THE LUCAS-LEHMER TEST

KEITH CONRAD

1. INTRODUCTION

If $2^n - 1$ is prime then n is prime, since

 $n = ab \Longrightarrow 2^{n} - 1 = (2^{a})^{b} - 1 = (2^{a} - 1)(2^{a(b-1)} + 2^{a(b-2)} + \dots + 2^{a} + 1)$

and the factors on the right exceed 1 when a > 1 and b > 1. When $p \le 7$ is prime, $2^p - 1$ is prime : $2^2 - 1 = 3$, $2^3 - 1 = 7$, $2^5 - 1 = 31$, and $2^7 - 1 = 127$. But $2^{11} - 1 = 2047 = 23 \cdot 89$, so primality of p is necessary for $2^p - 1$ to be prime but *not* sufficient.

Primes of the form $M_p := 2^p - 1$ are called *Mersenne primes*. It is conjectured that there are infinitely many such primes, but data suggest they are rare: there are over 5.7 million primes p < 100,000,000 and in this range only 51 primes values of M_p have been found. The table below indicates for prime $p \le 47$ when M_p is prime. A table of all known Mersenne primes is on https://t5k.org/mersenne/.

Using the the equivalences

$$\begin{aligned} 2 \equiv \Box \mod p & \iff p = 2 \text{ or } p \equiv 1,7 \mod 8, \\ 3 \equiv \Box \mod p & \iff p = 2,3 \text{ or } p \equiv 1,11 \mod 12, \end{aligned}$$

and Euler's criterion $a^{(p-1)/2} \equiv {a \choose p} \mod p$, we will derive a primality test for Mersenne primes that is called the Lucas–Lehmer test.

2. Determining primality of Mersenne numbers

The test we give for primality of M_p uses the sequence $\{S_k\}_{k\geq 0}$ where $S_0 = 4$ and $S_k = S_{k-1}^2 - 2$ when $k \geq 1$. It begins 4, 14, 194, and 37634. We will start with a formula for S_k in terms of powers of $2 + \sqrt{3}$ and $2 - \sqrt{3}$.

Lemma 2.1. Let $\alpha = 2 + \sqrt{3}$ and $\overline{\alpha} = 2 - \sqrt{3}$. For $k \ge 0$, $S_k = \alpha^{2^k} + \overline{\alpha}^{2^k}$.

Proof. Let
$$x_k = \alpha^{2^k} + \overline{\alpha}^{2^k}$$
. Then $x_0 = \alpha + \overline{\alpha} = 4 = S_0$ and since $\alpha \overline{\alpha} = 1$, for $k \ge 1$ we have
 $x_{k-1}^2 - 2 = (\alpha^{2^{k-1}} + \overline{\alpha}^{2^{k-1}})^2 - 2 = \alpha^{2^k} + 2 + \overline{\alpha}^{2^k} - 2 = \alpha^{2^k} + \overline{\alpha}^{2^k} = x_k$,

so $x_k = S_k$ for all $k \ge 0$ by induction.

Theorem 2.2 (Lucas–Lehmer). For odd primes p, M_p is prime $\iff S_{p-2} \equiv 0 \mod M_p$.

The proof here, different from the original, is by Rosen [7] for (\Rightarrow) and Bruce [1] for (\Leftarrow) . In both directions we will use modular arithmetic in $\mathbb{Z}[\sqrt{3}]$.

KEITH CONRAD

Proof. (\Longrightarrow) When M_p is prime, the M_p -th power map in $\mathbb{Z}[\sqrt{3}]/(M_p)$ is additive, so

$$(1+\sqrt{3})^{M_p} \equiv 1+\sqrt{3}^{M_p} \mod M_p$$

$$\equiv 1+\sqrt{3}^{M_p-1}\sqrt{3} \mod M_p$$

$$\equiv 1+(\sqrt{3}^2)^{(M_p-1)/2}\sqrt{3} \mod M_p$$

$$\equiv 1+3^{(M_p-1)/2}\sqrt{3} \mod M_p.$$

Since $p \ge 3$, $M_p = 2^p - 1 \equiv -1 \equiv 7 \mod 8$ and $M_p = 2^p - 1 = (-1)^p - 1 = -2 \equiv 1 \mod 3$, so $M_p \equiv 7 \mod 12$. Thus $3 \not\equiv \Box \mod M_p$ by the rule about when 3 is a square modulo primes, so $3^{(M_p-1)/2} \equiv -1 \mod M_p$ by Euler's criterion. Thus

