THE MILLER-RABIN TEST

KEITH CONRAD

1. Introduction

The Miller-Rabin test is the most widely used probabilistic primality test. For odd composite $n>1$, over 75% of numbers from to 2 to $n-1$ are witnesses in the Miller-Rabin test for n. We will describe the test, prove the 75% lower bound (an improvement on the 50% lower bound in the Solovay-Strassen test. ${ }^{1}$), and in an appendix use the main idea in the test to show factoring n into primes and computing $\varphi(n)$ are similar computational tasks.

2. The Miller-Rabin test

The Fermat and Solovay-Strassen tests are each based on translating a congruence modulo prime numbers, either Fermat's little theorem or Euler's congruence, over to the setting of composite numbers and hoping to make it fail there. The Miller-Rabin test uses a similar idea, but involves a system of congruences.

For an odd integer $n>1$, factor out the largest power of 2 from $n-1$, say $n-1=2^{e} k$ where $e \geq 1$ and k is odd. This meaning for e and k will be used throughout. The polynomial $x^{n-1}-1=x^{2^{e} k}-1$ can be factored repeatedly as often as we have powers of 2 in the exponent:

$$
\begin{aligned}
x^{2^{e} k}-1 & =\left(x^{2^{e-1} k}\right)^{2}-1 \\
& =\left(x^{2^{e-1} k}-1\right)\left(\left(x^{2^{e-1} k}+1\right)\right. \\
& =\left(x^{2^{e-2} k}-1\right)\left(x^{2^{e-2} k}+1\right)\left(\left(x^{2^{e-1} k}+1\right)\right. \\
& \vdots \\
& =\left(x^{k}-1\right)\left(x^{k}+1\right)\left(x^{2 k}+1\right)\left(x^{4 k}+1\right) \cdots\left(x^{2^{e-1} k}+1\right) .
\end{aligned}
$$

If n is prime and $1 \leq a \leq n-1$ then $a^{n-1}-1 \equiv 0 \bmod n$ by Fermat's little theorem, so using the above factorization we have

$$
\left(a^{k}-1\right)\left(a^{k}+1\right)\left(a^{2 k}+1\right)\left(a^{4 k}+1\right) \cdots\left(a^{2^{e-1} k}+1\right) \equiv 0 \bmod n
$$

When n is prime one of these factors must be $0 \bmod n$, so

$$
\begin{equation*}
a^{k} \equiv 1 \bmod n \text { or } a^{2^{i} k} \equiv-1 \bmod n \text { for some } i \in\{0, \ldots, e-1\} \tag{2.1}
\end{equation*}
$$

Example 2.1. If $n=13$ then $n-1=4 \cdot 3$, so $e=2, k=3$, and (2.1) says $a^{3} \equiv 1 \bmod n$ or $a^{3} \equiv-1 \bmod n$ or $a^{6} \equiv-1 \bmod n$ for each a from 1 to 12 .
Example 2.2. If $n=41$ then $n-1=8 \cdot 5$, so $e=3, k=5$, and (2.1) says $a^{5} \equiv 1 \bmod n$ or one of a^{5}, a^{10}, or a^{20} is congruent to $-1 \bmod n$ for each a from 1 to 40 .

[^0]The congruences in (2.1) make sense for all odd $n>1$, prime or not. Their simultaneous failure for some a in $\{1, \ldots, n-1\}$ will lead to a primality test.
Definition 2.3. For odd $n>1$, write $n-1=2^{e} k$ with k odd and pick $a \in\{1, \ldots, n-1\}$. We say a is a Miller-Rabin witness for n if all of the congruences in (2.1) are false:

$$
a^{k} \not \equiv 1 \bmod n \text { and } a^{2^{i} k} \not \equiv-1 \bmod n \text { for all } i \in\{0, \ldots, e-1\}
$$

We say a is a Miller-Rabin nonwitness for n (and n is called a strong pseudoprime to the base a) if one of the congruences in (2.1) is true:

$$
a^{k} \equiv 1 \bmod n \text { or } a^{2^{i} k} \equiv-1 \bmod n \text { for some } i \in\{0, \ldots, e-1\}
$$

As in the Fermat and Solovay-Strassen tests, we are using the term "witness" to mean a number that proves n is composite. An odd prime has no Miller-Rabin witnesses, so when n has a Miller-Rabin witness it must be composite.

In the definition of a Miller-Rabin witness, the case $i=0$ says $a^{k} \not \equiv-1 \bmod n$, so another way of describing a witness is $a^{k} \not \equiv \pm 1 \bmod n$ and $a^{2^{i} k} \not \equiv-1 \bmod n$ for all $i \in\{1, \ldots, e-1\}$, where this range of values for i is empty if $e=1$ (that is, if $n \equiv 3 \bmod 4$).
Example 2.4. If $n \equiv 3 \bmod 4$ then $e=1$ (and conversely). In this case $k=(n-1) / 2$, so a is a Miller-Rabin witness for n if $a^{(n-1) / 2} \not \equiv \pm 1 \bmod n$, while a is a Miller-Rabin nonwitness for n if $a^{(n-1) / 2} \equiv \pm 1 \bmod n$.

Miller-Rabin witnesses and nonwitnesses can also be described using the list of powers

$$
\begin{equation*}
\left(a^{k}, a^{2 k}, a^{4 k}, \ldots, a^{2^{e-1} k}\right)=\left(\left\{a^{2^{i} k}\right\}\right)_{i=0}^{e-1} \tag{2.2}
\end{equation*}
$$

with all terms considered modulo n. We call this the Miller-Rabin sequence for n that is generated by a. For example, to write a Miller-Rabin sequence for $n=57$ write $57-1=$ $2^{3} \cdot 7$. Since $e=3$ and $k=7$, the Miller-Rabin sequence for 57 that is generated by a is $\left(a^{7}, a^{14}, a^{28}\right)$. Each term in a Miller-Rabin sequence is the square of the previous term, so if 1 occurs in the sequence then all later terms are 1 . If -1 occurs in the sequence then all later terms are also 1 . Thus -1 can occur at most once in this sequence. If $1 \leq a \leq n-1$ then a is a Miller-Rabin nonwitness for n if and only if (2.2) looks like

$$
(1, \ldots) \bmod n \quad \text { or } \quad(\ldots,-1, \ldots) \bmod n
$$

and a is a Miller-Rabin witness for n if and only if (2.2) is anything else: the first term is not 1 (equivalently, the terms in the Miller-Rabin sequence are not all 1) and there is no -1 anywhere in (2.2). So 1 and $n-1$ are always Miller-Rabin nonwitnesses for n.
Example 2.5. Let $n=9$. Since $n-1=8=2^{3}$, $e=3$ and $k=1$. The Miller-Rabin sequence for 9 generated by a is $\left(a, a^{2}, a^{4}\right) \bmod 9$. In the table below we list this sequence for $a=1,2, \ldots, 8$. The Miller-Rabin witnesses for 9 are $2,3,4,5,6$, and 7 .

$a \bmod 9$	1	2	3	4	5	6	7	8
$a^{2} \bmod 9$	1	4	0	7	7	0	4	1
$a^{4} \bmod 9$	1	7	0	4	4	0	7	1

Example 2.6. Let $n=29341$. Since $n-1=2^{2} \cdot 7335$, the Miller-Rabin sequence for n generated by a is $\left(a^{k}, a^{2 k}\right) \bmod n$ where $k=7335$. When $a=2$, the Miller-Rabin sequence is $(26424,29340)$. The last term is $-1 \bmod n$, so -1 appears and therefore 2 is not a MillerRabin witness for n. When $a=3$ the Miller-Rabin sequence is (22569,1). The first term is not 1 and no term is -1 , so 3 is a Miller-Rabin witness for n and thus n is composite.

Example 2.7. Let $n=30121$. Since $n-1=2^{3} \cdot 3765$, the Miller-Rabin sequence for n generated by a is $\left(a^{k}, a^{2 k}, a^{4 k}\right) \bmod n$ where $k=3765$. When $a=2$, this sequence is (330, $18537,1)$. The first term is not 1 and no term is $-1 \bmod n$, so 2 is a Miller-Rabin witness for n. Thus n is composite.

Example 2.8. Let $n=75361$. Since $n-1=2^{5} \cdot 2355$, the Miller-Rabin sequence for n generated by a is $\left(a^{k}, a^{2 k}, a^{4 k}, a^{8 k}, a^{16 k}\right) \bmod n$ where $k=2355$. When $a=2$, this sequence is $(15036,73657,39898,1,1)$. The first term is not 1 and there is no $-1 \bmod n$, so 2 is a Miller-Rabin witness for n. Thus n is composite.

For odd $n>1$, numbers a in $\{1, \ldots, n-1\}$ that reveal n to be composite by the SolovayStrassen test are called Euler witnesses. It means either (i) $(a, n)>1$ or (ii) (a, n) =1 and $a^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right) \bmod n$, where $\left(\frac{a}{n}\right)$ is a Jacobi symbol. The first odd composite number where 2 and 3 are not Euler witnesses is 1729: $a^{(1729-1) / 2} \equiv\left(\frac{a}{1729}\right) \equiv 1 \bmod 1729$ when a is 2 or 3. The first odd composite number where 2 and 3 are not Miller-Rabin witnesses is much bigger: $n=1373653$. Since $n-1=2^{2} \cdot 343413$, a Miller-Rabin sequence for n is $\left(a^{k}, a^{2 k}\right) \bmod$ n where $k=343413$. The Miller-Rabin sequence generated by 2 is (890592, 1373652), with the last term being $-1 \bmod n$, and the Miller-Rabin sequence generated by 3 is $(1,1)$. The number 5 is a Miller-Rabin witness for n : it generates the Miller-Rabin sequence (1199564, 73782). An exhaustive computer search shows that every odd positive composite number less than 10^{10} has $2,3,5$, or 7 as a Miller-Rabin witness except for 3215031751 , and 11 is a Miller-Rabin witness for that number.

