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1. Introduction

The Miller–Rabin test is the most widely used probabilistic primality test. For odd
composite n > 1, over 75% of numbers from to 2 to n− 1 are witnesses in the Miller–Rabin
test for n. We will describe the test, prove the 75% lower bound (an improvement on the
50% lower bound in the Solovay–Strassen test.1), and in an appendix use the main idea
in the test to show factoring n into primes and computing ϕ(n) are similar computational
tasks.

2. The Miller–Rabin test

The Fermat and Solovay–Strassen tests are each based on translating a congruence mod-
ulo prime numbers, either Fermat’s little theorem or Euler’s congruence, over to the setting
of composite numbers and hoping to make it fail there. The Miller–Rabin test uses a similar
idea, but involves a system of congruences.

For an odd integer n > 1, factor out the largest power of 2 from n− 1, say n− 1 = 2ek
where e ≥ 1 and k is odd. This meaning for e and k will be used throughout. The
polynomial xn−1 − 1 = x2

ek − 1 can be factored repeatedly as often as we have powers of 2
in the exponent:

x2
ek − 1 = (x2

e−1k)2 − 1

= (x2
e−1k − 1)((x2

e−1k + 1)

= (x2
e−2k − 1)(x2

e−2k + 1)((x2
e−1k + 1)

...

= (xk − 1)(xk + 1)(x2k + 1)(x4k + 1) · · · (x2e−1k + 1).

If n is prime and 1 ≤ a ≤ n − 1 then an−1 − 1 ≡ 0 mod n by Fermat’s little theorem, so
using the above factorization we have

(ak − 1)(ak + 1)(a2k + 1)(a4k + 1) · · · (a2e−1k + 1) ≡ 0 mod n.

When n is prime one of these factors must be 0 mod n, so

(2.1) ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 1}.

Example 2.1. If n = 13 then n − 1 = 4 · 3, so e = 2, k = 3, and (2.1) says a3 ≡ 1 mod n
or a3 ≡ −1 mod n or a6 ≡ −1 mod n for each a from 1 to 12.

Example 2.2. If n = 41 then n − 1 = 8 · 5, so e = 3, k = 5, and (2.1) says a5 ≡ 1 mod n
or one of a5, a10, or a20 is congruent to −1 mod n for each a from 1 to 40.

1See https://kconrad.math.uconn.edu/blurbs/ugradnumthy/solovaystrassen.pdf
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The congruences in (2.1) make sense for all odd n > 1, prime or not. Their simultaneous
failure for some a in {1, . . . , n− 1} will lead to a primality test.

Definition 2.3. For odd n > 1, write n− 1 = 2ek with k odd and pick a ∈ {1, . . . , n− 1}.
We say a is a Miller–Rabin witness for n if all of the congruences in (2.1) are false:

ak 6≡ 1 mod n and a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e− 1}.

We say a is a Miller–Rabin nonwitness for n (and n is called a strong pseudoprime to the
base a) if one of the congruences in (2.1) is true:

ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 1}.

As in the Fermat and Solovay–Strassen tests, we are using the term “witness” to mean a
number that proves n is composite. An odd prime has no Miller–Rabin witnesses, so when
n has a Miller–Rabin witness it must be composite.

In the definition of a Miller–Rabin witness, the case i = 0 says ak 6≡ −1 mod n, so another

way of describing a witness is ak 6≡ ±1 mod n and a2
ik 6≡ −1 mod n for all i ∈ {1, . . . , e−1},

where this range of values for i is empty if e = 1 (that is, if n ≡ 3 mod 4).

Example 2.4. If n ≡ 3 mod 4 then e = 1 (and conversely). In this case k = (n − 1)/2,

so a is a Miller–Rabin witness for n if a(n−1)/2 6≡ ±1 mod n, while a is a Miller–Rabin
nonwitness for n if a(n−1)/2 ≡ ±1 mod n.

Miller–Rabin witnesses and nonwitnesses can also be described using the list of powers

(2.2) (ak, a2k, a4k, . . . , a2
e−1k) = ({a2ik})e−1i=0

with all terms considered modulo n. We call this the Miller–Rabin sequence for n that is
generated by a. For example, to write a Miller–Rabin sequence for n = 57 write 57 − 1 =
23 · 7. Since e = 3 and k = 7, the Miller–Rabin sequence for 57 that is generated by a is
(a7, a14, a28). Each term in a Miller–Rabin sequence is the square of the previous term, so
if 1 occurs in the sequence then all later terms are 1. If −1 occurs in the sequence then all
later terms are also 1. Thus −1 can occur at most once in this sequence. If 1 ≤ a ≤ n− 1
then a is a Miller–Rabin nonwitness for n if and only if (2.2) looks like

(1, . . . ) mod n or (. . . ,−1, . . . ) mod n

and a is a Miller–Rabin witness for n if and only if (2.2) is anything else: the first term is
not 1 (equivalently, the terms in the Miller–Rabin sequence are not all 1) and there is no
−1 anywhere in (2.2). So 1 and n− 1 are always Miller-Rabin nonwitnesses for n.

Example 2.5. Let n = 9. Since n − 1 = 8 = 23, e = 3 and k = 1. The Miller–Rabin
sequence for 9 generated by a is (a, a2, a4) mod 9. In the table below we list this sequence
for a = 1, 2, . . . , 8. The Miller–Rabin witnesses for 9 are 2, 3, 4, 5, 6, and 7.

a mod 9 1 2 3 4 5 6 7 8

a2 mod 9 1 4 0 7 7 0 4 1
a4 mod 9 1 7 0 4 4 0 7 1

Example 2.6. Let n = 29341. Since n − 1 = 22 · 7335, the Miller–Rabin sequence for n
generated by a is (ak, a2k) mod n where k = 7335. When a = 2, the Miller–Rabin sequence
is (26424, 29340). The last term is −1 mod n, so −1 appears and therefore 2 is not a Miller–
Rabin witness for n. When a = 3 the Miller–Rabin sequence is (22569, 1). The first term
is not 1 and no term is −1, so 3 is a Miller–Rabin witness for n and thus n is composite.
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Example 2.7. Let n = 30121. Since n − 1 = 23 · 3765, the Miller–Rabin sequence for n
generated by a is (ak, a2k, a4k) mod n where k = 3765. When a = 2, this sequence is (330,
18537,1). The first term is not 1 and no term is −1 mod n, so 2 is a Miller–Rabin witness
for n. Thus n is composite.

Example 2.8. Let n = 75361. Since n − 1 = 25 · 2355, the Miller–Rabin sequence for n
generated by a is (ak, a2k, a4k, a8k, a16k) mod n where k = 2355. When a = 2, this sequence
is (15036,73657, 39898,1,1). The first term is not 1 and there is no −1 mod n, so 2 is a
Miller–Rabin witness for n. Thus n is composite.

For odd n > 1, numbers a in {1, . . . , n−1} that reveal n to be composite by the Solovay-
Strassen test are called Euler witnesses. It means either (i) (a, n) > 1 or (ii) (a, n) = 1 and

a(n−1)/2 6≡ ( an) mod n, where ( an) is a Jacobi symbol. The first odd composite number where

2 and 3 are not Euler witnesses is 1729: a(1729−1)/2 ≡ ( a
1729) ≡ 1 mod 1729 when a is 2 or

3. The first odd composite number where 2 and 3 are not Miller–Rabin witnesses is much
bigger: n = 1373653. Since n−1 = 22·343413, a Miller–Rabin sequence for n is (ak, a2k) mod
n where k = 343413. The Miller–Rabin sequence generated by 2 is (890592, 1373652), with
the last term being −1 mod n, and the Miller–Rabin sequence generated by 3 is (1, 1). The
number 5 is a Miller–Rabin witness for n: it generates the Miller–Rabin sequence (1199564,
73782). An exhaustive computer search shows that every odd positive composite number
less than 1010 has 2, 3, 5, or 7 as a Miller–Rabin witness except for 3215031751, and 11 is
a Miller–Rabin witness for that number.