(2.1)
$$(1+\sqrt{3})^{M_p} \equiv 1+3^{(M_p-1)/2}\sqrt{3} \equiv 1-\sqrt{3} \mod M_p.$$

We will now calculate $(1 + \sqrt{3})^{M_p} \mod M_p$ in a second way. In $\mathbb{Z}[\sqrt{3}]$,

$$(1+\sqrt{3})^{M_p} = (1+\sqrt{3})(1+\sqrt{3})^{M_p-1} = (1+\sqrt{3})((1+\sqrt{3})^2)^{(M_p-1)/2}$$
$$= (1+\sqrt{3})(4+2\sqrt{3})^{(M_p-1)/2}$$
$$= (1+\sqrt{3})2^{(M_p-1)/2}(2+\sqrt{3})^{(M_p-1)/2}$$
$$= (1+\sqrt{3})2^{(M_p-1)/2}\alpha^{(M_p-1)/2},$$

where $\alpha = 2 + \sqrt{3}$ as in Lemma 2.1. Since $M_p \equiv 7 \mod 8$, $2 \equiv \Box \mod M_p$ by the rule about when 2 is a square modulo primes, so $2^{(M_p-1)/2} \equiv 1 \mod M_p$. Thus

(2.2)
$$(1+\sqrt{3})^{M_p} \equiv (1+\sqrt{3})\alpha^{(M_p-1)/2} \equiv (1+\sqrt{3})\alpha^{2^{p-1}-1} \mod M_p.$$

Combining (2.1) and (2.2),

$$(1+\sqrt{3})\alpha^{2^{p-1}-1} \equiv 1-\sqrt{3} \mod M_p.$$

Multiply both sides by $1 + \sqrt{3}$, with $(1 + \sqrt{3})^2 = 4 + 2\sqrt{3} = 2\alpha$:

$$(2\alpha)\alpha^{2^{p-1}-1} \equiv -2 \bmod M_p.$$

Since M_p is odd, 2 mod M_p is invertible, so we can cancel the 2 on both sides:

$$\alpha^{2^{p-1}} \equiv -1 \bmod M_p.$$

Write 2^{p-1} in the exponent as $2^{p-2} + 2^{p-2}$:

$$\alpha^{2^{p-2}}\alpha^{2^{p-2}} \equiv -1 \bmod M_p.$$

Multiply both sides by $\overline{\alpha}^{2^{p-2}}$. Since $\alpha \overline{\alpha} = 1$,

$$\alpha^{2^{p-2}} \equiv -\overline{\alpha}^{2^{p-2}} \bmod M_p.$$

Thus $\alpha^{2^{p-2}} + \overline{\alpha}^{2^{p-2}} \equiv 0 \mod M_p$, so $S_{p-2} \equiv 0 \mod M_p$ by Lemma 2.1. That congruence is in $\mathbb{Z}[\sqrt{3}]$, so $M_p(a + b\sqrt{3}) = S_{p-2}$ for some $a, b \in \mathbb{Z}$. Thus $M_pa = S_{p-2}$ and $M_pb = 0$, so $M_pa = S_{p-2}$, which means $S_{p-2} \equiv 0 \mod M_p$ in \mathbb{Z} .

(\Leftarrow) To show M_p is prime, we argue by contradiction. Assume M_p is composite, so it has a prime factor $q \leq \sqrt{M_p}$. Since M_p is odd, q is odd. We will work in $\mathbb{Z}[\sqrt{3}]/(q)$.