There is a more intuitive way to think about Miller-Rabin witnesses. For odd prime n, rewrite the congruence $a^{n-1} \equiv 1 \bmod n$ from Fermat's little theorem as $\left(a^{k}\right)^{2^{e}} \equiv 1 \bmod n$, so if $a^{k} \not \equiv 1 \bmod n$, then the order of $a^{k} \bmod n$ is 2^{j} for some $j \in\{1, \ldots, e\}$. Thus $x:=$ $a^{2^{j-1} k} \bmod n$ has $x^{2} \equiv 1 \bmod n$ and $x \not \equiv 1 \bmod n$. The only square roots of 1 modulo an odd prime n are $\pm 1 \bmod n$, so if $a^{k} \not \equiv 1 \bmod n$ and none of the numbers $a^{k}, a^{2 k}, a^{4 k}, \ldots, a^{2^{e-1} k}$ is $-1 \bmod n$ then we have a contradiction: n isn't prime. We have rediscovered the definition of a Miller-Rabin nonwitness, and it shows us that the idea behind Miller-Rabin witnesses is to find an unexpected square root of $1 \bmod n$. That is not always what happens, since the premise $a^{n-1} \equiv 1 \bmod n$ for prime n might not occur when n is composite. For instance, in Example 2.5, each Miller-Rabin witness a for 9 is not a square root of $1 \bmod 9$ and $a^{8} \not \equiv 1 \bmod 9$.

Euler witnesses are always Miller-Rabin witnesses (Theorem 6.1), and sometimes they are the same set of numbers (Corollary 6.2), but when there are more Miller-Rabin witnesses than Euler witnesses there can be a lot more. This is not very impressive for $n=30121$, whose proportion of Euler witnesses is an already high 96.4% and its proportion of MillerRabin witnesses is 99.1%. But for $n=75361$, the proportion of Euler witnesses is 61.7% while the proportion of Miller-Rabin witnesses is a much higher 99.4%.

The next theorem gives a lower bound on the proportion of Miller-Rabin witnesses for odd composite numbers. Since 1 and $n-1$ are never Miller-Rabin witnesses, we search for Miller-Rabin witnesses in $\{2, \ldots, n-2\}$.

Theorem 2.9. Let $n>1$ be odd and composite.
The proportion of integers from 2 to $n-2$ that are Miller-Rabin witnesses for n is greater than 75%. Equivalently, the proportion of integers from 2 to $n-2$ that are Miller-Rabin nonwitnesses for n is less than 25%.

Theorem 2.9, due independently to Miller [9] and Monier [8], will be proved in Section 5. The proof is complicated, so first in Section 4 we will prove in a simpler way that the proportion of Miller-Rabin witnesses is greater than 50%, and the ideas in that proof will be useful for us when we later show the bound is at least 75%. This 75% is probably sharp as an asymptotic lower bound: Monier [8, p. 102] showed that if p and $2 p-1$ are prime and $p \equiv 3 \bmod 4$ then the proportion of Miller-Rabin witnesses for $p(2 p-1)$ tends to 75% if we can let $p \rightarrow \infty$, and it's expected that we can: it is conjectured that p and $2 p-1$ are both prime for infinitely many primes $p \equiv 3 \bmod 4$.

Example 2.10. For the prime $p=79,2 p-1=157$ is also prime and the proportion of Miller-Rabin witnesses for $n=p(2 p-1)=12403$ in $\{2, \ldots, n-2\}$ is $9360 / 12401 \approx 75.4 \%$.

Here is the Miller-Rabin test for deciding if an odd $n>1$ is prime. In the last step we appeal to the bound in Theorem 2.9.
(1) Pick an integer $t \geq 1$ to be the number of trials for the test.
(2) Randomly pick an integer a from 2 to $n-2$.
(3) If a is a Miller-Rabin witness for n then stop the test and declare (correctly) " n is composite."
(4) If a is not a Miller-Rabin witness for n then go to step 2 and pick another random a from 2 to $n-2$.
(5) If the test runs for t trials without terminating then say " n is prime with probability at least $1-1 / 4^{t}$."
(A better probabilistic heuristic in the last step, using Bayes' rule, should use the lower bound $1-(\log n) / 4^{t}$ and we need to pick t at the start so that $4^{t}>\log n$.)

The Generalized Riemann Hypothesis (GRH), which is one of the most important unsolved problems in mathematics, implies the Miller-Rabin test can be converted from a probabilistic primality test into a deterministic primality test that runs in polynomial time: Bach [3] showed from GRH that some Miller-Rabin witness for n is at most $2(\log n)^{2}$ if n has a Miller-Rabin witness at all.

Historically things were reversed: Miller introduced "Miller's test" in a deterministic form assuming GRH, ${ }^{2}$ and a few years later Rabin proved Theorem 2.9 to make the method of Miller's test no longer dependent on an unproved hypothesis if it is treated as a probabilistic test. This became the Miller-Rabin test. We will discuss its history further in Section 7.

3. Multiplication of Miller-Rabin nonwitnesses

Here are descriptions of nonwitnesses for the Fermat test, Solovay-Strassen test, and Miller-Rabin test. For odd $n>1$ and $1 \leq a \leq n-1$,
(i) a is a Fermat nonwitness for n when

$$
a^{n-1} \equiv 1 \bmod n,
$$

(ii) a is an Euler nonwitness for n when

$$
(a, n)=1 \text { and } a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right) \bmod n,
$$

and

[^1](iii) a is a Miller-Rabin nonwitness for n when
$$
a^{k} \equiv 1 \bmod n \text { or } a^{2^{i} k} \equiv-1 \bmod n \text { for some } i \in\{0, \ldots, e-1\}
$$

In all three cases, 1 and $n-1$ are nonwitnesses (note n is odd). Another common feature is that all three types of nonwitnesses are relatively prime to n. It is easy to see that the Fermat nonwitnesses and Euler nonwitnesses for n each form a group under multiplication $\bmod n$. If n is composite then the Euler nonwitnesses for n are a proper subgroup of the invertible numbers $\bmod n$, and this is also true for the Fermat nonwitnesses for n if n is not a Carmichael number. That is why the proportions of Fermat nonwitnesses (for nonCarmichael n) and Euler nonwitnesses are each less than 50% when n is composite, which makes the proportions of Fermat witnesses and Euler witnesses each greater than 50%.

The set of Miller-Rabin nonwitnesses is often not a group under multiplication mod n : the product of two Miller-Rabin nonwitnesses for n could be a witness. (Since 1 is a Miller-Rabin nonwitness for each n and the multiplicative inverse mod n of a Miller-Rabin nonwitness for n is a Miller-Rabin nonwitness for n, the only reason the nonwitnesses might not be a group has to be failure of closure under multiplication.)
Example 3.1. The Miller-Rabin nonwitnesses for 65 are $1,8,18,47,57$, and 64 . Modulo 65 we have $8 \cdot 18=14$ but 14 is a Miller-Rabin witness for 65 . The Miller-Rabin sequences for 65 generated by 8 and 18 are $(8,64,1,1,1,1)$ and $(18,64,1,1,1,1)$, which each include $-1 \bmod 65$ in the second position, while the sequence generated by 14 is $(14,1,1,1,1,1)$, which does not start with 1 or include -1 anywhere.
Example 3.2. The Miller-Rabin nonwitnesses for 85 are 1, 13, 38, 47, 72, 84, but modulo 85 we have $13 \cdot 38=69$ and 69 is a Miller-Rabin witness for 85 .

We can understand why the Miller-Rabin nonwitnesses for n might not be a group under multiplication mod n by thinking about how the different conditions for being a nonwitness interact under multiplication. First of all, if $n \equiv 3 \bmod 4$ then the Miller-Rabin witnesses for n are the solutions to $a^{k} \equiv \pm 1 \bmod n($ Example 2.4$)$, which form a group. If $n \equiv 1 \bmod 4$ (so $e \geq 2$) and a and b are Miller-Rabin nonwitnesses for n then this could happen in three ways (up to the ordering of a and b):
(i) $a^{k} \equiv \pm 1 \bmod n$ and $b^{k} \equiv \pm 1 \bmod n$,
(ii) $a^{2^{i} k} \equiv-1 \bmod n$ for some i from 1 to $e-1$ and $b^{k} \equiv \pm 1 \bmod n$,
(iii) $a^{2^{i} k} \equiv-1 \bmod n$ and $b^{2^{i^{\prime}} k} \equiv-1 \bmod n$ for some i and i^{\prime} from 1 to $e-1$.

In (i), $(a b)^{k} \equiv \pm 1 \bmod n$, so $a b \bmod n$ is a Miller-Rabin nonwitness for n.
In (ii), $b^{2^{i} k} \equiv 1 \bmod n$ since $i>0$, so $(a b)^{2^{i} k} \equiv-1 \bmod n$ and again $a b \bmod n$ is a Miller-Rabin nonwitness for n.

In (iii), $a b \bmod n$ is a nonwitness if $i \neq i^{\prime}$ for a reason similar to (ii), but there is a potential problem when $i=i^{\prime}$ since $(a b)^{2^{i} k} \equiv(-1)(-1) \equiv 1 \bmod n$ with $i>0$ and for $a b$ to be a nonwitness for n we have to rely on information about terms in the Miller-Rabin sequence generated by $a b$ before the i-th term. We see this happening in Example 3.1: the Miller-Rabin sequences for 65 generated by 8 and 18 each contain -1 in the second term, which cancel under multiplication, but their first terms don't have product $\pm 1 \bmod 65$.

From this case-by-case analysis, we see that the product of two Miller-Rabin nonwitnesses a and b might not be a nonwitness only if $n \equiv 1 \bmod 4$ and $a^{2^{i} k} \equiv b^{2^{i} k} \equiv-1 \bmod n$ for a common choice of i, or in other words when $-1 \bmod n$ occurs in the same position past the first position in the Miller-Rabin sequences generated by a and b.

The following two theorems give different conditions on odd $n>1$ that guarantee the Miller-Rabin nonwitnesses are a group under multiplication $\bmod n$. We'll write $\square \bmod n$ for a perfect square modulo n.

Theorem 3.3. If $-1 \not \equiv \square \bmod n$ then the Miller-Rabin nonwitnesses for n are the solutions to $a^{k} \equiv \pm 1 \bmod n$, which form a group under multiplication mod n.

