses mod p. As long as k' # k, both k and k' are in the product for
(p — 1)! and they cancel each other mod p (each is the other’s multiplicative inverse). The
only time there isn’t cancellation of k by & in (p — 1)! mod p is when k' = k, which means
k? = 1 mod p. That is the same as k = 1 mod p (since p is prime), so k = 1 and k = p—1.
Therefore

p—D!'=1-(p—1)=—-1modp.

Example 2. When p =7,
6!=1-2-3-4-5-6=1-(2-4)(3-5) -6,

where we collected inverse pairs mod 7: 2 and 4, and 3 and 5. Reducing the product modulo
7, terms cancel and we're left with 6! =1-(1)(1)-6 =6 = —1 mod 7.

The conclusion of Wilson’s theorem is always false if the prime p is replaced by a composite
number n: when n is composite we can’t have (n — 1)! = —1 mod n, because if (n — 1)! =
—1 mod n then every integer from 1 to n — 1 is invertible mod n, which forces n to be
prime.! Thus we have a primality test:

(1) n > 1 is prime if and only if (n —1)! = —1 mod n.

At first this might seem superior to the Fermat test, which can often detect composites but
doesn’t ever prove primality. However, (1) is useless for large n because there is no known
fast way of computing (n — 1)! mod n, unlike the fast way of computing a”~! mod n for the
Fermat test by writing the exponent n — 1 in base 2 to reduce the exponentiation mod n to
repeated squaring mod n.

We now put Wilson’s theorem to work.

Theorem 3. For every prime p # 2, —1 = O mod p if and only if p = 1 mod 4.

n fact, if n is composite then (n —1)! =0 mod n when n # 4 while (4 — 1)! =2 mod 4.
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Proof. First suppose —1 = [0 mod p, say —1 = 2 mod p. We don’t know much about z, so
how can we use z to prove p = 1 mod 47 Raise both sides to the (p — 1)/2-power:

(_1)(P—1)/2 = (x2)(¥’—1)/2 = 2”71 mod p.

Since  #Z 0 mod p (why?), we know 2P~! = 1 mod p by Fermat’s little theorem since p is
prime. Thus

(2) (=1)P=1/2 = 1 mod p.

The left side is a power of —1, so it is either 1 or —1. Since p > 2 we have —1 Z 1 mod p,
so (2) tells us that (—1)®~1/2 = 1 in Z. Therefore the exponent (p — 1)/2 is even, say
(p—1)/2 = 2k for some k € Z. Thus p =1+ 4k, so p = 1 mod 4.

For the converse direction, assume p = 1 mod 4. To prove —1 = [0 mod p we will use
Wilson’s theorem: —1 = (p—1)!=1-2-...-(p—2)(p — 1) mod p. Let’s pair together
additive inverses mod p: write numbers in the second half of the product as negatives of
numbers in the first half, modulo p: p — k = —k mod p. Then

w0 = 2 (P5) (BE) -2 -1

o (550 (- (252)) 2 moay

(p—1)/2 terms

— (P21 <p;1> (p; 1) - (2)(1) mod p

(e <(p;1)')2 mod p.

Since (p — 1)! = —1 mod p by Wilson’s, theorem, this congruence says

(3) — 1= (-1 (<p;1> !)2 mod p.

So far this is valid for all odd primes p. If p = 1 mod 4 then (p—1)/2 is even, so (—1)P~1/2 =
1 and the congruence (3) tells us that —1 = 22 mod p where x = ((p — 1)/2)!. O

Example 4. The first three primes that are 1 mod 4 are 5, 13, and 17. We have

—1 13—-1
<52>!:2152m0d5, (32 )!:6!:72055m0d13,

and

2

and you can verify that these numbers square to —1 mod p in each case.

17 -1
< )! = 8! = 40320 = 13 mod 17,

Remark 5. If p = 3 mod 4 then (3) implies (((p — 1)/2)!)? = 1 mod p, so ((p — 1)/2)! =
+1 mod p. There is not a simple rule that predicts when ((p —1)/2)! mod pis 1 or —1. See
https://mathoverflow.net/questions/16141/primes-p-such-that-p-1-2-1-mod-p.
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Theorem 3 is not true for odd composite n > 1: the condition —1 = [ mod n is not
equivalent to the condition n = 1 mod 4. For example, 21 = 1 mod 4 but —1 # [0 mod 21.
However, one direction is true: if —1 = [0 mod n then n = 1 mod 4. Indeed, for each prime
factor p of n, p # 2 and

—IEDmodnz—lzﬂmodegspz1mod4.

Since n is the product of its prime factors, we get n = 1 mod 4.

APPENDIX A. COMMENTS ON WILSON’S THEOREM

Wilson’s theorem is named after John Wilson, who conjectured the result as a student.
His conjecture was published in the book Meditationes Algebraicae written (in Latin) by his
teacher Edward Waring in 1770. The page containing the statement of Wilson’s theorem
can be found in [1, Figure 2] (see the paragraph that begins “Sit n numerus primus”).
Lower down on the same page is the following claim by Waring, which shows how limited
his perspective was on number theory: “Proofs of propositions of this kind are made more
difficult by the fact that one can’t imagine a convenient notation for prime numbers.” Other
mathematicians were more imaginative than Waring: the first proof of Wilson’s theorem was
given by Lagrange [3] in 1771, using polynomials mod p, and Lagrange also observed that
the congruence (n — 1)! = —1 mod n only holds for prime n. In 1801, Gauss [2, Article 77]
proved Wilson’s theorem by the argument we gave that pairs together multiplicative inverses
modulo p, and he criticized Waring’s comment about the lack of notation for primes, saying
[2, Article 76] “In our opinion, truths of this kind should be drawn from notions rather
than from notations.” Gauss also proved a generalization of Wilson’s theorem to all moduli
m > 2 using the product of the units mod m:

H {—1 mod m, if 22 = 1 mod m has at most two solutions,
a=

1 mod m, if 2 =1 mod m has more than two solutions.
a€(Z/(m))*

The first condition occurs not only when m is prime. It also happens when m is 4, an odd
prime power, and twice an odd prime power.

While (p — 1)! = —1 mod p for all primes p, it is rare that (p — 1)! = —1 mod p?. Such p
are called Wilson primes and the only examples up to 103 are 5, 13, and 563. Probabilistic
heuristics suggest there should be infinitely many such primes, and also that they should be
extremely rare. Concerning the infinitude of Wilson primes, Harry Vandiver [4] once wrote
“This question seems to me to be of such a character that if I should come to life any time
after my death and some mathematician were to tell me that it had been definitely settled,
I think I would immediately drop dead again.”
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