There is a more intuitive way to think about Miller–Rabin witnesses. For odd prime n,
rewrite the congruence an−1 ≡ 1 mod n from Fermat’s little theorem as (ak)2

e ≡ 1 mod n,
so if ak 6≡ 1 mod n, then the order of ak mod n is 2j for some j ∈ {1, . . . , e}. Thus x :=

a2
j−1k mod n has x2 ≡ 1 mod n and x 6≡ 1 mod n. The only square roots of 1 modulo an odd

prime n are ±1 mod n, so if ak 6≡ 1 mod n and none of the numbers ak, a2k, a4k, . . . , a2
e−1k is

−1 mod n then we have a contradiction: n isn’t prime. We have rediscovered the definition
of a Miller–Rabin nonwitness, and it shows us that the idea behind Miller–Rabin witnesses
is to find an unexpected square root of 1 mod n. That is not always what happens, since the
premise an−1 ≡ 1 mod n for prime n might not occur when n is composite. For instance,
in Example 2.5, each Miller–Rabin witness a for 9 is not a square root of 1 mod 9 and
a8 6≡ 1 mod 9.

Euler witnesses are always Miller–Rabin witnesses (Theorem 6.1), and sometimes they are
the same set of numbers (Corollary 6.2), but when there are more Miller–Rabin witnesses
than Euler witnesses there can be a lot more. This is not very impressive for n = 30121,
whose proportion of Euler witnesses is an already high 96.4% and its proportion of Miller–
Rabin witnesses is 99.1%. But for n = 75361, the proportion of Euler witnesses is 61.7%
while the proportion of Miller–Rabin witnesses is a much higher 99.4%.

The next theorem gives a lower bound on the proportion of Miller–Rabin witnesses for
odd composite numbers. Since 1 and n− 1 are never Miller–Rabin witnesses, we search for
Miller–Rabin witnesses in {2, . . . , n− 2}.

Theorem 2.9. Let n > 1 be odd and composite.
The proportion of integers from 2 to n−2 that are Miller–Rabin witnesses for n is greater

than 75%. Equivalently, the proportion of integers from 2 to n − 2 that are Miller–Rabin
nonwitnesses for n is less than 25%.
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Theorem 2.9, due independently to Miller [9] and Monier [8], will be proved in Section
5. The proof is complicated, so first in Section 4 we will prove in a simpler way that the
proportion of Miller–Rabin witnesses is greater than 50%, and the ideas in that proof will
be useful for us when we later show the bound is at least 75%. This 75% is probably sharp
as an asymptotic lower bound: Monier [8, p. 102] showed that if p and 2p − 1 are prime
and p ≡ 3 mod 4 then the proportion of Miller–Rabin witnesses for p(2p− 1) tends to 75%
if we can let p→∞, and it’s expected that we can: it is conjectured that p and 2p− 1 are
both prime for infinitely many primes p ≡ 3 mod 4.

Example 2.10. For the prime p = 79, 2p − 1 = 157 is also prime and the proportion of
Miller–Rabin witnesses for n = p(2p− 1) = 12403 in {2, . . . , n− 2} is 9360/12401 ≈ 75.4%.

Here is the Miller–Rabin test for deciding if an odd n > 1 is prime. In the last step
we appeal to the bound in Theorem 2.9.

(1) Pick an integer t ≥ 1 to be the number of trials for the test.
(2) Randomly pick an integer a from 2 to n− 2.
(3) If a is a Miller–Rabin witness for n then stop the test and declare (correctly) “n is

composite.”
(4) If a is not a Miller–Rabin witness for n then go to step 2 and pick another random

a from 2 to n− 2.
(5) If the test runs for t trials without terminating then say “n is prime with probability

at least 1− 1/4t.”

(A better probabilistic heuristic in the last step, using Bayes’ rule, should use the lower
bound 1− (log n)/4t and we need to pick t at the start so that 4t > log n.)

The Generalized Riemann Hypothesis (GRH), which is one of the most important un-
solved problems in mathematics, implies the Miller–Rabin test can be converted from a
probabilistic primality test into a deterministic primality test that runs in polynomial time:
Bach [3] showed from GRH that some Miller–Rabin witness for n is at most 2(log n)2 if n
has a Miller–Rabin witness at all.

Historically things were reversed: Miller introduced “Miller’s test” in a deterministic form
assuming GRH,2 and a few years later Rabin proved Theorem 2.9 to make the method of
Miller’s test no longer dependent on an unproved hypothesis if it is treated as a probabilistic
test. This became the Miller–Rabin test. We will discuss its history further in Section 7.

3. Multiplication of Miller–Rabin nonwitnesses

Here are descriptions of nonwitnesses for the Fermat test, Solovay–Strassen test, and
Miller–Rabin test. For odd n > 1 and 1 ≤ a ≤ n− 1,

(i) a is a Fermat nonwitness for n when

an−1 ≡ 1 mod n,

(ii) a is an Euler nonwitness for n when

(a, n) = 1 and a(n−1)/2 ≡
(a
n

)
mod n,

and

2Miller did not rely on Bach’s work involving GRH, which had not yet appeared. He relied instead on
similar but less precise consequences of GRH due to Ankeny.
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(iii) a is a Miller–Rabin nonwitness for n when

ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 1}.

In all three cases, 1 and n−1 are nonwitnesses (note n is odd). Another common feature
is that all three types of nonwitnesses are relatively prime to n. It is easy to see that the
Fermat nonwitnesses and Euler nonwitnesses for n each form a group under multiplication
mod n. If n is composite then the Euler nonwitnesses for n are a proper subgroup of the
invertible numbers mod n, and this is also true for the Fermat nonwitnesses for n if n is
not a Carmichael number. That is why the proportions of Fermat nonwitnesses (for non-
Carmichael n) and Euler nonwitnesses are each less than 50% when n is composite, which
makes the proportions of Fermat witnesses and Euler witnesses each greater than 50%.

The set of Miller–Rabin nonwitnesses is often not a group under multiplication mod
n: the product of two Miller–Rabin nonwitnesses for n could be a witness. (Since 1 is a
Miller–Rabin nonwitness for each n and the multiplicative inverse mod n of a Miller–Rabin
nonwitness for n is a Miller–Rabin nonwitness for n, the only reason the nonwitnesses might
not be a group has to be failure of closure under multiplication.)

Example 3.1. The Miller–Rabin nonwitnesses for 65 are 1, 8, 18, 47, 57, and 64. Modulo
65 we have 8 · 18 = 14 but 14 is a Miller–Rabin witness for 65. The Miller–Rabin sequences
for 65 generated by 8 and 18 are (8, 64, 1, 1, 1, 1) and (18, 64, 1, 1, 1, 1), which each include
−1 mod 65 in the second position, while the sequence generated by 14 is (14, 1, 1, 1, 1, 1),
which does not start with 1 or include −1 anywhere.

Example 3.2. The Miller–Rabin nonwitnesses for 85 are 1, 13, 38, 47, 72, 84, but modulo
85 we have 13 · 38 = 69 and 69 is a Miller–Rabin witness for 85.

We can understand why the Miller–Rabin nonwitnesses for n might not be a group under
multiplication mod n by thinking about how the different conditions for being a nonwitness
interact under multiplication. First of all, if n ≡ 3 mod 4 then the Miller–Rabin witnesses
for n are the solutions to ak ≡ ±1 mod n (Example 2.4), which form a group. If n ≡ 1 mod 4
(so e ≥ 2) and a and b are Miller–Rabin nonwitnesses for n then this could happen in three
ways (up to the ordering of a and b):

(i) ak ≡ ±1 mod n and bk ≡ ±1 mod n,

(ii) a2
ik ≡ −1 mod n for some i from 1 to e− 1 and bk ≡ ±1 mod n,

(iii) a2
ik ≡ −1 mod n and b2

i′k ≡ −1 mod n for some i and i′ from 1 to e− 1.