Proof. If $-1 \not \equiv \square \bmod n$ then the congruence $a^{2^{i} k} \equiv-1 \bmod n$ has no solution for $i>0$, so the Miller-Rabin nonwitnesses for n are the $a \in\{1, \ldots, n-1\}$ that satisfy $a^{k} \equiv \pm 1 \bmod n$. This congruence condition on a clearly defines a group under multiplication $\bmod n$.

A simple case where $-1 \not \equiv \square \bmod n$ is when $n \equiv 3 \bmod 4$, and for such n its Miller-Rabin nonwitnesses are $\left\{1 \leq a \leq n-1: a^{(n-1) / 2} \equiv \pm 1 \bmod n\right\}$.

Theorem 3.4. If $n=p^{\alpha}$ for prime p and $\alpha \geq 1$, the Miller-Rabin nonwitnesses for n are the solutions to $a^{p-1} \equiv 1 \bmod p^{\alpha}$, which form a group under multiplication mod n.

We allow $\alpha=1$, corresponding to n being prime, since the theorem is valid in that case.
Proof. Let $a \in\{1, \ldots, n-1\}$ be a Miller-Rabin nonwitness and $n-1=2^{e} k$. Since a is relatively prime to $n=p^{\alpha}$, Euler's theorem tells us $a^{\varphi(n)} \equiv 1 \bmod n$. At the same time, as a nonwitness we have either $a^{k} \equiv 1 \bmod n$ or $a^{2^{i} k} \equiv-1 \bmod n$ for some $i \leq e-1$, and both cases imply $a^{2^{e} k} \equiv 1 \bmod n$, or equivalently $a^{n-1} \equiv 1 \bmod n$. Thus the order of $a \bmod n$ divides $(\varphi(n), n-1)=\left(p^{\alpha-1}(p-1), p^{\alpha}-1\right)$. Since p is relatively prime to $p^{\alpha}-1$ and $p-1$ divides $p^{\alpha}-1$, we have $\left(p^{\alpha-1}(p-1), p^{\alpha}-1\right)=p-1$, so $a^{p-1} \equiv 1 \bmod p^{\alpha}$.

Conversely, suppose $a^{p-1} \equiv 1 \bmod p^{\alpha}$. We will show $a^{k} \equiv 1 \bmod p^{\alpha}$ or $a^{2^{i} k} \equiv-1 \bmod p^{\alpha}$ for some $i \leq e-1$. Write $p-1=2^{f} \ell$, where $f \geq 1$ and ℓ is odd. Since $p-1$ is a factor of $p^{\alpha}-1=2^{e} k$, we have $f \leq e$ and $\ell \mid k$. Since $\left(a^{\ell}\right)^{2^{f}} \equiv 1 \bmod p^{\alpha}$, the order of $a^{\ell} \bmod p^{\alpha}$ is 2^{j} for some $j \in\{0, \ldots, f\}$.

If $j=0$, so $a^{\ell} \equiv 1 \bmod p^{\alpha}$, then $a^{k} \equiv 1 \bmod p^{\alpha}$ as $\ell \mid k$.
If instead $j \geq 1$, then $x:=\left(a^{\ell}\right)^{2^{j-1}}$ satisfies $x \not \equiv 1 \bmod p^{\alpha}$ but $x^{2} \equiv 1 \bmod p^{\alpha}$. Thus $p^{\alpha} \mid(x+1)(x-1)$ and $x+1$ and $x-1$ have difference 2 , so at most one of them can be divisible by p and that number therefore has to absorb the entire factor p^{α}. In other words, $p^{\alpha} \mid(x+1)$ or $p^{\alpha} \mid(x-1)$, so $x \equiv \pm 1 \bmod p^{\alpha} .{ }^{3}$ Since $x \not \equiv 1 \bmod p^{\alpha}$, we get $x \equiv-1 \bmod p^{\alpha}$. Recalling what x is, $a^{2^{j-1}} \ell \equiv-1 \bmod p^{\alpha}$. Since $\ell \mid k$ and k is odd, raising both sides to the k / ℓ power gives us $a^{2^{i} k} \equiv-1 \bmod p^{\alpha}$ where $i=j-1 \in\{0, \ldots, f-1\} \subset\{0, \ldots, e-1\}$.

The sufficient conditions in Theorems 3.3 and 3.4 turn out to be necessary too: for odd $n>1$ such that $-1 \equiv \square \bmod n$ and n has at least two different prime factors, the MillerRabin nonwitnesses for n do not form a group under multiplication. We omit a proof.

Although the Miller-Rabin nonwitnesses for an odd composite $n>1$ are not always a group under multiplication $\bmod n$, they are always contained in a proper subgroup of the invertible numbers $\bmod n$, as we will see in Sections 4 and 5 . This allows work on the Generalized Riemann Hypothesis (GRH) as described at the end of Section 3 to be applied: if GRH is true then each odd composite $n>1$ has a Miller-Rabin witness $\leq 2(\log n)^{2}$, so the truth of GRH would imply the Miller-Rabin test is deterministic in polynomial time.

[^2]
4. Proving the proportion of Miller-Rabin witnesses is over 50%

The proof of the 75% lower bound for the proportion of Miller-Rabin witnesses for an odd composite $n>1$ (Theorem 2.9) is not easy. It is much easier to prove the proportion is over $50 \%^{4}$ so we present this argument here first.

Theorem 4.1. If $n>1$ is odd and composite then the proportion of Miller-Rabin witnesses for n in $\{2, \ldots, n-2\}$ is over 50%. That is, over 50% of $a \in\{2, \ldots, n-2\}$ satisfy $a^{k} \not \equiv 1 \bmod n$ and $a^{2^{i} k} \not \equiv-1 \bmod n$ for all $i \in\{0, \ldots, e-1\}$, where $n-1=2^{e} k$.

Proof. We will show the proportion of Miller-Rabin nonwitnesses for n in $\{1, \ldots, n-1\}$ is less than 50% by showing they are contained in a proper subgroup of the invertible numbers $\bmod n$. Since a proper subgroup of a group is at most half the size of the group, the set of Miller-Rabin witnesses for n in $\{1, \ldots, n-1\}$ includes at least half the invertible numbers $\bmod n$ (it never includes 1 and $n-1$) and it includes all the noninvertible numbers mod n in $\{1, \ldots, n-1\}$ (there are noninvertible numbers $\bmod n$, as n is composite). Thus the proportion of Miller-Rabin witnesses for n in $\{1, \ldots, n-1\}$ is over 50%. What about the proportion of Miller-Rabin witnesses for n in $\{2, \ldots, n-2\}$, where we remove 1 and $n-1$ from the count since they can't be Miller-Rabin witnesses for n ? Letting W be the number of Miller-Rabin witnesses for n in $\{1, \ldots, n-1\}$, we have at first $W /(n-1)>1 / 2$ and that implies $W /(n-3)>W /(n-1)>1 / 2$ too, which is the desired conclusion.

To explain why the Miller-Rabin nonwitnesses for n are in a proper subgroup of the invertible numbers $\bmod n$, we take cases if n is a prime power or not a prime power.

Case 1: n is a prime power. Write $n=p^{\alpha}$ where p is an odd prime and $\alpha \geq 2$. By Theorem 3.4, the Miller-Rabin nonwitnesses for n are the a in $\{1, \ldots, n-1\}$ such that $a^{p-1} \equiv 1 \bmod n$, and they form a group under multiplication $\bmod n$. The order of each such $a \bmod n$ divides $p-1$, and some invertible numbers $\bmod n$ have order p, with $1+p^{\alpha-1}$ being one of them. Therefore the Miller-Rabin nonwitnesses for n form a proper subgroup of the invertible numbers mod n, and we explained at the start of the proof why this is sufficient. ${ }^{5}$

Case 2: n is not a prime power. Let $i_{0} \in\{0, \ldots, e-1\}$ be maximal such that some $a_{0} \in \mathbf{Z}$ satisfies $a_{0}^{2^{i 0}} \equiv-1 \bmod n .\left(\right.$ Since $(-1)^{2^{0}}=-1$ there is an i_{0}, and a_{0} is automatically relatively prime to n.) The set

$$
G_{n}=\left\{1 \leq a \leq n-1: a^{2^{i_{0} k}} \equiv \pm 1 \bmod n\right\}
$$

is a multiplicative group mod n. We'll show G_{n} contains all a in $\{1, \ldots, n-1\}$ such that
(1) $a^{k} \equiv 1 \bmod n$ or
(2) $a^{2^{i} k} \equiv-1 \bmod n$ for some $i \in\{0, \ldots, e-1\}$.

If (1) holds for a, so $a^{k} \equiv 1 \bmod n$, then $a^{2^{i} 0 k} \equiv 1 \bmod n$. If (2) holds for a then $\left(a^{k}\right)^{2^{i}} \equiv$ $-1 \bmod n$ so $i \leq i_{0}$ by the maximality of i_{0} (use $a_{0}=a^{k}$). Thus if $i=i_{0}$ we have $a^{2^{i} 0 k} \equiv-1 \bmod n$, and if $i<i_{0}$ then by squaring both sides of $\left(a^{k}\right)^{2^{i}} \equiv-1 \bmod n$ enough times we get $a^{2^{i} 0 k} \equiv 1 \bmod n$. In either case, $a \in G_{n}$.

[^3]We will show G_{n} is a proper subgroup of the invertible numbers $\bmod n$. Let p be a prime factor of n and write $n=p^{\alpha} n^{\prime}$ where $\alpha \geq 1$ and n^{\prime} is not divisible by p. Both p^{α} and n^{\prime} are odd and not 1 (because n is not a prime power), so each is at least 3 .