Since $S_{p-2} \equiv 0 \mod M_p$ in \mathbf{Z} , $S_{p-2} = M_p N$ for $N \in \mathbf{Z}$, which says $\alpha^{2^{p-2}} + \overline{\alpha}^{2^{p-2}} = M_p N$ by Lemma 2.1. Since $q \mid M_p$, $\alpha^{2^{p-2}} \equiv -\overline{\alpha}^{2^{p-2}} \mod q$. Multiply both sides by $\alpha^{2^{p-2}}$. Since $\alpha \overline{\alpha} = 1$,

(2.3)
$$\alpha^{2^{p-1}} \equiv -1 \mod q,$$

so $\alpha^{2^p} \equiv 1 \mod q$. Thus α in $\mathbb{Z}[\sqrt{3}]/(q)$ has order dividing 2^p . The order doesn't divide 2^{p-1} by $(2.3)^1$, so the order is 2^p . Thus 2^p divides $|(\mathbb{Z}[\sqrt{3}]/(q))^{\times}| \leq |\mathbb{Z}[\sqrt{3}]/(q)| - 1 = q^2 - 1$, so

$$2^p \le q^2 - 1 < q^2 \le M_p = 2^p - 1,$$

which is a contradiction. Thus M_p is not composite, so it is prime.

Example 2.3. To show $M_{19} = 2^{19} - 1 = 524287$ is prime, the table below lists $S_k \mod M_{19}$, starting at k = 2 so the table fits within the margins, and $S_{17} \equiv 0 \mod M_{19}$.

k	2	3	4	5	6	7	8	9
$S_k \mod M_{19}$	194	37634	218767	510066	386344	323156	218526	504140
k	10	11	12	13	14	15	16	17
$S_k \mod M_{19}$	103469	417706	307417	382989	275842	85226	523263	0

Remark 2.4. The Lucas-Lehmer test is valid with a sequence $\{s_k\}$ where $s_k = s_{k-1}^2 - 2$ and the Jacobi symbols $\left(\frac{s_0-2}{M_q}\right)$ and $\left(\frac{-s_0-2}{M_q}\right)$ are 1, such as $s_0 = 4$ and $s_0 = 10$. See Theorem 2.1 in Jansen's PhD thesis https://math.leidenuniv.nl/scripties/PhDJansen.pdf.

Here is some history about the Lucas–Lehmer test. In 1876 Lucas gave (without proof) a sufficient, but not necessary, condition for M_p to be prime if $p \equiv 3 \mod 4$ [5, Théorème I] and said [4, p. 167] he was able to show M_{127} is prime². In 1878 he gave (again without proof) tests when $p \equiv 1 \mod 4$ [6, Théorème, p. 316] and $p \equiv 3 \mod 4$ [6, Théorème II, p. 305]. In 1930, Lehmer [2, Theorem 5.4] showed the primality test given by Lucas for M_p when $p \equiv 1 \mod 4$ can be sharpened to the necessary and sufficient conditions in Theorem 2.2 and he proved it holds for all primes p > 2.

References

- J. W. Bruce, "A really trivial proof of the Lucas-Lehmer test," Amer. Math. Monthly 100 (1993), 370-371.
- [2] D. H. Lehmer, "An extended theory of Lucas' functions," Annals of Math., 31 (1930), 419-448.
- [3] D. H. Lehmer, "On Lucas's test for the primality of Mersenne's numbers," J. London Math. Soc., 10 (1935), 162-165. https://t5k.org/mersenne/LukeMirror/lit/lit_007s.htm.
- [4] É. Lucas, "Note sur l'application des séries récurrentes à la recherche de la loi de distribution des nombres premiers," C. R. Acad. Sci. Paris, 82 (1876), 165-167. URL https://www.biodiversitylibrary.org/ item/24897#page/171/mode/1up.
- [5] É. Lucas, "Nouveaux théorèmes d'arithmétique supérieure," C. R. Acad. Sci. Paris, 83 (1876), 1286–1288. URL https://www.biodiversitylibrary.org/item/23737#page/1298/mode/1up.
- [6] É. Lucas, "Théoriè des fonctions numériques simplement périodiques," Amer. J. Math., 1 (1878), 184-240, 289-321. URL http://edouardlucas.free.fr/oeuvres/Theorie_des_fonctions_simplement_ periodiques.pdf
- [7] M. I. Rosen, "A proof of the Lucas–Lehmer test," Amer. Math. Monthly 64 (1988), 855–856.

¹Here we are using q > 2, since $1 \equiv -1 \mod 2$.

²The number M_{127} , with 39 digits, was the largest known prime until computers were used in the 1950s.