In (i), (ab)k ≡ ±1 mod n, so ab mod n is a Miller–Rabin nonwitness for n.

In (ii), b2
ik ≡ 1 mod n since i > 0, so (ab)2

ik ≡ −1 mod n and again ab mod n is a
Miller–Rabin nonwitness for n.

In (iii), ab mod n is a nonwitness if i 6= i′ for a reason similar to (ii), but there is a

potential problem when i = i′ since (ab)2
ik ≡ (−1)(−1) ≡ 1 mod n with i > 0 and for ab

to be a nonwitness for n we have to rely on information about terms in the Miller–Rabin
sequence generated by ab before the i-th term. We see this happening in Example 3.1: the
Miller–Rabin sequences for 65 generated by 8 and 18 each contain −1 in the second term,
which cancel under multiplication, but their first terms don’t have product ±1 mod 65.

From this case-by-case analysis, we see that the product of two Miller–Rabin nonwitnesses

a and b might not be a nonwitness only if n ≡ 1 mod 4 and a2
ik ≡ b2

ik ≡ −1 mod n for a
common choice of i, or in other words when −1 mod n occurs in the same position past the
first position in the Miller–Rabin sequences generated by a and b.
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The following two theorems give different conditions on odd n > 1 that guarantee the
Miller–Rabin nonwitnesses are a group under multiplication mod n. We’ll write � mod n
for a perfect square modulo n.

Theorem 3.3. If −1 6≡ � mod n then the Miller–Rabin nonwitnesses for n are the solutions
to ak ≡ ±1 mod n, which form a group under multiplication mod n.

Proof. If −1 6≡ � mod n then the congruence a2
ik ≡ −1 mod n has no solution for i > 0, so

the Miller–Rabin nonwitnesses for n are the a ∈ {1, . . . , n− 1} that satisfy ak ≡ ±1 mod n.
This congruence condition on a clearly defines a group under multiplication mod n. �

A simple case where −1 6≡ � mod n is when n ≡ 3 mod 4, and for such n its Miller–Rabin
nonwitnesses are {1 ≤ a ≤ n− 1 : a(n−1)/2 ≡ ±1 mod n}.

Theorem 3.4. If n = pα for prime p and α ≥ 1, the Miller–Rabin nonwitnesses for n are
the solutions to ap−1 ≡ 1 mod pα, which form a group under multiplication mod n.

We allow α = 1, corresponding to n being prime, since the theorem is valid in that case.

Proof. Let a ∈ {1, . . . , n − 1} be a Miller–Rabin nonwitness and n − 1 = 2ek. Since a is

relatively prime to n = pα, Euler’s theorem tells us aϕ(n) ≡ 1 mod n. At the same time, as

a nonwitness we have either ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ≤ e−1, and both

cases imply a2
ek ≡ 1 mod n, or equivalently an−1 ≡ 1 mod n. Thus the order of a mod n

divides (ϕ(n), n− 1) = (pα−1(p− 1), pα− 1). Since p is relatively prime to pα− 1 and p− 1
divides pα − 1, we have (pα−1(p− 1), pα − 1) = p− 1, so ap−1 ≡ 1 mod pα.

Conversely, suppose ap−1 ≡ 1 mod pα. We will show ak ≡ 1 mod pα or a2
ik ≡ −1 mod pα

for some i ≤ e− 1. Write p− 1 = 2f `, where f ≥ 1 and ` is odd. Since p− 1 is a factor of

pα − 1 = 2ek, we have f ≤ e and ` | k. Since (a`)2
f ≡ 1 mod pα, the order of a` mod pα is

2j for some j ∈ {0, . . . , f}.
If j = 0, so a` ≡ 1 mod pα, then ak ≡ 1 mod pα as ` | k.

If instead j ≥ 1, then x := (a`)2
j−1

satisfies x 6≡ 1 mod pα but x2 ≡ 1 mod pα. Thus
pα | (x + 1)(x − 1) and x + 1 and x − 1 have difference 2, so at most one of them can be
divisible by p and that number therefore has to absorb the entire factor pα. In other words,
pα | (x+1) or pα | (x−1), so x ≡ ±1 mod pα.3 Since x 6≡ 1 mod pα, we get x ≡ −1 mod pα.

Recalling what x is, a2
j−1` ≡ −1 mod pα. Since ` | k and k is odd, raising both sides to the

k/` power gives us a2
ik ≡ −1 mod pα where i = j − 1 ∈ {0, . . . , f − 1} ⊂ {0, . . . , e− 1}. �

The sufficient conditions in Theorems 3.3 and 3.4 turn out to be necessary too: for odd
n > 1 such that −1 ≡ � mod n and n has at least two different prime factors, the Miller–
Rabin nonwitnesses for n do not form a group under multiplication. We omit a proof.

Although the Miller–Rabin nonwitnesses for an odd composite n > 1 are not always a
group under multiplication mod n, they are always contained in a proper subgroup of the
invertible numbers mod n, as we will see in Sections 4 and 5. This allows work on the
Generalized Riemann Hypothesis (GRH) as described at the end of Section 3 to be applied:
if GRH is true then each odd composite n > 1 has a Miller–Rabin witness ≤ 2(log n)2, so
the truth of GRH would imply the Miller–Rabin test is deterministic in polynomial time.

3What we just proved, that the only solutions to x2 = 1 modulo an odd prime power are ±1, will be
used again in our proof of Theorem 2.9. It is false for powers of 2 starting with 8: modulo 2α for each α ≥ 3
there are 4 square roots of unity.
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4. Proving the proportion of Miller–Rabin witnesses is over 50%

The proof of the 75% lower bound for the proportion of Miller–Rabin witnesses for an
odd composite n > 1 (Theorem 2.9) is not easy. It is much easier to prove the proportion
is over 50%4 so we present this argument here first.

Theorem 4.1. If n > 1 is odd and composite then the proportion of Miller–Rabin witnesses
for n in {2, . . . , n − 2} is over 50%. That is, over 50% of a ∈ {2, . . . , n − 2} satisfy

ak 6≡ 1 mod n and a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e− 1}, where n− 1 = 2ek.

Proof. We will show the proportion of Miller–Rabin nonwitnesses for n in {1, . . . , n− 1} is
less than 50% by showing they are contained in a proper subgroup of the invertible numbers
mod n. Since a proper subgroup of a group is at most half the size of the group, the set of
Miller–Rabin witnesses for n in {1, . . . , n− 1} includes at least half the invertible numbers
mod n (it never includes 1 and n − 1) and it includes all the noninvertible numbers mod
n in {1, . . . , n − 1} (there are noninvertible numbers mod n, as n is composite). Thus the
proportion of Miller–Rabin witnesses for n in {1, . . . , n − 1} is over 50%. What about the
proportion of Miller–Rabin witnesses for n in {2, . . . , n− 2}, where we remove 1 and n− 1
from the count since they can’t be Miller–Rabin witnesses for n? Letting W be the number
of Miller–Rabin witnesses for n in {1, . . . , n−1}, we have at first W/(n−1) > 1/2 and that
implies W/(n− 3) > W/(n− 1) > 1/2 too, which is the desired conclusion.

To explain why the Miller–Rabin nonwitnesses for n are in a proper subgroup of the
invertible numbers mod n, we take cases if n is a prime power or not a prime power.