By the Chinese remainder theorem, some $a \in\{1, \ldots, n-1\}$ satisfies the two congruences

$$
a \equiv a_{0} \bmod p^{\alpha}, \quad a \equiv 1 \bmod n^{\prime} .
$$

Since $\left(a_{0}, n\right)=1$ we get $(a, n)=1$. Considering $a^{2^{i_{0}} k}$ modulo p^{α} and then modulo n^{\prime},

$$
a^{2^{i_{0}} k} \equiv a_{0}^{2^{i_{0}}} \equiv(-1)^{k} \equiv-1 \bmod p^{\alpha} \Longrightarrow a^{2^{i_{0}} k} \not \equiv 1 \bmod n
$$

since $-1 \not \equiv 1 \bmod p^{\alpha}$, and

$$
a^{2^{i_{0}}} \equiv 1 \bmod n^{\prime} \Longrightarrow a^{2^{i 0} k} \not \equiv-1 \bmod n
$$

since $-1 \not \equiv 1 \bmod n^{\prime}$. Thus $a^{2^{20} k} \not \equiv \pm 1 \bmod n$, so $(a, n)=1$ and $a \notin G_{n}$.
An alternate proof of Theorem 4.1, taking cases if n is or is not a Carmichael number rather than if n is or is not a prime power, is in [5, Section 5.3]. Our proof of Theorem 4.1 is a modification of the argument given there.

The proof of Case 1 used Theorem 3.4, which relied on the interplay between the congruences $a^{n-1} \equiv 1 \bmod n$ and $a^{\varphi(n)} \equiv 1 \bmod n$ when n is a prime power. The proof of Case 2, on the other hand, did not involve Euler's theorem for modulus n and in fact did not really need e and k to come from a factorization of $n-1$ at all: the reasoning from Case 2 proves the following result.

Corollary 4.2. Let $e, k \geq 1$ with k odd. If $n>1$ is odd and not a prime power, more than 50% of $a \in\{2, \ldots, n-2\}$ satisfy $a^{k} \not \equiv 1 \bmod n$ and $a^{2^{2} k} \not \equiv-1 \bmod n$ for all $i \in\{0, \ldots, e-1\}$.
Proof. In the proof of Case 2 of Theorem 4.1, we don't need $2^{e} k$ to be $n-1$, so that proof holds when $e, k \geq 1$ and k is odd. Details are left for the reader to check.

In the appendix (Section A) we will use Corollary 4.2 to develop a probabilistic factorization algorithm.

Corollary 4.2 is invalid when n is an odd prime power: if $n=p^{\alpha}$ for an odd prime p and we choose e and k by $2^{e} k=\varphi(n)$ then the only $a \in\{2, \ldots, n-2\}$ satisfying $a^{k} \not \equiv 1 \bmod n$ and $a^{2^{i} k} \not \equiv-1 \bmod n$ for all $i \in\{0, \ldots, e-1\}$ are the a not relatively prime to n (this is because modulo p^{α} the only element of order 2 is -1), and the proportion of such a in $\{2, \ldots, n-2\}$ is

$$
\frac{n-3-\varphi(n)}{n-3}=1-\frac{\varphi(n)}{n-3}<1-\frac{\varphi(n)}{n}=1-\frac{p^{\alpha}(1-1 / p)}{p^{\alpha}}=1-\left(1-\frac{1}{p}\right)=\frac{1}{p},
$$

which is less than 50%. This does not contradict Theorem 4.1, which allows n to be a prime power, since the e and k used there are chosen from a factorization of $n-1$, not $\varphi(n)$.

5. Proving the proportion of Miller-Rabin witnesses is at least 75%

In this section we will prove Theorem 2.9. Instead of showing the proportion of MillerRabin witnesses for an odd composite $n>1$ in $\{2, \ldots, n-2\}$ is over 75%, we'll prove the proportion of Miller-Rabin nonwitnesses in that range is less than 25%. It is more difficult to prove results about Miller-Rabin nonwitnesses compared to Fermat nonwitnesses or Solovay-Strassen nonwitnesses because the set of Miller-Rabin nonwitnesses is not generally closed under multiplication, as we saw already in Section 3.

As in Theorem 4.1, we will actually show 25% is an upper bound on the proportion of Miller-Rabin nonwitnesses for n in $\{1, \ldots, n-1\}$. Then if W is the number of Miller-Rabin witnesses for n in $\{1, \ldots, n-1\}$ we have $W /(n-1) \geq 3 / 4$, and counting in $\{2, \ldots, n-2\}$ gives us $W /(n-3)>W /(n-1) \geq 3 / 4$, as desired. ${ }^{6}$

First we will deal with the case that $n=p^{\alpha}$ is a power of an odd prime and $\alpha \geq 2$. By Theorem 3.4, the Miller-Rabin nonwitnesses for p^{α} are the solutions to $a^{p-1} \equiv 1 \bmod p^{\alpha}$. Such a are closed under multiplication $\bmod p^{\alpha}$, which is great (and not true of Miller-Rabin nonwitnesses for general n). How many such a are there from 1 to $p^{\alpha}-1$?

In the table below are solutions to $a^{p-1} \equiv 1 \bmod p^{\alpha}$ when $p=5$ and 7 with α small. We include $\alpha=1$.

α	Solutions to $a^{4} \equiv 1 \bmod 5^{\alpha}$	Solutions to $a^{6} \equiv 1 \bmod 7^{\alpha}$
1	$1,2,3,4$	$1,2,3,4,5,6$
2	$1,7,18,24$	$1,18,19,30,31,48$
3	$1,57,68,124$	$1,18,19,324,325,342$
4	$1,182,443,624$	$1,1047,1048,1353,1354,2400$

This suggests $a^{p-1} \equiv 1 \bmod p^{\alpha}$ has $p-1$ solutions $\bmod p^{\alpha}$ for each α. This is true when $\alpha=1$ by Fermat's little theorem. For larger α we use induction: if $a^{p-1} \equiv 1 \bmod p^{\alpha}$ there is a unique $a^{\prime} \bmod p^{\alpha+1}$ such that $a^{\prime p-1} \equiv 1 \bmod p^{\alpha+1}$ and $a^{\prime} \equiv a \bmod p^{\alpha}$: saying $a^{\prime} \equiv a \bmod p^{\alpha}$ is the same as $a^{\prime} \equiv a+c p^{\alpha} \bmod p^{\alpha+1}$, with c well-defined $\bmod p$, so we want to prove there is a unique choice of $c \bmod p$ making $\left(a+c p^{\alpha}\right)^{p-1} \equiv 1 \bmod p^{\alpha+1}$.

Using the binomial theorem,

$$
\left(a+c p^{\alpha}\right)^{p-1} \equiv a^{p-1}+(p-1) a^{p-2} c p^{\alpha} \bmod p^{\alpha+1}
$$

where higher-order terms vanish since $p^{r \alpha} \equiv 0 \bmod p^{\alpha+1}$ for $r \geq 2$. Since $a^{p-1} \equiv 1 \bmod p^{\alpha}$ we can write $a^{p-1}=1+p^{\alpha} M$ for some $M \in \mathbf{Z}$, so we want to find c that makes

$$
\left(1+p^{\alpha} M\right)+(p-1) a^{p-2} c p^{\alpha} \equiv 1 \bmod p^{\alpha+1}
$$

which is equivalent to

$$
M-a^{p-2} c \equiv 0 \bmod p,
$$

and this has a unique solution for $c \bmod p$ since $a \bmod p$ is invertible.
Having shown that there are $p-1$ Miller-Rabin nonwitnesses for p^{α} in $\left\{1, \ldots, p^{\alpha}-1\right\}$, their proportion in this range is

$$
\begin{equation*}
\frac{p-1}{p^{\alpha}-1}=\frac{1}{1+p+\cdots+p^{\alpha-1}} . \tag{5.1}
\end{equation*}
$$

Since $\alpha \geq 2$, this ratio is at most $1 /(1+p)$, which in turn is at most $1 /(1+3)=1 / 4$. (The only way (5.1) equals $1 / 4$ is if $\alpha=2$ and $p=3$, i.e., $n=3^{2}=9$. For all other p^{α} the value of (5.1) is less than $1 / 4$, and for $p^{\alpha}=9$ we saw explicitly in Example 2.5 that the ratio in (5.1) is $1 / 4$.).

From now on let n have at least two different prime factors. Write, as usual, $n-1=2^{e} k$ with $e \geq 1$ and k odd.

Let i_{0} be the largest integer in $\{0,1, \ldots, e-1\}$ such that some integer a_{0} satisfies $\left(a_{0}, n\right)=$ 1 and $a_{0}^{2^{i 0}} \equiv-1 \bmod n$. By the proof of Case 2 of Theorem 4.1, $i_{0} \geq 0$ and the set

$$
G_{n}=\left\{1 \leq a \leq n-1: a^{2^{i_{0}} k} \equiv \pm 1 \bmod n\right\}
$$

[^4]is a group under multiplication modulo n that contains every Miller-Rabin nonwitness for n and is a proper subgroup of all invertible numbers $\bmod n$.

The ratio $\varphi(n) /\left|G_{n}\right|$ is an integer, and $\varphi(n)<n-1$ since n is not prime. We will show, when n is not a prime power, that $\varphi(n) /\left|G_{n}\right| \geq 4$, so

$$
\frac{\mid\{\mathrm{MR} \text { nonwitnesses for } n \text { in }\{1, \ldots, n-1\}\} \mid}{n-1}<\frac{\left|G_{n}\right|}{\varphi(n)} \leq \frac{1}{4}
$$

First we show every $a \in G_{n}$ satisfies $a^{n-1} \equiv 1 \bmod n$. Since $i_{0} \leq e-1$, the product $2^{i_{0}+1} k$ divides $2^{e} k=n-1$. Each a in G_{n} satisfies $a^{2^{i}{ }_{0} k} \equiv \pm 1 \bmod n$, so squaring gives us $a^{2^{2_{0}+1} k} \equiv 1 \bmod n$. Thus $a^{n-1} \equiv 1 \bmod n$.

A Carmichael number has at least three different prime factors, so either n is not a Carmichael number or it has at least three different prime factors.

Case 1: n is not a Carmichael number.
Set

$$
F_{n}=\left\{1 \leq a \leq n-1: a^{n-1} \equiv 1 \bmod n\right\} .
$$

Then

$$
\begin{equation*}
\{1 \leq a \leq n-1:(a, n)=1\} \supset F_{n} \supset G_{n} \tag{5.2}
\end{equation*}
$$

and all three sets are groups under multiplication $\bmod n$. We will show both containments in (5.2) are strict, so by group theory $\varphi(n) /\left|F_{n}\right| \geq 2$ and $\left|F_{n}\right| /\left|G_{n}\right| \geq 2$. Thus

$$
\frac{\varphi(n)}{\left|G_{n}\right|}=\frac{\varphi(n)}{\left|F_{n}\right|} \frac{\left|F_{n}\right|}{\left|G_{n}\right|} \geq 2 \cdot 2=4
$$

If n is not a Carmichael number then some integer relatively prime to n is not in F_{n}, so the first containment in (5.2) is strict. To show the second containment is strict (that is, $F_{n} \neq G_{n}$), pick a prime factor p of n and write $n=p^{\alpha} n^{\prime}$ where $\alpha \geq 1$ and p does not divide n^{\prime}, so $n^{\prime}>1$. The integer $a \in\{1, \ldots, n-1\}$ constructed in Case 2 of the proof of Theorem 4.1 is not in G_{n}, and that proof also shows $a \in F_{n}$: from $a^{2^{i_{0}} k} \equiv-1 \bmod p^{\alpha}$ and $a^{2^{i} 0} \equiv 1 \bmod n^{\prime}$ we get $a^{2^{i}+1} k \equiv 1 \bmod n$ since that congruence is true modulo p^{α} and modulo n^{\prime}. Therefore $a^{n-1} \equiv 1 \bmod n$, since $2^{i_{0}+1} k$ is a factor of $n-1$.

Case 2: n has at least three different prime factors.
Write the prime decomposition of n as $p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ for distinct primes p_{ℓ}, exponents $\alpha_{\ell} \geq 1$, and $r \geq 3$. Set

$$
H_{n}=\left\{1 \leq a \leq n-1: a^{2^{i_{0}} k} \equiv \pm 1 \bmod p_{\ell}^{\alpha_{\ell}} \text { for } \ell=1, \ldots, r\right\} .
$$

Then

$$
\begin{equation*}
\{1 \leq a \leq n-1:(a, n)=1\} \supset H_{n} \supset G_{n} \tag{5.3}
\end{equation*}
$$

We will show $\left|H_{n}\right| /\left|G_{n}\right| \geq 4$, so

$$
\frac{\varphi(n)}{\left|G_{n}\right|}=\frac{\varphi(n)}{\left|H_{n}\right|} \frac{\left|H_{n}\right|}{\left|G_{n}\right|} \geq \frac{\left|H_{n}\right|}{\left|G_{n}\right|} \geq 4
$$

For integers x and y,

$$
x \equiv y \bmod n \Longleftrightarrow x \equiv y \bmod p_{\ell}^{\alpha_{\ell}} \text { for } \ell=1, \ldots, r
$$

The mapping between groups $f: H_{n} \rightarrow \prod_{\ell=1}^{r}\left\{ \pm 1 \bmod p_{\ell}^{\alpha_{\ell}}\right\}$ that is defined by

$$
f(a \bmod n)=\left(\ldots, a^{2^{i_{0}} k} \bmod p_{\ell}^{\alpha_{\ell}}, \ldots\right)_{\ell=1}^{r}
$$

is a homomorphism. Set $K_{n}=\operatorname{ker} f$, so $H_{n} \supset G_{n} \supset K_{n}$. The target group for f has order 2^{r}. Let's prove f is surjective. It suffices, since f is a homomorphism, to show each r-tuple $(\ldots, 1,-1,1, \ldots)$ with -1 in one component and 1 in all the other components is in the image of f. By symmetry it's enough to show $(-1,1,1, \ldots, 1)$ is in the image of f. That is, we seek an $a \in H_{n}$ such that

$$
a^{2^{i_{0}} k} \equiv\left\{\begin{array}{l}
-1 \bmod p_{1}^{\alpha_{1}}, \\
1 \bmod p_{\ell}^{\alpha_{\ell}}, \text { if } \ell \geq 2
\end{array}\right.
$$

By the definition of i_{0}, there is an integer a_{0} such that $a_{0}^{2^{i} 0} \equiv-1 \bmod n$. From the Chinese remainder theorem there is an $a \in\{1, \ldots, n-1\}$ such that

$$
a \equiv a_{0} \bmod p_{1}^{\alpha_{1}}, \quad a \equiv 1 \bmod p_{\ell}^{\alpha_{\ell}} \text { for } \ell \geq 2
$$

Then

$$
a^{2^{i_{0} k}} \equiv a_{0}^{2_{0} k} \equiv(-1)^{k} \equiv-1 \bmod p_{1}^{\alpha_{1}}
$$

and

$$
a^{2^{i_{0} k}} \equiv 1 \bmod p_{\ell}^{\alpha} \text { for } \ell \geq 2
$$

Then $f(a \bmod n)=(-1,1, \ldots, 1)$.
The image $f\left(H_{n}\right)$ has order 2^{r}. The image $f\left(G_{n}\right)$ is $\{(1,1, \ldots, 1),(-1,-1, \ldots,-1)\}$, of order 2. Therefore $\left|H_{n}\right| /\left|K_{n}\right|=2^{r}$ and $\left|G_{n}\right| /\left|K_{n}\right|=2$, so $\left|H_{n}\right| /\left|G_{n}\right|=2^{r-1}$, which is at least 4 since $r \geq 3$.

Our proof of Theorem 2.9 is now complete.
Corollary 5.1. For odd composite $n>1$, the Miller-Rabin nonwitnesses for n lie in a proper subgroup of the invertible numbers modulo n.

Proof. If $n=p^{\alpha}$ with $\alpha \geq 2$ then the Miller-Rabin nonwitnesses for n are a group of order $p-1$, while $\varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)>p-1$.

If n has $r \geq 2$ different prime factors then the Miller-Rabin nonwitnesses for n lie in G_{n}. We showed G_{n} is a proper subgroup of F_{n} if n is not a Carmichael number, and it's a proper subgroup of H_{n} if $r \geq 3$.

Gashkov [6] gave another proof of Theorem 2.9. His strategy is to work more directly with the set S of Miller-Rabin nonwitnesses and find three Miller-Rabin witnesses for n, say a, b, and c, that are all invertible numbers $\bmod n$ such that the sets $S, a S, b S$, and $c S$ are pairwise disjoint. Verifying the pairwise disjointness is slightly tedious because S is not a group. In any case, all four sets lie in the invertible numbers mod n and have the same size, so pairwise disjointness implies $4|S| \leq \varphi(n)<n-1$, and thus $|S| /(n-1)<1 / 4$. Gashkov's argument does not work when n is a certain type of multiple of 3 , so he assumes in his proof that n is not divisible by 3 .

Remark 5.2. In the Miller-Rabin test it is important to look at $a^{2^{i} k} \bmod n$ for all i from 0 up to $e-1$. If i runs over only a limited range near $e-1$ then there are infinitely many analogues of Carmichael numbers for this weaker test, which means composite n whose witnesses for this weaker test all have a factor in common with n. See [4].

6. Euler witnesses are Miller-Rabin witnesses

In the next theorem we prove that every witness for n in the Solovay-Strassen test is a witness for n in the Miller-Rabin test. This fact along with the 75% lower bound on the proportion of Miller-Rabin witnesses in Theorem 2.9 compared to the 50% lower bound for witnesses in the Solovay-Strassen test explains why the Miller-Rabin test is used in practice, not the Solovay-Strassen test. It helps that the Miller-Rabin test requires less background to follow its steps (no Jacobi symbols as in the Solovay-Strassen test).

Theorem 6.1. For odd $n>1$, an Euler witness for n is a Miller-Rabin witness for n.
Proof. Since nonwitnesses are mathematically nicer than witnesses, we will prove the contrapositive: if an integer $a \in\{1, \ldots, n-1\}$ is not a Miller-Rabin witness for n then it is not an Euler witness for n. That is, the property

$$
a^{k} \equiv 1 \bmod n \text { or } a^{2^{i} k} \equiv-1 \bmod n \text { for some } i \in\{0, \ldots, e-1\}
$$

implies the property

$$
(a, n)=1 \text { and } a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right) \bmod n .
$$

Clearly not being a Miller-Rabin witness implies $(a, n)=1$. That it also forces the power $a^{(n-1) / 2}=a^{2^{e-1} k}$ to be congruent to $\left(\frac{a}{n}\right) \bmod n$ is a more delicate matter to explain.

Since $(n-1) / 2=2^{e-1} k$ is a multiple of $2^{i} k$, we have $a^{(n-1) / 2} \equiv \pm 1 \bmod n$. Why is the sign on the right side equal to $\left(\frac{a}{n}\right)$? This is the key issue.

Case 1: $e=1$, or equivalently $n \equiv 3 \bmod 4$. Not being a Miller-Rabin witness in this case is equivalent to $a^{k} \equiv \pm 1 \bmod n$, which is the same as $a^{(n-1) / 2} \equiv \pm 1 \bmod n$. Let $\varepsilon \in\{1,-1\}$ be the number such that $a^{(n-1) / 2} \equiv \varepsilon \bmod n$. The Jacobi symbols with denominator n for both sides are equal, so $\left(\frac{a}{n}\right)^{(n-1) / 2}=\left(\frac{\varepsilon}{n}\right)$. Since $(n-1) / 2$ is odd, $\left(\frac{a}{n}\right)^{(n-1) / 2}=\left(\frac{a}{n}\right)$. Since $n \equiv 3 \bmod 4,\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2}=-1$ and trivially $\left(\frac{1}{n}\right)=1$, so $\left(\frac{\varepsilon}{n}\right)=\varepsilon$. Thus $\left(\frac{a}{n}\right)=\varepsilon$, so $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right) \bmod n$ and $(a, n)=1$. That means a is not an Euler witness for n.

Case 2: $e \geq 2$, or equivalently $n \equiv 1 \bmod 4$. This makes $(n-1) / 2=2^{e-1} k=2 \cdot 2^{e-2} k$ an even multiple of $2^{i} k$ for every $i \in\{0, \ldots, e-2\}$.