Case 1: n is a prime power. Write n = pα where p is an odd prime and α ≥ 2. By
Theorem 3.4, the Miller–Rabin nonwitnesses for n are the a in {1, . . . , n − 1} such that
ap−1 ≡ 1 mod n, and they form a group under multiplication mod n. The order of each
such a mod n divides p−1, and some invertible numbers mod n have order p, with 1+pα−1

being one of them. Therefore the Miller–Rabin nonwitnesses for n form a proper subgroup
of the invertible numbers mod n, and we explained at the start of the proof why this is
sufficient.5

Case 2: n is not a prime power. Let i0 ∈ {0, . . . , e − 1} be maximal such that some

a0 ∈ Z satisfies a2
i0

0 ≡ −1 mod n. (Since (−1)2
0

= −1 there is an i0, and a0 is automatically
relatively prime to n.) The set

Gn = {1 ≤ a ≤ n− 1 : a2
i0k ≡ ±1 mod n}

is a multiplicative group mod n. We’ll show Gn contains all a in {1, . . . , n− 1} such that

(1) ak ≡ 1 mod n or

(2) a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 1}.

If (1) holds for a, so ak ≡ 1 mod n, then a2
i0k ≡ 1 mod n. If (2) holds for a then (ak)2

i ≡
−1 mod n so i ≤ i0 by the maximality of i0 (use a0 = ak). Thus if i = i0 we have

a2
i0k ≡ −1 mod n, and if i < i0 then by squaring both sides of (ak)2

i ≡ −1 mod n enough

times we get a2
i0k ≡ 1 mod n. In either case, a ∈ Gn.

4We will see in Section 6 that every Euler witness is a Miller–Rabin witness, so the 50% lower bound for
the proportion of Miller–Rabin witnesses also follows from the 50% lower bound for the proportion of Euler
witnesses, but a proof that way is harder.

5When n = pα, the number of a mod n such that ap−1 ≡ 1 mod n turns out to be p− 1, so the number
of invertible a mod n such that ap−1 6≡ 1 mod n is ϕ(n)− (p− 1) = (pα−1 − 1)(p− 1) > pα−1 − 1 > 1.
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We will show Gn is a proper subgroup of the invertible numbers mod n. Let p be a prime
factor of n and write n = pαn′ where α ≥ 1 and n′ is not divisible by p. Both pα and n′ are
odd and not 1 (because n is not a prime power), so each is at least 3.

By the Chinese remainder theorem, some a ∈ {1, . . . , n−1} satisfies the two congruences

a ≡ a0 mod pα, a ≡ 1 mod n′.

Since (a0, n) = 1 we get (a, n) = 1. Considering a2
i0k modulo pα and then modulo n′,

a2
i0k ≡ a2i0k0 ≡ (−1)k ≡ −1 mod pα =⇒ a2

i0k 6≡ 1 mod n

since −1 6≡ 1 mod pα, and

a2
i0k ≡ 1 mod n′ =⇒ a2

i0k 6≡ −1 mod n

since −1 6≡ 1 mod n′. Thus a2
i0k 6≡ ±1 mod n, so (a, n) = 1 and a 6∈ Gn. �

An alternate proof of Theorem 4.1, taking cases if n is or is not a Carmichael number
rather than if n is or is not a prime power, is in [5, Section 5.3]. Our proof of Theorem 4.1
is a modification of the argument given there.

The proof of Case 1 used Theorem 3.4, which relied on the interplay between the congru-
ences an−1 ≡ 1 mod n and aϕ(n) ≡ 1 mod n when n is a prime power. The proof of Case 2,
on the other hand, did not involve Euler’s theorem for modulus n and in fact did not really
need e and k to come from a factorization of n− 1 at all: the reasoning from Case 2 proves
the following result.

Corollary 4.2. Let e, k ≥ 1 with k odd. If n > 1 is odd and not a prime power, more than

50% of a ∈ {2, . . . , n−2} satisfy ak 6≡ 1 mod n and a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e−1}.

Proof. In the proof of Case 2 of Theorem 4.1, we don’t need 2ek to be n− 1, so that proof
holds when e, k ≥ 1 and k is odd. Details are left for the reader to check. �

In the appendix (Section A) we will use Corollary 4.2 to develop a probabilistic factor-
ization algorithm.

Corollary 4.2 is invalid when n is an odd prime power: if n = pα for an odd prime p and
we choose e and k by 2ek = ϕ(n) then the only a ∈ {2, . . . , n− 2} satisfying ak 6≡ 1 mod n

and a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e − 1} are the a not relatively prime to n (this

is because modulo pα the only element of order 2 is −1), and the proportion of such a in
{2, . . . , n− 2} is

n− 3− ϕ(n)

n− 3
= 1− ϕ(n)

n− 3
< 1− ϕ(n)

n
= 1− pα(1− 1/p)

pα
= 1−

(
1− 1

p

)
=

1

p
,

which is less than 50%. This does not contradict Theorem 4.1, which allows n to be a prime
power, since the e and k used there are chosen from a factorization of n− 1, not ϕ(n).

5. Proving the proportion of Miller–Rabin witnesses is at least 75%

In this section we will prove Theorem 2.9. Instead of showing the proportion of Miller–
Rabin witnesses for an odd composite n > 1 in {2, . . . , n − 2} is over 75%, we’ll prove the
proportion of Miller–Rabin nonwitnesses in that range is less than 25%. It is more difficult
to prove results about Miller–Rabin nonwitnesses compared to Fermat nonwitnesses or
Solovay–Strassen nonwitnesses because the set of Miller–Rabin nonwitnesses is not generally
closed under multiplication, as we saw already in Section 3.
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As in Theorem 4.1, we will actually show 25% is an upper bound on the proportion of
Miller–Rabin nonwitnesses for n in {1, . . . , n−1}. Then if W is the number of Miller–Rabin
witnesses for n in {1, . . . , n− 1} we have W/(n− 1) ≥ 3/4, and counting in {2, . . . , n− 2}
gives us W/(n− 3) > W/(n− 1) ≥ 3/4, as desired.6

First we will deal with the case that n = pα is a power of an odd prime and α ≥ 2. By
Theorem 3.4, the Miller–Rabin nonwitnesses for pα are the solutions to ap−1 ≡ 1 mod pα.
Such a are closed under multiplication mod pα, which is great (and not true of Miller–Rabin
nonwitnesses for general n). How many such a are there from 1 to pα − 1?

In the table below are solutions to ap−1 ≡ 1 mod pα when p = 5 and 7 with α small. We
include α = 1.

α Solutions to a4 ≡ 1 mod 5α Solutions to a6 ≡ 1 mod 7α

1 1, 2, 3, 4 1, 2, 3, 4, 5, 6
2 1, 7, 18, 24 1, 18, 19, 30, 31, 48
3 1, 57, 68, 124 1, 18, 19, 324, 325, 342
4 1, 182, 443, 624 1, 1047, 1048, 1353, 1354, 2400

This suggests ap−1 ≡ 1 mod pα has p − 1 solutions mod pα for each α. This is true
when α = 1 by Fermat’s little theorem. For larger α we use induction: if ap−1 ≡ 1 mod pα

there is a unique a′ mod pα+1 such that a′p−1 ≡ 1 mod pα+1 and a′ ≡ a mod pα: saying
a′ ≡ a mod pα is the same as a′ ≡ a+ cpα mod pα+1, with c well-defined mod p, so we want
to prove there is a unique choice of c mod p making (a+ cpα)p−1 ≡ 1 mod pα+1.

Using the binomial theorem,

(a+ cpα)p−1 ≡ ap−1 + (p− 1)ap−2cpα mod pα+1,

where higher-order terms vanish since prα ≡ 0 mod pα+1 for r ≥ 2. Since ap−1 ≡ 1 mod pα

we can write ap−1 = 1 + pαM for some M ∈ Z, so we want to find c that makes

(1 + pαM) + (p− 1)ap−2cpα ≡ 1 mod pα+1,

which is equivalent to

M − ap−2c ≡ 0 mod p,

and this has a unique solution for c mod p since a mod p is invertible.
Having shown that there are p − 1 Miller–Rabin nonwitnesses for pα in {1, . . . , pα − 1},

their proportion in this range is

(5.1)
p− 1

pα − 1
=

1

1 + p+ · · ·+ pα−1
.