If $a^{k} \equiv 1 \bmod n$ or $a^{2^{i} k} \equiv-1 \bmod n$ for some $i \leq e-2$ then $a^{(n-1) / 2}=a^{2^{e-1} k} \equiv 1 \bmod n$ since $(n-1) / 2$ is even. If $a^{2^{e-1} k} \equiv-1 \bmod n$ then $a^{(n-1) / 2} \equiv-1 \bmod n$. So we want to show when a is not a Miller-Rabin witness that

$$
a^{k} \equiv 1 \bmod n \text { or } a^{2^{i} k} \equiv-1 \bmod n \text { for some } i \in\{0, \ldots, e-2\} \Longrightarrow\left(\frac{a}{n}\right)=1
$$

and

$$
\begin{equation*}
a^{(n-1) / 2} \equiv-1 \bmod n \Longrightarrow\left(\frac{a}{n}\right)=-1 . \tag{6.1}
\end{equation*}
$$

If $a^{k} \equiv 1 \bmod n$ then forming the Jacobi symbol of both sides gives $\left(\frac{a}{n}\right)^{k}=\left(\frac{1}{n}\right)=1$, so $\left(\frac{a}{n}\right)=1$ since k is odd (this is the same argument used in Case 1). The remaining possibility is that $a^{2^{2} k} \equiv-1 \bmod n$ for some $i \in\{0, \ldots, e-2\}$ or $i=e-1$. Then

$$
a^{(n-1) / 2}=a^{2^{2-1} k} \equiv\left\{\begin{aligned}
-1 \bmod n, & \text { if } i=e-1 \\
1 \bmod n, & \text { if } 0 \leq i \leq e-2
\end{aligned}\right.
$$

In correspondence with this formula, we will show when $a^{2^{i} k} \equiv-1 \bmod n$ that

$$
\left(\frac{a}{n}\right)=\left\{\begin{align*}
-1 \bmod n, & \text { if } i=e-1 \tag{6.2}\\
1 \bmod n, & \text { if } 0 \leq i \leq e-2
\end{align*}\right.
$$

and thus $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right) \bmod n$.
The Jacobi symbol $\left(\frac{a}{n}\right)$ is, by definition, the product of the Legendre symbols $\left(\frac{a}{p}\right)$ as p runs over the primes dividing n, with each $\left(\frac{a}{p}\right)$ appearing as often as the multiplicity of p in n. We will compute $\left(\frac{a}{p}\right)$ for such p, and its value will depend on how highly divisible each $p-1$ is by 2 : see (6.4).

For each prime p dividing n, write $p-1=2^{v_{p}} k_{p}$ where $v_{p} \geq 1$ and k_{p} is odd. Since $a^{2^{i} k} \equiv-1 \bmod n$ implies $\left(a^{k}\right)^{2^{i}} \equiv-1 \bmod p$, the order of $a^{k} \bmod p$ is 2^{i+1}. Therefore $2^{i+1} \mid(p-1)$, so $i<v_{p}$ and

$$
\begin{equation*}
p \equiv 1 \bmod 2^{i+1} \tag{6.3}
\end{equation*}
$$

for each prime p dividing n. Remember that $0 \leq i \leq e-1$ and $a^{2^{i} k} \equiv-1 \bmod n$.
Since $(p-1) / 2=2^{v_{p}-1} k_{p}$, by Euler's congruence $\left(\frac{a}{p}\right) \equiv a^{2^{v_{p}-1} k_{p}} \bmod p$. Raising both sides to the k-th power (an odd power), we get $\left(\frac{a}{p}\right) \equiv a^{\left(2^{i} k\right)\left(2^{v_{p}-1-i} k_{p}\right)} \equiv(-1)^{2^{v_{p}-1-i}} \bmod p$. If $i=v_{p}-1$ then $2^{v_{p}-1-i}=1$, while if $i<v_{p}-1$ then $2^{v_{p}-1-i}$ is even. Thus

$$
\left(\frac{a}{p}\right)=\left\{\begin{align*}
-1, & \text { if } \left.i=v_{p}-1 \quad \text { (equiv., } v_{p}=i+1\right) \tag{6.4}\\
1, & \text { if } i<v_{p}-1
\end{align*} \text { (equiv., } v_{p}>i+1\right) .
$$

The congruence (6.3) can be written as $p \equiv 1+c_{p} 2^{i+1} \bmod 2^{i+2}$ where $c_{p}=0$ or 1 , with $c_{p}=0$ when $p \equiv 1 \bmod 2^{i+2}\left(v_{p}>i+1\right)$ and $c_{p}=1$ when $p \not \equiv 1 \bmod 2^{i+2}\left(v_{p}=i+1\right)$. Then (6.4) says $\left(\frac{a}{p}\right)=(-1)^{c_{p}}$ for all primes p dividing n. Writing n as a product of primes $p_{1} \cdots p_{s}$, where these primes are not necessarily distinct, ${ }^{7}$

$$
\left(\frac{a}{n}\right)=\prod_{j=1}^{s}\left(\frac{a}{p_{j}}\right)=\prod_{j=1}^{s}(-1)^{c_{p_{j}}}=(-1)^{\sum c_{p_{j}}} .
$$

Also

$$
n=\prod_{j=1}^{s} p_{j} \equiv \prod_{j=1}^{s}\left(1+c_{p_{j}} 2^{i+1}\right) \bmod 2^{i+2} \equiv 1+\left(\sum_{j=1}^{s} c_{p_{j}}\right) 2^{i+1} \bmod 2^{i+2} .
$$

Let $c=\sum_{j=1}^{s} c_{p_{j}}=\left|\left\{j: v_{p_{j}}=i+1\right\}\right|$, so $\left(\frac{a}{n}\right)=(-1)^{c}$ and

$$
\begin{equation*}
n \equiv 1+c 2^{i+1} \bmod 2^{i+2} \tag{6.5}
\end{equation*}
$$

Recall $n-1=2^{e} k$ with k odd, so (6.5) says $1+2^{e} k \equiv 1+c 2^{i+1} \bmod 2^{i+2}$. Also recall $0 \leq i \leq e-1$. If $i=e-1$ then $1+2^{e} k \equiv 1+c 2^{e} \bmod 2^{e+1}$, so $k \equiv c \bmod 2$. Thus c is odd and $\left(\frac{a}{n}\right)=(-1)^{c}=-1$. If $i<e-1$ then $i+2 \leq e$, so $2^{e} \equiv 0 \bmod 2^{i+2}$. Thus $1 \equiv 1+c 2^{i+1} \bmod 2^{i+2}$, which implies c is even, so $\left(\frac{a}{n}\right)=(-1)^{c}=1$. We proved (6.2).
Corollary 6.2. If $n \equiv 3 \bmod 4$, Euler witnesses and Miller-Rabin witnesses for n coincide.

[^5]Proof. Theorem 6.1 shows for odd $n>1$ that Euler witnesses for n are Miller-Rabin witnesses for n. To prove the converse when $n \equiv 3 \bmod 4$, a Miller-Rabin witness a for such n satisfies $a^{(n-1) / 2} \not \equiv \pm 1 \bmod n$ by Example 2.4, so either (i) (a, n) >1 or (ii) (a, n) =1 and $a^{(n-1) / 2} \not \equiv\left(\frac{a}{n}\right) \bmod n$, which makes a an Euler witness for n.

The converse of Corollary 6.2 is not true. For example, Euler witnesses and Miller-Rabin witnesses for 21 are the same (every integer from 2 to 19) but $21 \equiv 1 \bmod 4$.

Corollary 6.3. An odd $n \equiv 1 \bmod 4$ and $a \in\{1, \ldots, n-1\}$ can satisfy $a^{(n-1) / 2} \equiv 1 \bmod n$ and $\left(\frac{a}{n}\right)=-1$ but never $a^{(n-1) / 2} \equiv-1 \bmod n$ and $\left(\frac{a}{n}\right)=1$.
Proof. With a computer it is easy to generate examples where $a^{(n-1) / 2} \equiv 1 \bmod n$ and $\left(\frac{a}{n}\right)=-1$, such as the pairs $(a, n)=(8,21),(10,33),(22,105)$, and so on.

The reason it is impossible to have $a^{(n-1) / 2} \equiv-1 \bmod n$ and $\left(\frac{a}{n}\right)=1$ is that such an a would be an Euler witness for n (with $i=e-1 \geq 1$) but not a Miller-Rabin witness for n since a Miller-Rabin sequence with more than one term can't end with $-1 \bmod n .{ }^{8}$ More directly, look at (6.1).

Combining these two corollaries, $a^{(n-1) / 2} \equiv-1 \bmod n \Longrightarrow\left(\frac{a}{n}\right)=-1$ for all odd $n>1$, while $a^{(n-1) / 2} \equiv 1 \bmod n \Longrightarrow\left(\frac{a}{n}\right)=1$ if $n \equiv 3 \bmod 4$ but not generally if $n \equiv 1 \bmod 4$.

7. The original version of the Miller-Rabin test

The Miller-Rabin test was introduced by Miller [7], but not in the form we used. For each a, the steps in Miller's original test were essentially checking if $a^{n-1} \not \equiv 1 \bmod n$ or if $1<\left(a^{2^{2} k}-1, n\right)<n$ for some $i \in\{0, \ldots, e-1\}$. Let's say such an a is a "Miller witness" for n. If there is a Miller witness for n then n is composite. Miller showed the Generalized Riemann Hypothesis (GRH) implies each odd composite n has a Miller witness up to some multiple of $(\log n)^{2}$, so his test is deterministic assuming GRH. A few years later Monier [8] and Rabin [9] each proved for odd composite n that at least 75% of $a \in\{1, \ldots, n-1\}$ are Miller witnesses for n, which makes Miller's test probabilistic without using GRH.

At the end of [9] Rabin described a second version of Miller's test in terms of confirming or falsifying the congruences in (2.1), attributing this observation to Knuth, and he showed each Miller witness for n is also a Miller-Rabin witness for n in the sense that we defined this term earlier, but Rabin did not indicate if the converse relation is true. Monier [8] confirmed that it is: for each $a \in\{1, \ldots, n-1\}$, the conditions

$$
\begin{equation*}
a^{n-1} \not \equiv 1 \bmod n \text { or } 1<\left(a^{2^{i} k}-1, n\right)<n \text { for some } i \in\{0, \ldots, e-1\} \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{k} \not \equiv 1 \bmod n \text { and } a^{2^{i} k} \not \equiv-1 \bmod n \text { for all } i \in\{0, \ldots, e-1\} \tag{7.2}
\end{equation*}
$$

are equivalent. Monier used the gcd sequence $\left(d_{0}, d_{1}, \ldots, d_{e}\right)$ where $d_{i}=\left(a^{2^{i} k}-1, n\right)$ to prove the negations of (7.1) and (7.2) are equivalent. Saying (7.1) is false makes the gcd sequence have either the form (n, \ldots, n) with all terms equal to n or the form $(1, \ldots, 1, n, \ldots, n)$ where a sequence of 1 's is followed by a sequence of n 's (and the last term is n). The first case is equivalent to $d_{0}=n$, which says $a^{k} \equiv 1 \bmod n$, while the second case is equivalent to there being an $i \in\{0, \ldots, e-1\}$ such that $d_{i}=1$ and $d_{i+1}=n$, which turns out to be

[^6]the same as $a^{2^{i} k} \equiv-1 \bmod n$ (that n is odd is crucial here), and one of those being true is the negation of (7.2).

The Miller-Rabin test had been discovered by Selfridge a couple of years before Miller's paper, but he did not publish anything on it. About 10 years before the work of Miller and Rabin, Artjuhov [1], [2] wrote two papers about primality tests based on congruence conditions. In the Western literature his work is often cited as a version of the MillerRabin test that appeared before the work of Miller and Rabin (and Selfridge), but this is incorrect. Artjuhov had instead essentially discovered the Solovay-Strassen test: he proved [1, Theorem E, p. 362] that odd composite $n>1$ not equal to a square have Euler witnesses. ${ }^{9}$ While [2] includes the representation of $n-1$ as $2^{e} k$ and Artjuhov writes in [2] about the congruence $a^{k} \equiv 1 \bmod n$, he does not consider anything like the additional congruence conditions $a^{2^{i} k} \equiv-1 \bmod n$.

Appendix A. A probabilistic factorization algorithm

When the Miller-Rabin test applied to an odd number reports it is composite, then that is correct, while if it reports the number is prime then there is a low probability of error. In the composite case the test does not reveal a factor, so the Miller-Rabin test is not a factorization algorithm. Using ideas behind the Miller-Rabin test with a slight twist, we will be led to a probabilistic algorithm for finding a nontrivial factor of composite odd numbers.

We saw in Corollary 4.2 that when $n>1$ is odd and not a prime power, the idea behind the Miller-Rabin test works with every $e \geq 1$ and odd positive k, not just those coming from a factorization of $n-1$ as $2^{e} k$: over 50% of $a \in\{2, \ldots, n-2\}$ satisfy $a^{k} \not \equiv 1 \bmod n$ and $a^{2^{2} k} \not \equiv-1 \bmod n$ for all $i \in\{0, \ldots, e-1\}$. Let's use e and k coming from a factorization of $\varphi(n)($ instead of $n-1)$ as $2^{e} k$.

Theorem A.1. For odd $n>1$ that is not a prime power, let $\varphi(n)=2^{e} k$ where $e \geq 1$ and k is odd. For at least 50% of $a \in\{2, \ldots, n-2\}$ that are relatively prime to n, the least $j \in\{0, \ldots, e\}$ such that $a^{2^{j} k} \equiv 1 \bmod n$ is positive and $a^{2^{j-1} k} \not \equiv-1 \bmod n$.

The table below illustrates the theorem with $n=15$, so $\varphi(n)=8=2^{3} \cdot 1$. Of the six a relatively prime to 15 in $\{2, \ldots, 13\}$, all fit the conclusion.

a	2	4	7	8	11	13
j	2	1	2	2	1	2
$a^{2^{j-1} k} \bmod 15$	4	4	4	4	11	4

Proof. By Euler's theorem, each $a \in\{2, \ldots, n-2\}$ that is relatively prime to n satisfies $a^{2^{2} k} \equiv 1 \bmod n$. Thus $a^{k} \bmod n$ has order dividing $2^{e}:$ its order is 2^{j} for some $j \in\{0, \ldots, e\}$, which means j is minimal such that $a^{2^{j} k} \equiv 1 \bmod n$. We have $j=0$ if and only if $a^{k} \equiv$ $1 \bmod n$, and for $j \geq 1$ the only $i \in\{0, \ldots, e-1\}$ for which we could have $a^{2^{i} k} \equiv-1 \bmod n$ is $i=j-1$.

By the proof of Corollary 4.2 (which was left to the reader), the set of $a \in\{1, \ldots, n-1\}$ such that $a^{k} \equiv 1 \bmod n$ or $a^{2^{i} k} \equiv-1 \bmod n$ for some $i \in\{0, \ldots, e-1\}$ is contained in a proper subgroup of the invertible numbers $\bmod n$ and thus such a form at most half of all a in $\{1, \ldots, n-1\}$ that are relatively prime to n. This includes $a=1$ and $a=n-1$. So for

[^7]at least half of a in $\{2, \ldots, n-2\}$ that are relatively prime to n we have $a^{k} \not \equiv 1 \bmod n$ and $a^{2^{i} k} \not \equiv-1 \bmod n$ for all $i \in\{0, \ldots, e-1\}$. Those two conditions are equivalent to saying $j \geq 1$ and $a^{2^{j-1} k} \not \equiv-1 \bmod n$, where j is the order of $a^{k} \bmod n$.
Corollary A.2. For odd $n>1$ that is not a prime power, let $\varphi(n)=2^{e} k$ where $e \geq 1$ and k is odd. For at least 50% of $a \in\{2, \ldots, n-2\}$ either $1<(a, n)<n$ or there is $j \in\{1, \ldots, e\}$ such that $1<\left(a^{2^{j-1} k}-1, n\right)<n$.
Proof. By Theorem A.1, for at least 50% of a in $\{2, \ldots, n-2\}$ such that $(a, n)=1, a^{k} \bmod n$ has order 2^{j} where $j \geq 1$ and $a^{2^{j-1} k} \not \equiv-1 \bmod n$. Since $a^{2^{e} k}=a^{\varphi(n)} \equiv 1 \bmod n, j \leq e$. Then $\left(a^{2^{j-1} k}-1\right)\left(a^{2^{j-1} k}+1\right) \equiv 0 \bmod n$ and $a^{2^{j-1} k}-1$ is not a multiple of n by minimality of j, and is not relatively prime to n since $a^{2^{j-1} k} \not \equiv-1 \bmod n$. Thus $1<\left(a^{2^{j-1} k}-1, n\right)<n$, so ($a^{2^{j-1} k}-1, n$) is a nontrivial factor of n. For all a in $\{2, \ldots, n-2\}$ that are not relatively prime to $n,(a, n)$ is a nontrivial factor of n. So either (a, n) or $\left(a^{2^{j-1} k}-1, n\right)$ for some $j \in\{1, \ldots, e\}$ is a nontrivial factor of n for over 50% of a if we know $\varphi(n)$.
Example A.3. Let $n=12127237$. It turns out that $\varphi(n)=12119436=2^{2} \cdot 3029859=$ $2^{e} k$. A random integer in $\{2, \ldots, n-2\}$ offered by a computer is $a=7169940$. Since $a^{k} \equiv-1 \bmod n$, this is not helpful. Another random integer in that range is $a=4689982$, for which $a^{k} \equiv 2614459 \bmod n$ and $a^{2 k} \equiv 1 \bmod n$, so a nontrivial factor of n is $\left(a^{k}-1, n\right)=$ $(2614458, n)=5659: n=5659 \cdot 2143$.

The hypotheses of Corollary A. 2 are mild. Indeed, it is trivial to determine whether a specified integer $n>1$ is odd and it is computationally easy to determine if n is a perfect power: if $n=b^{c}$ where $b \geq 2$ and $c \geq 2$ then from $n \geq 2^{c}$ we get $2 \leq c \leq \log _{2} n$. For each c in that range (much shorter than the size of n itself) check whether $\sqrt[c]{n}$ is in Z. Therefore Corollary A. 2 tells us that, from the viewpoint of probabilistic algorithms, being able to compute $\varphi(n)$ is at least as hard a problem as finding a nontrivial factor of n.

The reasoning in the proofs of Theorem A. 1 and Corollary A. 2 would continue to work if $\varphi(n)$ is replaced by a multiple of $\varphi(n)$: all we used about e and k in the proof was that $a^{2^{e} k} \equiv 1 \bmod n$ for all a relatively prime to n, and that holds when $2^{e} k$ is a multiple of $\varphi(n)$. Moreover, since $d|n \Rightarrow \varphi(d)| \varphi(n)$, if we know a multiple of $\varphi(n)$ then that same number is a multiple of $\varphi(d)$ for every factor d of n. Therefore knowing a multiple of $\varphi(n)$, when $n>1$ is odd and not a prime power, lets us apply Corollary A. 2 repeatedly as a probabilistic algorithm to the factors of n that we find in order to fully factor n into primes (use the Miller-Rabin test as a way of deciding if a factor is or is not prime).

How long should we expect this factorization algorithm to take? We won't do a careful complexity analysis, but only indicate why things should run quickly as a function of the starting number n. Since over 50% of integers in $\{2, \ldots, n-2\}$ lead to a nontrivial factor of n in the setting of Corollary A.2, we expect on average to need only 2 applications of the corollary to find one new nontrivial factor (after first checking if n is even or a perfect power). Repeating this until we reach a prime factorization should not take long since the number of prime factors of n is small compared with n itself: if $n=p_{1} \ldots p_{r}$ is a product of r primes, some possibly being repeated, then $n \geq 2^{r}$ so $r \leq \log _{2} n$.

We have shown that a procedure that tells us $\varphi(n)$ (or a multiple of it) for general n leads to an efficient probabilistic algorithm for prime factorization. Conversely, knowing the prime factorization of n lets us easily compute $\varphi(n)$, so computing prime factorizations and computing the Euler φ-function are essentially the same level of difficulty if we allow the use of probabilistic algorithms: each task is reducible to the other in polynomial time.