Since α ≥ 2, this ratio is at most 1/(1 + p), which in turn is at most 1/(1 + 3) = 1/4. (The
only way (5.1) equals 1/4 is if α = 2 and p = 3, i.e., n = 32 = 9. For all other pα the value
of (5.1) is less than 1/4, and for pα = 9 we saw explicitly in Example 2.5 that the ratio in
(5.1) is 1/4.).

From now on let n have at least two different prime factors. Write, as usual, n− 1 = 2ek
with e ≥ 1 and k odd.

Let i0 be the largest integer in {0, 1, . . . , e−1} such that some integer a0 satisfies (a0, n) =

1 and a2
i0

0 ≡ −1 mod n. By the proof of Case 2 of Theorem 4.1, i0 ≥ 0 and the set

Gn = {1 ≤ a ≤ n− 1 : a2
i0k ≡ ±1 mod n}

6It can happen that W/(n− 1) = 3/4: see n = 9 in Example 2.5. This is the only time W/(n− 1) = 3/4.
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is a group under multiplication modulo n that contains every Miller–Rabin nonwitness for
n and is a proper subgroup of all invertible numbers mod n.

The ratio ϕ(n)/|Gn| is an integer, and ϕ(n) < n− 1 since n is not prime. We will show,
when n is not a prime power, that ϕ(n)/|Gn| ≥ 4, so

|{MR nonwitnesses for n in {1, . . . , n− 1}}|
n− 1

<
|Gn|
ϕ(n)

≤ 1

4
.

First we show every a ∈ Gn satisfies an−1 ≡ 1 mod n. Since i0 ≤ e − 1, the product

2i0+1k divides 2ek = n − 1. Each a in Gn satisfies a2
i0k ≡ ±1 mod n, so squaring gives us

a2
i0+1k ≡ 1 mod n. Thus an−1 ≡ 1 mod n.
A Carmichael number has at least three different prime factors, so either n is not a

Carmichael number or it has at least three different prime factors.

Case 1: n is not a Carmichael number.
Set

Fn = {1 ≤ a ≤ n− 1 : an−1 ≡ 1 mod n}.
Then

(5.2) {1 ≤ a ≤ n− 1 : (a, n) = 1} ⊃ Fn ⊃ Gn
and all three sets are groups under multiplication mod n. We will show both containments
in (5.2) are strict, so by group theory ϕ(n)/|Fn| ≥ 2 and |Fn|/|Gn| ≥ 2. Thus

ϕ(n)

|Gn|
=
ϕ(n)

|Fn|
|Fn|
|Gn|

≥ 2 · 2 = 4.

If n is not a Carmichael number then some integer relatively prime to n is not in Fn,
so the first containment in (5.2) is strict. To show the second containment is strict (that
is, Fn 6= Gn), pick a prime factor p of n and write n = pαn′ where α ≥ 1 and p does not
divide n′, so n′ > 1. The integer a ∈ {1, . . . , n − 1} constructed in Case 2 of the proof of

Theorem 4.1 is not in Gn, and that proof also shows a ∈ Fn: from a2
i0k ≡ −1 mod pα and

a2
i0k ≡ 1 mod n′ we get a2

i0+1k ≡ 1 mod n since that congruence is true modulo pα and
modulo n′. Therefore an−1 ≡ 1 mod n, since 2i0+1k is a factor of n− 1.

Case 2: n has at least three different prime factors.
Write the prime decomposition of n as pα1

1 · · · pαrr for distinct primes p`, exponents α` ≥ 1,
and r ≥ 3. Set

Hn = {1 ≤ a ≤ n− 1 : a2
i0k ≡ ±1 mod pα`` for ` = 1, . . . , r}.

Then

(5.3) {1 ≤ a ≤ n− 1 : (a, n) = 1} ⊃ Hn ⊃ Gn
We will show |Hn|/|Gn| ≥ 4, so

ϕ(n)

|Gn|
=
ϕ(n)

|Hn|
|Hn|
|Gn|

≥ |Hn|
|Gn|

≥ 4.

For integers x and y,

x ≡ y mod n⇐⇒ x ≡ y mod pα`` for ` = 1, . . . , r.

The mapping between groups f : Hn →
∏r
`=1{±1 mod pα`` } that is defined by

f(a mod n) = (. . . , a2
i0k mod pα`` , . . . )

r
`=1
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is a homomorphism. Set Kn = ker f , so Hn ⊃ Gn ⊃ Kn. The target group for f has order
2r. Let’s prove f is surjective. It suffices, since f is a homomorphism, to show each r-tuple
(. . . , 1,−1, 1, . . . ) with −1 in one component and 1 in all the other components is in the
image of f . By symmetry it’s enough to show (−1, 1, 1, . . . , 1) is in the image of f . That
is, we seek an a ∈ Hn such that

a2
i0k ≡

{
−1 mod pα1

1 ,

1 mod pα`` , if ` ≥ 2.

By the definition of i0, there is an integer a0 such that a2
i0

0 ≡ −1 mod n. From the
Chinese remainder theorem there is an a ∈ {1, . . . , n− 1} such that

a ≡ a0 mod pα1
1 , a ≡ 1 mod pα`` for ` ≥ 2.

Then

a2
i0k ≡ a2i0k0 ≡ (−1)k ≡ −1 mod pα1

1

and

a2
i0k ≡ 1 mod pα`` for ` ≥ 2.

Then f(a mod n) = (−1, 1, . . . , 1).
The image f(Hn) has order 2r. The image f(Gn) is {(1, 1, . . . , 1), (−1,−1, . . . ,−1)}, of

order 2. Therefore |Hn|/|Kn| = 2r and |Gn|/|Kn| = 2, so |Hn|/|Gn| = 2r−1, which is at
least 4 since r ≥ 3.

Our proof of Theorem 2.9 is now complete.

Corollary 5.1. For odd composite n > 1, the Miller–Rabin nonwitnesses for n lie in a
proper subgroup of the invertible numbers modulo n.

Proof. If n = pα with α ≥ 2 then the Miller–Rabin nonwitnesses for n are a group of order
p− 1, while ϕ(pα) = pα−1(p− 1) > p− 1.

If n has r ≥ 2 different prime factors then the Miller–Rabin nonwitnesses for n lie in
Gn. We showed Gn is a proper subgroup of Fn if n is not a Carmichael number, and it’s a
proper subgroup of Hn if r ≥ 3. �

Gashkov [6] gave another proof of Theorem 2.9. His strategy is to work more directly
with the set S of Miller–Rabin nonwitnesses and find three Miller–Rabin witnesses for n,
say a, b, and c, that are all invertible numbers mod n such that the sets S, aS, bS, and
cS are pairwise disjoint. Verifying the pairwise disjointness is slightly tedious because S is
not a group. In any case, all four sets lie in the invertible numbers mod n and have the
same size, so pairwise disjointness implies 4|S| ≤ ϕ(n) < n− 1, and thus |S|/(n− 1) < 1/4.
Gashkov’s argument does not work when n is a certain type of multiple of 3, so he assumes
in his proof that n is not divisible by 3.

Remark 5.2. In the Miller–Rabin test it is important to look at a2
ik mod n for all i from

0 up to e− 1. If i runs over only a limited range near e− 1 then there are infinitely many
analogues of Carmichael numbers for this weaker test, which means composite n whose
witnesses for this weaker test all have a factor in common with n. See [4].
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6. Euler witnesses are Miller–Rabin witnesses

In the next theorem we prove that every witness for n in the Solovay–Strassen test is a
witness for n in the Miller–Rabin test. This fact along with the 75% lower bound on the
proportion of Miller–Rabin witnesses in Theorem 2.9 compared to the 50% lower bound
for witnesses in the Solovay–Strassen test explains why the Miller–Rabin test is used in
practice, not the Solovay–Strassen test. It helps that the Miller–Rabin test requires less
background to follow its steps (no Jacobi symbols as in the Solovay–Strassen test).

Theorem 6.1. For odd n > 1, an Euler witness for n is a Miller–Rabin witness for n.

Proof. Since nonwitnesses are mathematically nicer than witnesses, we will prove the con-
trapositive: if an integer a ∈ {1, . . . , n − 1} is not a Miller–Rabin witness for n then it is
not an Euler witness for n. That is, the property

ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 1}

implies the property

(a, n) = 1 and a(n−1)/2 ≡
(a
n

)
mod n.

Clearly not being a Miller–Rabin witness implies (a, n) = 1. That it also forces the power

a(n−1)/2 = a2
e−1k to be congruent to ( an) mod n is a more delicate matter to explain.

Since (n − 1)/2 = 2e−1k is a multiple of 2ik, we have a(n−1)/2 ≡ ±1 mod n. Why is the
sign on the right side equal to ( an)? This is the key issue.

Case 1: e = 1, or equivalently n ≡ 3 mod 4. Not being a Miller–Rabin witness in this case
is equivalent to ak ≡ ±1 mod n, which is the same as a(n−1)/2 ≡ ±1 mod n. Let ε ∈ {1,−1}
be the number such that a(n−1)/2 ≡ ε mod n. The Jacobi symbols with denominator n for
both sides are equal, so ( an)(n−1)/2 = ( εn). Since (n − 1)/2 is odd, ( an)(n−1)/2 = ( an). Since

n ≡ 3 mod 4, (−1n ) = (−1)(n−1)/2 = −1 and trivially ( 1
n) = 1, so ( εn) = ε. Thus ( an) = ε, so

a(n−1)/2 ≡ ( an) mod n and (a, n) = 1. That means a is not an Euler witness for n.

Case 2: e ≥ 2, or equivalently n ≡ 1 mod 4. This makes (n − 1)/2 = 2e−1k = 2 · 2e−2k
an even multiple of 2ik for every i ∈ {0, . . . , e− 2}.

If ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ≤ e−2 then a(n−1)/2 = a2

e−1k ≡ 1 mod n
since (n − 1)/2 is even. If a2

e−1k ≡ −1 mod n then a(n−1)/2 ≡ −1 mod n. So we want to
show when a is not a Miller–Rabin witness that

ak ≡ 1 mod n or a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 2} =⇒

(a
n

)
= 1

and

(6.1) a(n−1)/2 ≡ −1 mod n =⇒
(a
n

)
= −1.

If ak ≡ 1 mod n then forming the Jacobi symbol of both sides gives ( an)k = ( 1
n) = 1, so

( an) = 1 since k is odd (this is the same argument used in Case 1). The remaining possibility

is that a2
ik ≡ −1 mod n for some i ∈ {0, . . . , e− 2} or i = e− 1. Then

a(n−1)/2 = a2
e−1k ≡

{
−1 mod n, if i = e− 1,

1 mod n, if 0 ≤ i ≤ e− 2.
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In correspondence with this formula, we will show when a2
ik ≡ −1 mod n that

(6.2)
(a
n

)
=

{
−1 mod n, if i = e− 1,

1 mod n, if 0 ≤ i ≤ e− 2

and thus a(n−1)/2 ≡ ( an) mod n.
The Jacobi symbol ( an) is, by definition, the product of the Legendre symbols (ap ) as p

runs over the primes dividing n, with each (ap ) appearing as often as the multiplicity of p in

n. We will compute (ap ) for such p, and its value will depend on how highly divisible each

p− 1 is by 2: see (6.4).
For each prime p dividing n, write p − 1 = 2vpkp where vp ≥ 1 and kp is odd. Since

a2
ik ≡ −1 mod n implies (ak)2

i ≡ −1 mod p, the order of ak mod p is 2i+1. Therefore
2i+1 | (p− 1), so i < vp and

(6.3) p ≡ 1 mod 2i+1

for each prime p dividing n. Remember that 0 ≤ i ≤ e− 1 and a2
ik ≡ −1 mod n.

Since (p − 1)/2 = 2vp−1kp, by Euler’s congruence (ap ) ≡ a2
vp−1kp mod p. Raising both

sides to the k-th power (an odd power), we get (ap ) ≡ a(2ik)(2vp−1−ikp) ≡ (−1)2
vp−1−i

mod p.

If i = vp − 1 then 2vp−1−i = 1, while if i < vp − 1 then 2vp−1−i is even. Thus

(6.4)

(
a

p

)
=

{
−1, if i = vp − 1 (equiv., vp = i+ 1),

1, if i < vp − 1 (equiv., vp > i+ 1).

The congruence (6.3) can be written as p ≡ 1 + cp2
i+1 mod 2i+2 where cp = 0 or 1, with

cp = 0 when p ≡ 1 mod 2i+2 (vp > i + 1) and cp = 1 when p 6≡ 1 mod 2i+2 (vp = i + 1).
Then (6.4) says (ap ) = (−1)cp for all primes p dividing n. Writing n as a product of primes

p1 · · · ps, where these primes are not necessarily distinct,7(a
n

)
=

s∏
j=1

(
a

pj

)
=

s∏
j=1

(−1)cpj = (−1)
∑
cpj .

Also

n =

s∏
j=1

pj ≡
s∏
j=1

(1 + cpj2
i+1) mod 2i+2 ≡ 1 +

 s∑
j=1

cpj

 2i+1 mod 2i+2.

Let c =
∑s

j=1 cpj = |{j : vpj = i+ 1}|, so ( an) = (−1)c and

(6.5) n ≡ 1 + c2i+1 mod 2i+2.

Recall n − 1 = 2ek with k odd, so (6.5) says 1 + 2ek ≡ 1 + c2i+1 mod 2i+2. Also recall
0 ≤ i ≤ e − 1. If i = e − 1 then 1 + 2ek ≡ 1 + c2e mod 2e+1, so k ≡ c mod 2. Thus c
is odd and ( an) = (−1)c = −1. If i < e − 1 then i + 2 ≤ e, so 2e ≡ 0 mod 2i+2. Thus

1 ≡ 1 + c2i+1 mod 2i+2, which implies c is even, so ( an) = (−1)c = 1. We proved (6.2). �

Corollary 6.2. If n ≡ 3 mod 4, Euler witnesses and Miller–Rabin witnesses for n coincide.

7This differs from the notation p1, . . . for prime factors of n in Section 5, where the primes were distinct.
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Proof. Theorem 6.1 shows for odd n > 1 that Euler witnesses for n are Miller-Rabin wit-
nesses for n. To prove the converse when n ≡ 3 mod 4, a Miller-Rabin witness a for such n
satisfies a(n−1)/2 6≡ ±1 mod n by Example 2.4, so either (i) (a, n) > 1 or (ii) (a, n) = 1 and

a(n−1)/2 6≡ ( an) mod n, which makes a an Euler witness for n. �

The converse of Corollary 6.2 is not true. For example, Euler witnesses and Miller–Rabin
witnesses for 21 are the same (every integer from 2 to 19) but 21 ≡ 1 mod 4.

Corollary 6.3. An odd n ≡ 1 mod 4 and a ∈ {1, . . . , n− 1} can satisfy a(n−1)/2 ≡ 1 mod n

and ( an) = −1 but never a(n−1)/2 ≡ −1 mod n and ( an) = 1.

Proof. With a computer it is easy to generate examples where a(n−1)/2 ≡ 1 mod n and
( an) = −1, such as the pairs (a, n) = (8, 21), (10, 33), (22, 105), and so on.