This approach to factoring n seems to depend on knowing $\varphi(n)$ or a multiple of $\varphi(n)$. We can modify the procedure in the following way to avoid using $\varphi(n)$ or a multiple of it in the calculations (only using it in a proof).
Corollary A.4. For odd $n>1$ that is not a prime power, over 50% of $a \in\{2, \ldots, n-2\}$ satisfy one the following two conditions:
(1) $(a, n)>1$,
(2) $(a, n)=1, a \bmod n$ has even order t, and $a^{t / 2} \not \equiv-1 \bmod n$.

In the first case, (a, n) is a nontrivial factor of n. In the second case, $\left(a^{t / 2}-1, n\right)$ and ($a^{t / 2}+1, n$) are complementary nontrivial factors of n.

Proof. Let $\varphi(n)=2^{e} k$ where $e \geq 1$ and k is odd. By Theorem A.1, for at least 50% of all a in $\{2, \ldots, n-2\}$ that are relatively prime to n the order 2^{j} of $a^{k} \bmod n$ has $j \geq 1$ and $a^{2^{j-1} k} \not \equiv-1 \bmod n$. For such a, let $a \bmod n$ have order t. Then $t \mid 2^{j} k$ since $a^{2^{j} k} \equiv 1 \bmod n$ and $t \nmid 2^{j-1} k$ since $a^{2^{j-1} k} \not \equiv-1 \bmod n$. Thus the 2-power in t is 2^{j}, so t is even.

Writing $t=2^{j} t^{\prime}$ for odd t^{\prime} we have $t^{\prime} \mid k$. To prove $a^{t / 2} \not \equiv-1 \bmod n$ we argue by contradiction. If $a^{t / 2} \equiv-1 \bmod n$ then $a^{2^{j-1} t^{\prime}} \equiv-1 \bmod n$. Raising both sides to the k / t^{\prime}-power, $a^{2^{j-1} k} \equiv(-1)^{k / t^{\prime}} \equiv-1 \bmod n$ since k / t^{\prime} is odd. This contradicts $a^{2^{j-1} k} \not \equiv$ $-1 \bmod n$. We have proved at least 50% of a in $\{2, \ldots, n-2\}$ that are relatively prime to n satisfy condition (2) in the corollary.

From $a^{t} \equiv 1 \bmod n,\left(a^{t / 2}+1\right)\left(a^{t / 2}-1\right) \equiv 0 \bmod n$. If $\left(a^{t / 2}-1, n\right)=1$ then $a^{t / 2}+1 \equiv$ $0 \bmod n$, but we just saw $a^{t / 2} \not \equiv-1 \bmod n$. If $\left(a^{t / 2}-1, n\right)=n$ then $a^{t / 2} \equiv 1 \bmod n$, which contradicts t being the order of $a \bmod n$. Thus $\left(a^{t / 2}-1, n\right)$ lies strictly between 1 and n when a satisfies (2). It is left to the reader to show $\left(a^{t / 2}+1, n\right)=n /\left(a^{t / 2}-1, n\right)$.

Among the a in $\{2, \ldots, n-2\}$, those that are not relatively prime to n all satisfy (1) and at least half that are relatively prime to n satisfy (2), so over half satisfy (1) or (2).

Corollary A. 4 suggests the following algorithm for finding a nontrivial factor of odd composite $n>1$, preferably to be used only after applying iterations of the Miller-Rabin test to n until we find a witness and thus know n is composite.

Step 1. Check if n is a perfect power: $n \stackrel{?}{=} b^{c}$ where $b \geq 2$ and $c \geq 2$. (Necessarily $n \geq 2^{c}$ so $2 \leq c \leq \log _{2} n$, and for each such c we can check if $\sqrt[c]{n}$ is an integer or not.) If this happens then b is a nontrivial factor of n and we stop. Otherwise n is not a perfect power and go to the next step.

Step 2. Pick random a in $\{2, \ldots, n-2\}$.
Step 3. Check (by Euclid's algorithm) if $(a, n)>1$. If so then (a, n) is a nontrivial factor of n and we stop. Otherwise go to the next step.

Step 4. If $(a, n)=1$ then check if $a \bmod n$ has even order. If the order is odd then return to Step 2.

Step 5. If the order t of $a \bmod n$ is even, check if $a^{t / 2} \not \equiv-1 \bmod n$. If so then $\left(a^{t / 2}-1, n\right)$ is a nontrivial factor of n and stop.

Step 6. If $a^{t / 2} \equiv-1 \bmod n$ then return to Step 2.
By Corollary A.4, the probability that a in Step 2 leads to a nontrivial factor of n in Steps 3 or 5 is over 50%, so when n is composite we expect only a few iterations are needed for the algorithm to reveal a nontrivial factor of n. While the Miller-Rabin test itself does not appear in the implementation of Steps 1 through 6 , its ideas were used above to justify the 50% lower bound for the algorithm to stop in each round at Steps 3 or 5 .

Example A.5. Let $n=68,421,093,311$. Since $2^{n-1} \equiv 15,891,188,482 \not \equiv 1 \bmod n$, the number n is definitely composite.

A computer's random number generator in the range $\{2, \ldots, n-2\}$ spits out first $a=$ $546,802,896$. We have $(a, n)=1$ and the order of $a \bmod n$ is $t=17,091,292,870$, which is even. Since $a^{t / 2} \equiv 31,266,883,924 \not \equiv-1 \bmod n$, a nontrivial factor of n is $\left(a^{t / 2}-1, n\right)=$ $(31,266,883,923, n)=2243$. As a check, $n / 2243=30,504,277$.

This appears to be a fantastic method of factoring (odd) numbers once we are sure they are composite. But there's a catch, and it's in Step 4: computing the order of $a \bmod n$ in general could take a very long time relative to the size of n on a classical computer. (The numbers in the example are small enough that a classical computer ran each of the steps on them in at most a few seconds.) In the 1990s Peter Shor discovered how to make the calculation of the order of $a \bmod n$ run quickly (polynomial time in $\log n$) on a quantum computer [10]. The six-step algorithm above is called Shor's algorithm.

References

[1] M. M. Artjuhov, "Certain criteria for primality of numbers connected with the little Fermat theorem" (Russian), Acta Arith. 12 (1966/1967), 355-364. URL http://matwbn.icm.edu.pl/ksiazki/aa/aa12/ aa12125.pdf.
[2] M. M. Artjuhov, "Certain possibilities for a converse to the little Fermat theorem" (Russian), Acta Arith. 13 (1967/1968), 455-464. URL http://matwbn.icm.edu.pl/ksiazki/aa/aa13/aa13128.pdf.
[3] E. Bach, "Explicit bounds for primality testing and related problems," Math. Comp. 55 (1990), 355-380.
[4] E. Bach and R. Fernando, "Infinitely many Carmichael Numbers for a Modified Miller-Rabin Test," https://arxiv.org/abs/1512.00444.
[5] M. Dietzfelbinger, Primality Testing in Polynomial Time: from Randomized Algorithms to "PRIMES is in P", Springer-Verlag, Berlin, 2004.
[6] S. B. Gashkov, "Simplified justification of the probabilistic Miller-Rabin test for primality," Discrete Math. Appl. 8 (1998), 545-548. (Translated from Russian, original in Diskret. Mat. 10 (1998), 35-38.)
[7] G. L. Miller, "Riemann's Hypothesis and tests for primality," J. Computer and System Sciences 13 (1976), 300-317.
[8] L. Monier, "Evaluation and comparison of two efficient probabilistic primality testing algorithms," Theoretical Computer Science 12 (1980), 97-108.
[9] M. O. Rabin, "Probabilistic algorithm for testing primality," J. Number Theory 12 (1980), 128-138.
[10] P. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer," https://arxiv.org/pdf/quant-ph/9508027.pdf.
[11] R. M. Solovay and V. Strassen, "A fast Monte-Carlo test for primality," SIAM Journal on Computing 6 (1977), 84-85.
[12] R. M. Solovay and V. Strassen, "Erratum: A fast Monte-Carlo test for primality," SIAM Journal on Computing 7 (1978), 1.

[^0]: ${ }^{1}$ See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/solovaystrassen.pdf

[^1]: ${ }^{2}$ Miller did not rely on Bach's work involving GRH, which had not yet appeared. He relied instead on similar but less precise consequences of GRH due to Ankeny.

[^2]: ${ }^{3}$ What we just proved, that the only solutions to $x^{2}=1$ modulo an odd prime power are ± 1, will be used again in our proof of Theorem 2.9. It is false for powers of 2 starting with 8 : modulo 2^{α} for each $\alpha \geq 3$ there are 4 square roots of unity.

[^3]: ${ }^{4}$ We will see in Section 6 that every Euler witness is a Miller-Rabin witness, so the 50% lower bound for the proportion of Miller-Rabin witnesses also follows from the 50% lower bound for the proportion of Euler witnesses, but a proof that way is harder.
 ${ }^{5}$ When $n=p^{\alpha}$, the number of $a \bmod n$ such that $a^{p-1} \equiv 1 \bmod n$ turns out to be $p-1$, so the number of invertible $a \bmod n$ such that $a^{p-1} \not \equiv 1 \bmod n$ is $\varphi(n)-(p-1)=\left(p^{\alpha-1}-1\right)(p-1)>p^{\alpha-1}-1>1$.

[^4]: ${ }^{6}$ It can happen that $W /(n-1)=3 / 4$: see $n=9$ in Example 2.5. This is the only time $W /(n-1)=3 / 4$.

[^5]: ${ }^{7}$ This differs from the notation p_{1}, \ldots for prime factors of n in Section 5 , where the primes were distinct.

[^6]: ${ }^{8}$ If $a^{(n-1) / 2} \equiv 1 \bmod n$ and $\left(\frac{a}{n}\right)=-1, a$ is an Euler witness for n and thus is a Miller-Rabin witness for n. There is no contradiction because a Miller-Rabin sequence can have 1 as its last term.

[^7]: ${ }^{9}$ Artjuhov's proof is identical to the proof Solovay and Strassen rediscovered in [11]; Solovay and Strassen extended the test to square n in [12].