The reason it is impossible to have a(n−1)/2 ≡ −1 mod n and ( an) = 1 is that such an a
would be an Euler witness for n (with i = e− 1 ≥ 1) but not a Miller–Rabin witness for n
since a Miller–Rabin sequence with more than one term can’t end with −1 mod n.8 More
directly, look at (6.1). �

Combining these two corollaries, a(n−1)/2 ≡ −1 mod n =⇒ ( an) = −1 for all odd n > 1,

while a(n−1)/2 ≡ 1 mod n =⇒ ( an) = 1 if n ≡ 3 mod 4 but not generally if n ≡ 1 mod 4.

7. The original version of the Miller–Rabin test

The Miller–Rabin test was introduced by Miller [7], but not in the form we used. For
each a, the steps in Miller’s original test were essentially checking if an−1 6≡ 1 mod n or if

1 < (a2
ik − 1, n) < n for some i ∈ {0, . . . , e− 1}. Let’s say such an a is a “Miller witness”

for n. If there is a Miller witness for n then n is composite. Miller showed the Generalized
Riemann Hypothesis (GRH) implies each odd composite n has a Miller witness up to some
multiple of (log n)2, so his test is deterministic assuming GRH. A few years later Monier [8]
and Rabin [9] each proved for odd composite n that at least 75% of a ∈ {1, . . . , n− 1} are
Miller witnesses for n, which makes Miller’s test probabilistic without using GRH.

At the end of [9] Rabin described a second version of Miller’s test in terms of confirming
or falsifying the congruences in (2.1), attributing this observation to Knuth, and he showed
each Miller witness for n is also a Miller–Rabin witness for n in the sense that we defined
this term earlier, but Rabin did not indicate if the converse relation is true. Monier [8]
confirmed that it is: for each a ∈ {1, . . . , n− 1}, the conditions

(7.1) an−1 6≡ 1 mod n or 1 < (a2
ik − 1, n) < n for some i ∈ {0, . . . , e− 1}

and

(7.2) ak 6≡ 1 mod n and a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e− 1}

are equivalent. Monier used the gcd sequence (d0, d1, . . . , de) where di = (a2
ik−1, n) to prove

the negations of (7.1) and (7.2) are equivalent. Saying (7.1) is false makes the gcd sequence
have either the form (n, . . . , n) with all terms equal to n or the form (1, . . . , 1, n, . . . , n)
where a sequence of 1’s is followed by a sequence of n’s (and the last term is n). The first
case is equivalent to d0 = n, which says ak ≡ 1 mod n, while the second case is equivalent
to there being an i ∈ {0, . . . , e − 1} such that di = 1 and di+1 = n, which turns out to be

8If a(n−1)/2 ≡ 1 mod n and ( a
n

) = −1, a is an Euler witness for n and thus is a Miller–Rabin witness for

n. There is no contradiction because a Miller–Rabin sequence can have 1 as its last term.
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the same as a2
ik ≡ −1 mod n (that n is odd is crucial here), and one of those being true is

the negation of (7.2).
The Miller–Rabin test had been discovered by Selfridge a couple of years before Miller’s

paper, but he did not publish anything on it. About 10 years before the work of Miller
and Rabin, Artjuhov [1], [2] wrote two papers about primality tests based on congruence
conditions. In the Western literature his work is often cited as a version of the Miller–
Rabin test that appeared before the work of Miller and Rabin (and Selfridge), but this is
incorrect. Artjuhov had instead essentially discovered the Solovay–Strassen test: he proved
[1, Theorem E, p. 362] that odd composite n > 1 not equal to a square have Euler witnesses.9

While [2] includes the representation of n − 1 as 2ek and Artjuhov writes in [2] about the
congruence ak ≡ 1 mod n, he does not consider anything like the additional congruence

conditions a2
ik ≡ −1 mod n.

Appendix A. A probabilistic factorization algorithm

When the Miller–Rabin test applied to an odd number reports it is composite, then that
is correct, while if it reports the number is prime then there is a low probability of error.
In the composite case the test does not reveal a factor, so the Miller–Rabin test is not
a factorization algorithm. Using ideas behind the Miller–Rabin test with a slight twist,
we will be led to a probabilistic algorithm for finding a nontrivial factor of composite odd
numbers.

We saw in Corollary 4.2 that when n > 1 is odd and not a prime power, the idea behind
the Miller–Rabin test works with every e ≥ 1 and odd positive k, not just those coming
from a factorization of n−1 as 2ek: over 50% of a ∈ {2, . . . , n−2} satisfy ak 6≡ 1 mod n and

a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e− 1}. Let’s use e and k coming from a factorization of

ϕ(n) (instead of n− 1) as 2ek.

Theorem A.1. For odd n > 1 that is not a prime power, let ϕ(n) = 2ek where e ≥ 1 and
k is odd. For at least 50% of a ∈ {2, . . . , n − 2} that are relatively prime to n, the least

j ∈ {0, . . . , e} such that a2
jk ≡ 1 mod n is positive and a2

j−1k 6≡ −1 mod n.

The table below illustrates the theorem with n = 15, so ϕ(n) = 8 = 23 · 1. Of the six a
relatively prime to 15 in {2, . . . , 13}, all fit the conclusion.

a 2 4 7 8 11 13
j 2 1 2 2 1 2

a2
j−1k mod 15 4 4 4 4 11 4

Proof. By Euler’s theorem, each a ∈ {2, . . . , n − 2} that is relatively prime to n satisfies
a2

ek ≡ 1 mod n. Thus ak mod n has order dividing 2e: its order is 2j for some j ∈ {0, . . . , e},
which means j is minimal such that a2

jk ≡ 1 mod n. We have j = 0 if and only if ak ≡
1 mod n, and for j ≥ 1 the only i ∈ {0, . . . , e−1} for which we could have a2

ik ≡ −1 mod n
is i = j − 1.

By the proof of Corollary 4.2 (which was left to the reader), the set of a ∈ {1, . . . , n− 1}
such that ak ≡ 1 mod n or a2

ik ≡ −1 mod n for some i ∈ {0, . . . , e − 1} is contained in a
proper subgroup of the invertible numbers mod n and thus such a form at most half of all
a in {1, . . . , n− 1} that are relatively prime to n. This includes a = 1 and a = n− 1. So for

9Artjuhov’s proof is identical to the proof Solovay and Strassen rediscovered in [11]; Solovay and Strassen
extended the test to square n in [12].
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at least half of a in {2, . . . , n− 2} that are relatively prime to n we have ak 6≡ 1 mod n and

a2
ik 6≡ −1 mod n for all i ∈ {0, . . . , e − 1}. Those two conditions are equivalent to saying

j ≥ 1 and a2
j−1k 6≡ −1 mod n, where j is the order of ak mod n. �

Corollary A.2. For odd n > 1 that is not a prime power, let ϕ(n) = 2ek where e ≥ 1 and k
is odd. For at least 50% of a ∈ {2, . . . , n−2} either 1 < (a, n) < n or there is j ∈ {1, . . . , e}
such that 1 < (a2

j−1k − 1, n) < n.

Proof. By Theorem A.1, for at least 50% of a in {2, . . . , n−2} such that (a, n) = 1, ak mod n

has order 2j where j ≥ 1 and a2
j−1k 6≡ −1 mod n. Since a2

ek = aϕ(n) ≡ 1 mod n, j ≤ e.

Then (a2
j−1k− 1)(a2

j−1k + 1) ≡ 0 mod n and a2
j−1k− 1 is not a multiple of n by minimality

of j, and is not relatively prime to n since a2
j−1k 6≡ −1 mod n. Thus 1 < (a2

j−1k−1, n) < n,

so (a2
j−1k−1, n) is a nontrivial factor of n. For all a in {2, . . . , n−2} that are not relatively

prime to n, (a, n) is a nontrivial factor of n. So either (a, n) or (a2
j−1k − 1, n) for some

j ∈ {1, . . . , e} is a nontrivial factor of n for over 50% of a if we know ϕ(n). �

Example A.3. Let n = 12127237. It turns out that ϕ(n) = 12119436 = 22 · 3029859 =
2ek. A random integer in {2, . . . , n − 2} offered by a computer is a = 7169940. Since
ak ≡ −1 mod n, this is not helpful. Another random integer in that range is a = 4689982,
for which ak ≡ 2614459 mod n and a2k ≡ 1 mod n, so a nontrivial factor of n is (ak−1, n) =
(2614458, n) = 5659: n = 5659 · 2143.

The hypotheses of Corollary A.2 are mild. Indeed, it is trivial to determine whether a
specified integer n > 1 is odd and it is computationally easy to determine if n is a perfect
power: if n = bc where b ≥ 2 and c ≥ 2 then from n ≥ 2c we get 2 ≤ c ≤ log2 n. For each c
in that range (much shorter than the size of n itself) check whether c

√
n is in Z. Therefore

Corollary A.2 tells us that, from the viewpoint of probabilistic algorithms, being able to
compute ϕ(n) is at least as hard a problem as finding a nontrivial factor of n.

The reasoning in the proofs of Theorem A.1 and Corollary A.2 would continue to work
if ϕ(n) is replaced by a multiple of ϕ(n): all we used about e and k in the proof was that
a2

ek ≡ 1 mod n for all a relatively prime to n, and that holds when 2ek is a multiple of
ϕ(n). Moreover, since d | n ⇒ ϕ(d) | ϕ(n), if we know a multiple of ϕ(n) then that same
number is a multiple of ϕ(d) for every factor d of n. Therefore knowing a multiple of ϕ(n),
when n > 1 is odd and not a prime power, lets us apply Corollary A.2 repeatedly as a
probabilistic algorithm to the factors of n that we find in order to fully factor n into primes
(use the Miller–Rabin test as a way of deciding if a factor is or is not prime).

How long should we expect this factorization algorithm to take? We won’t do a careful
complexity analysis, but only indicate why things should run quickly as a function of the
starting number n. Since over 50% of integers in {2, . . . , n − 2} lead to a nontrivial factor
of n in the setting of Corollary A.2, we expect on average to need only 2 applications of
the corollary to find one new nontrivial factor (after first checking if n is even or a perfect
power). Repeating this until we reach a prime factorization should not take long since the
number of prime factors of n is small compared with n itself: if n = p1 . . . pr is a product
of r primes, some possibly being repeated, then n ≥ 2r so r ≤ log2 n.

We have shown that a procedure that tells us ϕ(n) (or a multiple of it) for general n
leads to an efficient probabilistic algorithm for prime factorization. Conversely, knowing
the prime factorization of n lets us easily compute ϕ(n), so computing prime factorizations
and computing the Euler ϕ-function are essentially the same level of difficulty if we allow
the use of probabilistic algorithms: each task is reducible to the other in polynomial time.
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This approach to factoring n seems to depend on knowing ϕ(n) or a multiple of ϕ(n).
We can modify the procedure in the following way to avoid using ϕ(n) or a multiple of it
in the calculations (only using it in a proof).

Corollary A.4. For odd n > 1 that is not a prime power, over 50% of a ∈ {2, . . . , n− 2}
satisfy one the following two conditions:

(1) (a, n) > 1,

(2) (a, n) = 1, a mod n has even order t, and at/2 6≡ −1 mod n.

In the first case, (a, n) is a nontrivial factor of n. In the second case, (at/2 − 1, n) and

(at/2 + 1, n) are complementary nontrivial factors of n.

Proof. Let ϕ(n) = 2ek where e ≥ 1 and k is odd. By Theorem A.1, for at least 50% of all
a in {2, . . . , n − 2} that are relatively prime to n the order 2j of ak mod n has j ≥ 1 and

a2
j−1k 6≡ −1 mod n. For such a, let a mod n have order t. Then t | 2jk since a2

jk ≡ 1 mod n

and t - 2j−1k since a2
j−1k 6≡ −1 mod n. Thus the 2-power in t is 2j , so t is even.

Writing t = 2jt′ for odd t′ we have t′ | k. To prove at/2 6≡ −1 mod n we argue by

contradiction. If at/2 ≡ −1 mod n then a2
j−1t′ ≡ −1 mod n. Raising both sides to the

k/t′-power, a2
j−1k ≡ (−1)k/t

′ ≡ −1 mod n since k/t′ is odd. This contradicts a2
j−1k 6≡

−1 mod n. We have proved at least 50% of a in {2, . . . , n− 2} that are relatively prime to
n satisfy condition (2) in the corollary.

From at ≡ 1 mod n, (at/2 + 1)(at/2 − 1) ≡ 0 mod n. If (at/2 − 1, n) = 1 then at/2 + 1 ≡
0 mod n, but we just saw at/2 6≡ −1 mod n. If (at/2 − 1, n) = n then at/2 ≡ 1 mod n, which

contradicts t being the order of a mod n. Thus (at/2 − 1, n) lies strictly between 1 and n

when a satisfies (2). It is left to the reader to show (at/2 + 1, n) = n/(at/2 − 1, n).
Among the a in {2, . . . , n− 2}, those that are not relatively prime to n all satisfy (1) and

at least half that are relatively prime to n satisfy (2), so over half satisfy (1) or (2). �

Corollary A.4 suggests the following algorithm for finding a nontrivial factor of odd
composite n > 1, preferably to be used only after applying iterations of the Miller–Rabin
test to n until we find a witness and thus know n is composite.

Step 1. Check if n is a perfect power: n
?
= bc where b ≥ 2 and c ≥ 2. (Necessarily n ≥ 2c

so 2 ≤ c ≤ log2 n, and for each such c we can check if c
√
n is an integer or not.) If this

happens then b is a nontrivial factor of n and we stop. Otherwise n is not a perfect power
and go to the next step.

Step 2. Pick random a in {2, . . . , n− 2}.
Step 3. Check (by Euclid’s algorithm) if (a, n) > 1. If so then (a, n) is a nontrivial

factor of n and we stop. Otherwise go to the next step.
Step 4. If (a, n) = 1 then check if a mod n has even order. If the order is odd then

return to Step 2.
Step 5. If the order t of a mod n is even, check if at/2 6≡ −1 mod n. If so then (at/2−1, n)

is a nontrivial factor of n and stop.
Step 6. If at/2 ≡ −1 mod n then return to Step 2.

By Corollary A.4, the probability that a in Step 2 leads to a nontrivial factor of n in
Steps 3 or 5 is over 50%, so when n is composite we expect only a few iterations are needed
for the algorithm to reveal a nontrivial factor of n. While the Miller–Rabin test itself does
not appear in the implementation of Steps 1 through 6, its ideas were used above to justify
the 50% lower bound for the algorithm to stop in each round at Steps 3 or 5.
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Example A.5. Let n = 68,421,093,311. Since 2n−1 ≡ 15,891,188,482 6≡ 1 mod n, the
number n is definitely composite.

A computer’s random number generator in the range {2, . . . , n − 2} spits out first a =
546,802,896. We have (a, n) = 1 and the order of a mod n is t = 17,091,292,870, which is

even. Since at/2 ≡ 31,266,883,924 6≡ −1 mod n, a nontrivial factor of n is (at/2 − 1, n) =
(31,266,883,923, n) = 2243. As a check, n/2243 = 30,504,277.

This appears to be a fantastic method of factoring (odd) numbers once we are sure they
are composite. But there’s a catch, and it’s in Step 4: computing the order of a mod n in
general could take a very long time relative to the size of n on a classical computer. (The
numbers in the example are small enough that a classical computer ran each of the steps
on them in at most a few seconds.) In the 1990s Peter Shor discovered how to make the
calculation of the order of a mod n run quickly (polynomial time in log n) on a quantum
computer [10]. The six-step algorithm above is called Shor’s algorithm.
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